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A NOTE ON HOLOMORPHIC FUNCTIONS AND
THE FOURIER-LAPLACE TRANSFORM

MARCUS CARLSSON and JENS WITTSTEN

Abstract
We revisit the classical problem of when a given function, which is analytic in the upper half
plane C+, can be written as the Fourier transform of a function or distribution with support on a
half axis (−∞, b], b ∈ R. We derive slight improvements of the classical Paley-Wiener-Schwartz
Theorem, as well as softer conditions for verifying membership in classical function spaces such
as Hp(C+).

1. Introduction

Let C+ denote the complex upper half plane { x + iy : y > 0 }, C+ its closure
and let t denote the identity function on R. Given a function u ∈ L1(R) with
support in a half axis (−∞, b], b ∈ R, we may define a function û by

û(z) =
∫
u(s)e−izs ds = F (eytu)(x), z = x + iy ∈ C+, (1.1)

which is analytic in C+. In other words, the Fourier transform Fu on R has
a natural extension as a holomorphic function to the upper half plane C+.
Moreover,

|û(z)| ≤
∫ ∣∣u(s)eys∣∣ ds ≤ ‖u‖L1eby,

so the upper limit of the support of u is related to the growth of û(z) as
y → ∞. These simple observations lie at the heart of e.g. the theory of
Laplace transforms and of Hp spaces. Similarly, if u ∈ L2 has support on
an interval [a, b], then û defines an entire function (of exponential type), and
its growth in the lower half plane is determined by a (or rather, the largest
possible a). The Paley-Wiener Theorem [17] gives a precise converse to the
above observations, and it has been generalized by L. Schwartz [19] in several
ways, to include e.g. distributions in Rn with support in a compact set or on
a half space. These are all reproduced in Hörmander [9], see Theorems 7.3.1,

Received 26 May 2014.
DOI: https://doi.org/10.7146/math.scand.a-25612



226 m. carlsson and j. wittsten

7.4.2 and 7.4.3. The following books and articles [1], [4], [11], [12], [18], [21],
[22] also contain various versions of the Paley-Wiener Theorem, to mention a
few.

For the moment, we focus on the one-dimensional case n = 1. A typical
theorem of the above type then reads:

A holomorphic function f in C+ can be represented as f = û, where u
is a distribution with support on (−∞, b] for some b ∈ R, provided that
f satisfies certain growth estimates.

The conditions imposed in particular require f to be of exponential type, at
least inC++iη for some η > 0. We show in this paper that this is unnecessarily
restrictive; it suffices to assume thatf is of exponential growth on the imaginary
half axis iR+ = {iy : y > 0}, behaves “nicely” near R, and has order 2 and
type 0, or less, elsewhere. The last condition means that for each ε > 0 there
exists Cε > 0 such that

|f (z)| ≤ Cεe
ε|z|2

for z in the domain of interest. Theorem A below is typical for the type of
extensions we prove in this paper. We let Hol (C+) denote the class of functions
holomorphic in C+, and we let C (C+) denote the set of continuous functions
on C+. Given a function f on C+ we write f |R for its restriction to R. We
denote the space of temperate distributions on R by S ′.

Theorem A. Suppose that f ∈ Hol (C+) ∩ C (C+) satisfies:

(i) f is of order/type ≤ (2, 0),

(ii) b = lim supy→∞ y−1 ln |f (iy)| is finite,

(iii) f |R ∈ S ′.

Then u = F −1(f |R) has support included in (−∞, b] (as a distribution in
S ′). Moreover, this is not true for any smaller b and f = û in C+.

As an application, we give a slight improvement of the classical Paley-
Wiener-Schwartz Theorem in Rn. We also consider extensions of the above
result to the case when no information is available on R, i.e. we consider
weaker forms of (iii). This will force us to leave S ′ and move to a larger class
of distributions, namely distributions with sub-exponential growth, which we
denote by M ′. We study this class in Section 2. Section 3 contains several
theorems of the same type as Theorem A, and Section 4 shows how to apply
these results e.g. to deduce new characterizations of the Hp(C+) spaces. The
paper includes several examples to illustrate the results.
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Example 1.1. Given any ε > 0, consider the “chirp function”f (z) = eiεz
2
.

It is bounded on R, and hence f |R ∈ S ′. In fact, it is well-known that

u(t) = F −1(f |R)(t) =
√
π

ε
exp

(
−i

(
t2

4ε
− π

4

))
,

see e.g. Ozaktas, Kutay-Alper and Zalevsky [16], Table 2.6(7), which also can
be checked directly by residue calculus. (Multiply with e−δx2

and take the limit
as δ → 0+.) f is certainly of order 2 and type ε (see Section 3 for definitions).
It is also bounded on iR+, which implies that lim supy→∞ y−1 ln |f (iy)| ≤ 0.
However, the support of u is clearly not restricted to (∞, 0], which shows that
the growth restrictions imposed in Theorem A cannot be relaxed further.

2. Distributions with sub-exponential growth

We first recall some standard facts concerning distributions with one-sided
support and the Fourier-Laplace transform, following Hörmander [9]. For n ≥
1 we let C ∞

c (R
n) denote the space of smooth functions on Rn with compact

support, S (Rn) the Schwartz class, and B(Rn) the Fréchet space of all smooth
functions with bounded derivatives of all orders. We denote the dual of S (Rn)
by S ′(Rn), the dual of C ∞

c (R
n) by D ′(Rn) and the distributions with compact

support by E ′(Rn). We define the Fourier transform F : S (Rn) → S (Rn) by

Fφ(ξ) = φ̂(ξ) =
∫
e−ix·ξφ(x) dx, x · ξ = x1ξ1 + · · · + xnξn,

and extend the definition to S ′(Rn) by duality. Since we will mostly be treating
the case n = 1, we will omit Rn from the notation and simply write e.g. S =
S (Rn) when there is no ambiguity. As usual we identify S ′ with a subspace
of D ′. In the entire paper, t will denote the identity function on R, so that
e.g. et is a function. When there is no risk of confusion we will also use t as
an independent variable in expressions like

∫ ∞
0 e−t dt .

Let u ∈ E ′ be given. Then the Fourier-Laplace transform

û(z) = 〈u, e−izt 〉, z ∈ C, (2.1)

is an entire analytic function of zwhich agrees with (1.1) whenu ∈ L1 (see Hör-
mander [9, Theorem 7.1.14]). In accordance with Hörmander [9, Section 7.4]
we introduce the set

�u = { y ∈ R : eytu ∈ S ′ }
for general u ∈ D ′. If �u has non-empty interior �◦

u and y ∈ �◦
u , it turns out

that F (eytu) is in C ∞(R) and (x, y) 
→ F (eytu)(x) is an analytic function
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in the strip R× i�◦
u (where we identify (x, y) with z = x + iy). Moreover, if

u ∈ E ′ then
F (eytu)(x) = 〈u, e−izt 〉.

Since we are interested in analytic extensions to the upper half plane, we will
consider a class of distributions u lying intermediate to S ′ and D ′ for which
�u containsR+ when u has one-sided support, so that eytu ∈ S ′ for all y > 0.
For the chosen class, the above facts are proved below using basic methods
relying on the structure theorem for S ′.

We consider a concrete example: on the one hand, the distribution u ∈ D ′
given by the function t 
→ exp (|t | 1

2 )1R− is not in S ′ (where 1R− denotes the
characteristic function of R−), but on the other,

F (eytu(t))(x) =
∫ 0

−∞
e−i(x+iy)t+|t |1/2 dt

is clearly a well defined holomorphic function in C+. Motivated by this, we
introduce the distributions of sub-exponential growth.

Definition 2.1. Set 〈t〉 = (1+t2)1/2. Let M ′ ⊂ D ′ be the subset consisting
of all distributions u such that for each ε > 0 we have

e−ε〈t〉u ∈ S ′. (2.2)

Clearly S ′ ⊂ M ′ ⊂ D ′. As indicated by the choice of notation, M ′ is the
dual of a functions space M defined as follows (we refer to Trèves [22] for
basic information on the topological notions involved): for ε > 0 let Sε ⊂ S

denote the set of functions f such that ιε(f ) = eε〈t〉f ∈ S . Moreover, give Sε

the topology such that ιε is an isomorphism with S . Finally, let M = ⋃
ε>0 Sε

and give it the inductive limit topology. In this topology a sequence (φk)∞k=1
in M tends to 0 as k → ∞ precisely when there exists an ε > 0 such that
φk ∈ Sε for all k and φk → 0 in Sε as k → ∞.

Proposition 2.2. We have

C ∞
c ⊂ M ⊂ S

and the canonical embeddings are continuous with dense range.

It is now easy to see that M ′ is characterized by (2.2). Indeed, u is in the
dual of M if and only if its restriction to Sε is continuous for every ε > 0 (see
Trèves [22, Proposition 13.1]). By definition, this happens if and only ifu◦ι−ε is
continuous on S , which is equivalent to (2.2). The proof of Proposition 2.2 can
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be found in the appendix, where we also prove the following basic observations
about M.

Proposition 2.3. M is closed under differentiation. Moreover, OM · M ⊂
M.

Here, OM is the set of multipliers on S , i.e. ψ ∈ OM if ψ and all its deriv-
atives are of polynomial growth (see (2.7)). We mention that the construction
of M ′ is reminiscent of the definition of the (larger) space of temperate ultra-
distributions of J. Sebastião e Silva [20], as well as the distributions of expo-
nential growth, see Hasumi [8] or Yoshinaga [24]. In contrast, Gelfand-Shilov
spaces [7] are (in analogy with S ) characterized by symmetric conditions
with respect to the Fourier transform, see Chung, Chung and Kim [2]. For
an alternative treatment of Fourier transforms of arbitrary distributions, see
Ehrenpreis [4].

We next recall a result about convergent sequences, which holds for any
barreled topological vector space (TVS). Examples of such spaces are C ∞

c ,
M and S , since any Fréchet space or inductive limit of such is a barreled
TVS (Corollary 1-3, Trèves [22, Chapter 33]). The importance of barreled
TVS stems from the fact that it is the weakest topological notion to which the
Banach-Steinhaus theorem extends, and the fact below is a simple consequence
of this. A proof is given in the appendix.

Theorem 2.4. Let V be a barreled TVS and V ′ its (topological) dual. Let
(uk)

∞
k=1 be a sequence in V ′ that converges point-wise (on V ) and denote its

limit by u. Then u ∈ V ′. Moreover, if (ϕk)∞k=1 is a sequence in V with limit ϕ,
then

lim
k→∞〈uk, ϕk〉 = 〈u, ϕ〉.

2.1. Distributions with one-sided support

Given any space V ′ ⊂ D ′ of distributions we will write V ′− for the subset of V ′
consisting of elements with left-sided support, i.e.u ∈ V ′− if supp u ⊂ (−∞, b]
for some b ∈ R. The smallest b such that supp u ⊂ (−∞, b] will then be
denoted usl u, where usl stands for upper support limit.

Given z = x + iy ∈ C+, the function e−izt = eyt−ixt is not an element of
M or S , due to the rapid growth as t → ∞. However, for u ∈ M ′− this is
irrelevant since u vanishes for large t , and hence an expression like

û(z) = 〈u, e−izt 〉, z ∈ C+, (2.3)

should make sense (compare with (2.1)). The next proposition shows that this
is indeed the case. Note that the analytic function z = x + iy 
→ F (eytu)(x)
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discussed in connection with (2.1) is denoted û by Hörmander [9, Section 7.4].
This is in agreement with (2.3), but it requires a proof, see Proposition 2.10
below.

Proposition 2.5. Let z ∈ C+ and u ∈ M ′− be given. Pick ρ ∈ C ∞ with
ρ ≡ 1 on (−∞, usl u + 1) and ρ ≡ 0 on (usl u + 2,∞). Then e−iztρ ∈ M

and 〈u, e−izt 〉 := 〈u, e−iztρ〉 (2.4)

is independent of ρ.

Proof. It is easy to see that ιy/2(e−iztρ) = ey〈t〉/2+yt−ixtρ lies in S , which
by definition implies that ρe−izt ∈ M. Thus (2.4) is well defined, and its
independence of ρ is immediate by the definition of support of a distribution.

For z ∈ C+ andu ∈ M ′−, we shall henceforth write û for the function defined
by (2.3) with the right-hand side interpreted by means of Proposition 2.5. Next,
we show that e−iztu ∈ S ′. Recall that 〈t〉 satisfies

|∂nt 〈t〉| ≤ Cn〈t〉1−n (2.5)

for any n ∈ N. (The function (x, ξ) 
→ 〈ξ〉 belongs to the symbol class
S1(Rx×Rξ ) appearing in the pseudodifferential calculus, see Definition 18.1.1
and p. 75 in Hörmander [10].) In particular, e−ε〈t〉 ∈ B for any ε ≥ 0.

Proposition 2.6. Given z ∈ C+ and u ∈ M ′−, we have e−iztu ∈ S ′.
Moreover, with ρ as in Proposition 2.5, we have that e−iztρϕ ∈ M for any
ϕ ∈ S and 〈e−iztu, ϕ〉 = 〈u, e−iztρϕ〉. (2.6)

Proof. Clearly ue−izt= ρe−izt+y〈t〉ue−y〈t〉. By definition we have ue−y〈t〉 ∈
S ′ and using (2.5), it is easy to see that ρe−izt+y〈t〉 ∈ B, so ue−izt defines an
element of S ′. Now takeϕ ∈ S . That e−iztρϕ ∈ M follows by Proposition 2.3
(since e−iztρ ∈ M and ϕ ∈ S ). Finally, if ϕ ∈ C ∞

c then (2.6) clearly holds.
The identity for generalϕ ∈ S follows by Proposition 2.2 and a limit argument.

We end with a technical observation.

Proposition 2.7. Let (εk)∞k=1 be a positive sequence tending to 0 as k → ∞.
If u ∈ D ′ is such that ue−εk〈t〉 ∈ S ′ for all k, then u ∈ M ′. Similarly, if u ∈ D ′−
and ueεkt ∈ S ′ for all k, then u ∈ M ′−.

Proof. Given ε > 0 pick εk < ε and note that e−ε〈t〉u = e−(ε−εk)〈t〉e−εk〈t〉u,
from which the first statement follows since B · S ′ ⊂ S ′. For the second
claim, let ρ be as in Proposition 2.5 and fix k ∈ N. Then

ue−εk〈t〉 = uρe−εk〈t〉 = ueεktρe−εkt−εk〈t〉
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which as before shows that ue−εk〈t〉 ∈ S ′ since ρe−εkt−εk〈t〉 ∈ B by (2.5). By
the first part of the proof we get u ∈ M ′ from which it immediately follows
that u ∈ M ′− since usl u < ∞ by assumption.

2.2. Representation formulas

We say that a functionU ∈ C (R) has polynomial growth if there are constants
C and M > 0 such that

|U(t)| < C〈t〉M. (2.7)

For φ ∈ C ∞ we let φ(k) denote the kth derivative of φ.

Theorem 2.8. Given u ∈ S ′ there exists a number N ∈ N and a function
U with polynomial growth such that

〈u, ϕ〉 =
∫
U(t)ϕ(N)(t) dt, ϕ ∈ S , (2.8)

and conversely, (2.8) defines an element of S ′. Also, u ∈ S ′− if and only if
U can be chosen with U(t) ≡ 0 for large t . Moreover, if this holds and (2.8)
holds for all ϕ ∈ C ∞

c , then U is unique and usl u = uslU .

Proof. The first statement is well-known, see e.g. Friedlander [6, The-
orem 8.3.1]. Next, if u is given by (2.8) and U(t) ≡ 0 for large t , then ob-
viously u ∈ S ′−. Conversely, let u ∈ S ′− be given and let V be any function
(of polynomial growth) such that 〈u, ϕ〉 = ∫

V (t)ϕ(N)(t) dt for all ϕ ∈ S .
Note that V (N)|(usl u,∞) ≡ 0 in the distributional sense. By Hörmander [9,
Corollary 3.1.6] it follows that V |(usl u,∞) ∈ CN and that V (N)|(usl u,∞) ≡ 0
also in the classical sense. Hence V coincides with a polynomial P of degree
≤ N − 1 on (usl u,∞). Clearly, U = V − P satisfies all the requirements.
The proof concerning uniqueness follows identically. Finally, note that the in-
equality uslU ≤ usl u is a consequence of the above argument, whereas the
reverse inequality is obvious.

We remark that it is not the case that an element of S ′ ∩C ∞ is necessarily of
polynomial growth, as follows by considering the function u(t) = et cos (et );
it is clearly not of polynomial growth, but since its primitive U(t) = sin (et )
is bounded, u is an element of S ′.

We say that U has sub-exponential growth if for all ε > 0 there exists a Cε
such that

|U(t)| < Cεe
ε〈t〉.

If this is the case andu ∈ D ′ is defined via (2.8), then clearlyu ∈ M ′. However,
we remark that the converse is false, as shown by the following example.
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Example 2.9. Consider an increasing function v ∈ C ∞ with support on
R+ such that v ≡ 1 on (1,∞) and set

Vk(t) = 1

‖v(k)‖∞

∞∑
j=1

ej/kv(k)
(
ej/k

2
(t − j)

)
.

Note that the j th term in the sum has support in (j, j + 1), so that they are
mutually disjoint. Let I1[w] denote the antiderivative of a given function w,
i.e. I1[w](x) = ∫ x

−∞w(y) dy (supposing we know that the integral is conver-
gent). Also let Ik denote the composition of I1 with itself k times. Note that
for 0 ≤ N < k and t > 0,

IN [Vk](t) = 1

‖v(k)‖∞
e�t�(k−N)/k

2
v(k−N)

(
e�t�/k

2
(t − �t�)).

We leave the verification of the following facts to the reader:

(i) e−〈t〉(k−N)/k2
IN [Vk](t) is bounded by 1. In particular, given N ∈ N, the

sequence (IN [Vk])∞k=1 is uniformly bounded on any finite interval.

(ii) Ik[Vk] = ‖v(k)‖−1∞
∑∞
j=1 v(e

j/k2
(t − j)) has polynomial growth.

By (i),U = ∑∞
k=1 k

−2Vk is well defined as a function inL1
loc, and hence defines

a distribution u ∈ D ′ via

〈u, ϕ〉 =
∫
U(t)ϕ(t) dt, ϕ ∈ C ∞

c .

For any N ∈ N,

IN [U ] =
N∑
k=1

1

k2
IN [Vk] +

∞∑
k=N+1

1

k2
IN [Vk],

where the change of order of integration and summation is allowed by the dom-
inated convergence theorem and (i). The first sum is of polynomial growth
by (ii). By (i), each of the remaining terms IN [Vk] is bounded by the func-
tion exp (〈t〉(k −N)/k2), and the factor (k − N)/k2 is largest for k = 2N .
Summing up, we conclude that

0 < lim sup
t→∞

e−
1

4N 〈t〉IN [U ](t) < ∞. (2.9)

In particular, IN [U ] is not of sub-exponential growth for any N (since this
class is closed under application of I1). By the proof of Theorem 2.8, we see
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that any representation of u of the form (2.8) will look like

〈u, ϕ〉 = (−1)N
∫ (
IN [U ](t)+ P(t)

)
ϕ(N)(t) dt, ϕ ∈ C ∞

c ,

whereP is a polynomial of degree< N . It follows that u cannot be represented
via (2.8) using a function of sub-exponential growth. However, despite this we
do have that u ∈ M ′. To see this, fix N and note that

〈
e−

1
4N 〈t〉u, ϕ

〉 = (−1)N
∫
IN [U ](t)

dN

dtN

(
e−

1
4N 〈t〉ϕ(t)

)
dt.

Upon expanding the derivative and recalling (2.9) and (2.5), it is easily seen that
the corresponding terms have polynomial growth, and hence e−

1
4N 〈t〉u ∈ S ′

by Theorem 2.8. The argument is thus completed by applying Proposition 2.7.

2.3. Analyticity and the class H

Letu ∈ M ′− be given. Proposition 2.6 applied with z = iy implies that F (eytu)

defines a one parameter family of temperate distributions for y > 0, that is,
�◦
u ⊃ (0,∞). Moreover, Proposition 2.5 shows that û(z) = 〈u, e−izt 〉 is a

function of z ∈ C+. As mentioned we in fact have

û(.+ iy) = F (eytu), (2.10)

see e.g. Hörmander [9, Section 7.4]. For completeness we include a basic proof
of this fact, based on the representation formulas obtained above.

Proposition 2.10. Let u ∈ M ′− be given. Then û is an analytic function in
C+ and (2.10) holds.

Proof. It is easy to see that it suffices to prove the statement with u replaced
by ey0t u, where y0 > 0 is fixed but arbitrary. Hence we may assume that
u ∈ S ′−, and in particular that Theorem 2.8 applies. With U and N as in that
theorem, we have

û(z) = 〈u, e−izt 〉 = (−iz)N
∫ usl u

−∞
e−iztU(t) dt, z ∈ C+. (2.11)

Now let ϕ ∈ S be arbitrary. By Proposition 2.6 we get

〈F (eytu), ϕ〉 =
∫ usl u

−∞

(
eyt ϕ̂(t)

)(N)
U(t) dt

=
∫ usl u

−∞
dN

dtN

(∫ ∞

−∞
eytϕ(x)e−ixt dx

)
U(t) dt.
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By standard real analysis (see e.g. Folland [5, Theorem 2.27]), the order of
integration and differentiation can be interchanged. Writing z = x+ iy we get

〈F (eytu), ϕ〉 =
∫ usl u

−∞

(∫ ∞

−∞
(−iz)Ne−iztϕ(x) dx

)
U(t) dt

=
∫ ∞

−∞
ϕ(x)

(
(−iz)N

∫ usl u

−∞
e−iztU(t) dt

)
dx

= 〈û(.+ iy), ϕ〉
in view of (2.11), where the use of Fubini’s theorem is allowed since both
(−iz)Nϕ(x) and eytU(t) are in L1(R) and e−ixt is unimodular. Since ϕ ∈ S

was arbitrary, the proof is complete.

Definition 2.11. We let H denote the class of functions f ∈ Hol (C+) of
the form f = û for some u ∈ M ′−.

The following proposition is an immediate consequence of Proposition 2.3.

Proposition 2.12. H is closed under differentiation and multiplication by
polynomials.

Example 2.13. Let u ∈ M ′− be given by (2.8), with N = 0 and

U(t) = �e−t�et .
Note that usl u = uslU = 0. A short calculation then gives

û(z) = ζ(1 − iz)

1 − iz
,

where ζ denotes the Riemann ζ function. In particular, Proposition 2.12 yields
that C+ � z 
→ ζ(1 − iz) is in H .

Once it has been established that a given function f ∈ Hol (C+) is in H ,
Theorem 2.8 can be used to recover various structural properties of f = û,
as follows: fix y0 > 0 and find U0 and N0 (depending on y0) by applying
Theorem 2.8 to ey0t/2u. For z ∈ C+ we then have

û(z+ iy0/2) = 〈ey0t/2u, e−izt 〉 = (−iz)N0

∫ usl u

−∞
U0(t)e

−izt dt,

which gives

û(z+ iy0) = (y0/2 − iz)N0

∫ usl u

−∞
U0(t)e

y0t/2e−izt dt.
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Since |e−izt | is bounded by eusl u Im z on (−∞, usl u] and U0e
y0t/2 ∈

L1(−∞, usl u) (as U0 has polynomial growth) this can be used to establish
e.g. the estimate

|f (z)| ≤ C(1 + |z|)N0eusl u Im z, Im z ≥ y0, (2.12)

where C is a constant depending on y0. In particular, f is of exponential
type in iy0 + C+ and f (. + iy0) ∈ S ′ for all y0 > 0. In the case when
u ∈ S ′−, C’s dependence on y0 has been further studied, see e.g. Vladimirov
[23, Section II.12]. See also Shambayati and Zielezny [21, Theorem 2].

Given u ∈ M ′− and ϕ ∈ S , we will now discuss the function

z 
→ 〈û(.+ z), ϕ〉 =
∫
û(t + x + iy)ϕ(t) dt,

which is well defined by (2.12). Although û does not necessarily exist as a
function on R, the above one does if ϕ̂ ∈ M. We collect this and a few
other observations in the following proposition, compare with Hörmander [9,
Lemma 7.4.1].

Proposition 2.14. Given u ∈ S ′− and ϕ ∈ S we have

〈û(.+ z), ϕ〉 = 〈u, e−izt ϕ̂〉. (2.13)

Moreover, the right-hand side is continuous on C+ with values 〈u, e−ixt ϕ̂〉 on
R. The same holds if u ∈ M ′− and ϕ̂ ∈ M. Finally, with u ∈ M ′−, ϕ ∈ S and
y > 0, we have

dk

dyk
〈û(.+ iy), ϕ〉 = 〈∂ky û(.+ iy), ϕ〉.

Proof. We only prove (2.13) for the case when u ∈ M ′− and ϕ̂ ∈ M;
the other case can be treated similarly. Moreover, by translation invariance it
suffices to consider the case x = 0. Note that ϕ ∈ S by Proposition 2.2, so
Proposition 2.10 then implies that

〈û(.+ iy), ϕ〉 = 〈F (eytu), ϕ〉 = 〈u, eyt ϕ̂〉,
as desired. Moreover, by Proposition 2.3 we have that e−ix0t ϕ̂ ∈ M for each
x0 ∈ R, so the right-hand side of (2.13) also makes sense on R. To see that
〈u, e−izt ϕ̂〉 converges to 〈u, e−ix0t ϕ̂〉 as z → x0 in C+, let ρ be as in Propos-
ition 2.5 and note that it suffices to show that ρe−izt ϕ̂ converges to ρe−ix0t ϕ̂

in M. Since ϕ̂ ∈ M there is an ε > 0 such that ϕ̂ ∈ Sε, which implies that
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ρ(e−izt − e−ix0t )ϕ̂ ∈ Sε for all z ∈ C+ (compare with the proof of Proposi-
tion 2.6). Moreover, for any fixed m, n ∈ N we have

lim
C+�z→x0

sup
t

∣∣∣∣〈t〉m ∂
n

∂tn

((
ρ(t)e−izt − ρ(t)e−ix0t

)
eε〈t〉ϕ̂(t)

)∣∣∣∣ = 0.

Indeed, for each 0 ≤ k ≤ n, the difference ∂kt
(
ρe−izt − ρe−ix0t

)
is uniformly

bounded in t independently of z in a neighborhood of x0, and converges uni-
formly on compacts to 0 when z → x0. Together with the Leibniz formula this
is easily seen to yield the claim since eε〈t〉ϕ̂ ∈ S . In view of the comment pre-
ceding Proposition 2.2, this shows that ρe−izt ϕ̂ → ρe−ix0t ϕ̂ in M as z → x0

in C+.
We turn to the claim concerning differentiability. Set f (z) = û(z) and note

that by (2.12) and standard real analysis (see Folland [5], Theorem 2.27) we
have

d

dy

∫ ∞

−∞
ϕ(t)f (t + iy) dt =

∫ ∞

−∞
ϕ(t)∂yf (t + iy) dt.

Hence, the desired conclusion follows by Proposition 2.12 and iteration.

3. Representation of functions in Hol (C+) and Hol (C) via Fourier-
Laplace transforms

As explained in Section 2.3, each u ∈ M ′− naturally gives rise to a function
in Hol (C+) via an extension of the Fourier transform. In this section we give
various converse statements. We first recall some standard terminology on the
growth of analytic functions. Let � ⊂ C be a domain and let f ∈ Hol (�)
be given. The function f is said to be of finite order if it satisfies a growth
restriction of the form

|f (z)| ≤ Ceτ |z|
o

, C, τ, o ∈ R+.

Moreover, the order of f is defined as the infimum of all possible o’s above.
If f has order o, note that the infimum of all possible τ ’s is given by

lim sup
z→∞

ln |f (z)|
|z|o .

This is called the type of f (which may be infinite). We introduce the lexico-
graphical order on pairs of order/type, i.e.

(o1, τ1) ≤ (o2, τ2)

signifies that either o1 < o2 or o1 = o2 and τ1 ≤ τ2. Holomorphic functions of
order/type < (1,∞) are said to be of exponential type, and the infimum of all
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possible τ ’s is called the exponential type of f . This terminology is slightly
confusing; as long as f has order 1, then the exponential type and the type
coincide, but functions of order< 1 may well have a positive “type”, although
the “exponential type” clearly is zero. We need the following version of the
Phragmén-Lindelöf principle, see e.g. Levin [13], Chapter I, Theorem 22.

Theorem 3.1. Given 0 < ω < 2 consider the domain

� = { reiθ : r > 0, |θ − θ0| < ωπ/2 }.
Let f ∈ Hol (�)∩ C (�) have order/type ≤ (ω−1, 0) and satisfy sup

z∈∂�
|f (z)| =

M . Then |f (z)| ≤ M for all z ∈ �.

3.1. Functions on C+
Proposition 3.2. Suppose that f ∈ Hol (C+) ∩ C (C+) satisfies:

(i) f is of order/type ≤ (2, 0),

(ii) b = lim supy→∞ y−1 ln |f (iy)| is finite,

(iii) f |R ∈ S ′.
Then u = F −1(f |R) satisfies usl u = b and f = û in C+.

Note that Proposition 3.2 contains Theorem A from the introduction. More-
over, Example 1.1 shows that condition (i) is optimal in the sense that if it
is relaxed to (2, ε) for any ε > 0, the theorem is false. When discussing the
inverse Fourier transform of a function defined onC+, we shall in the remainder
of the paper sometimes permit us to write F −1(f ) instead of F −1(f |R)when
there is no ambiguity.

The proof will be based on the following lemmas.

Lemma 3.3. Let f ∈ Hol (C+) ∩ C (C+) be such that f |R ∈ S ′. Set u =
F −1(f |R) and suppose that u ∈ S ′−. Then f (z) = û(z) for all z ∈ C+.

Proof. Let ϕ ∈ C ∞
c be arbitrary. It is sufficient to prove that

∫
f (z+ t)ϕ(t) dt =

∫
û(z+ t)ϕ(t) dt, z ∈ C+. (3.1)

By Section 2.3 we have that both sides are analytic in C+. Since continuous
functions are uniformly continuous on compact sets, we see that the left-hand
side is continuous onC+. By Proposition 2.14 the same holds for the right-hand
side, the boundary values of which are given by

〈u, e−ixt ϕ̂〉 = 〈u,F (ϕ(.− x))〉 =
∫
f (t)ϕ(t − x) dt =

∫
f (x + t)ϕ(t) dt.
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Hence the two functions coincide onR, so (3.1) follows by Privalov’s theorem
(see Koosis [12], Chapter III, §D.3 for the theorem on the disc and Chapter VI
for how to transfer the theorem to C+).

Lemma 3.4. Let f ∈ Hol (C+) be of order/type ≤ (2, 0) and suppose that

lim sup
y→∞

y−1 ln |f (iy)| ≤ 0.

Given any ε > 0 we then have

lim sup
y→∞

y−1 ln sup
|x|<ε

|f (x + iy)| ≤ 2ε. (3.2)

Proof. We only prove (3.2) with the supremum taken over 0 < x < ε,
the other case being handled in a similar fashion. Let η > 0, y0 > 0 be
arbitrary and consider eiηzf (z+ iy0). If we establish (3.2) for this function, it
is straightforward to check that (3.2) holds for the original f as well, only with
2ε replaced with 2ε+η. Since η and y0 are arbitrary, we may thus assume that
f is bounded on iR+, continuous and of order/type ≤ (2, 0) in C+, to begin
with. Consider the angle � = { z : π/4 ≤ arg(z) ≤ π/2 } and the function
f (z)/e−iz2

. For z ∈ iR+ we have |f (z)/e−iz2 | = |f (z)|. On the other ray,
i.e. z ∈ (1 + i)R+, we have

∣∣f (z)/e−iz2 ∣∣ = |f (z)|e−2xy = |f (z)|e−|z|2 ,

which is bounded since f is of order/type ≤ (2, 0). The order of f (z)/e−iz2
is

clearly ≤ 2 which is much less than 4. In the notation of Theorem 3.1 we may
therefore apply that result to the case ω = 1/4 and θ0 = 3π/8 and conclude
that f (z)/e−iz2

is bounded in �. Thus

|f (z)| ≤ C|e−iz2 | = C|e−i(x2+2ixy−y2)| = Ce2xy.

This easily yields the desired statement.

Proof of Proposition 3.2. Given 0 < ε < 1 pick any α ∈ C ∞
c with

suppα ⊂ [−ε, ε] that does not vanish identically, and consider the regulariz-
ation

(f ∗ α)(z) =
∫
f (z− t)α(t) dt.

This defines a function in Hol (C+) which is of order/type ≤ (2, 0) since f is,
and moreover

|(f ∗ α)(x)| ≤ C(1 + |x|)m (3.3)
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for some constantsm ∈ N and C > 0. Indeed, we have |t | ≤ ε+|x| < 1+|x|
when x − t ∈ suppα. Since f |R is continuous with respect to the topology
of S , we can find constants m, n ∈ N and Cm,n > 0 such that

|(f ∗ α)(x)| ≤ Cm,n

n∑
k=0

sup
t

|tm∂kt α(x − t)|,

which gives (3.3). Moreover, for z ∈ iR+ we have the estimate

(f ∗ α)(iy) ≤ ‖α‖L1 sup
|t |<ε

|f (iy − t)|.

Using assumption (ii) and Lemma 3.4 it is then straightforward to check that

lim sup
y→∞

y−1 ln |eib(iy)(f ∗ α)(iy)| ≤ 2ε.

Now, choose any β ∈ C ∞
c with support contained in (−1, 0] and consider

the function
g(z) = ei(b+3ε)z(f ∗ α)(z)β̂(z). (3.4)

By construction, g is bounded on both R and iR+, so by Theorem 3.1 it is
actually bounded in C+. Pick any γ ∈ C ∞

c with support contained in (−1, 0]
and note that γ̂ g ∈ H 2H∞ ⊂ H 2, which by standard Hardy space theory (see
Theorem 3.7 below) implies that

supp F −1(γ̂ g) ⊂ R−,

where F −1(γ̂ g) should be understood as the inverse Fourier transform of
γ̂ g restricted to R. In other words, supp (γ ∗ F −1g) ⊂ R− which gives
supp F −1(g) ⊂ R− since we can pick any γ ∈ C ∞ with support in (−1, 0].
Inserting (3.4) we get

supp (F −1(f ∗ α) ∗ β)(b + 3ε + .) ⊂ R−

which implies that supp F −1(f ∗ α) ∗ β ⊂ (−∞, b + 3ε] and hence

supp F −1(f ∗ α) ⊂ (−∞, b + 3ε],

since we can pick any β ∈ C ∞ with support in (−1, 0]. Next, note that

F −1(f ∗ α) = 2πF −1(α)F −1(f ) = α̂(−.)F −1(f ).

Since α ∈ C ∞
c , it follows that supp α̂ = R since α̂ is the restriction to R of

an entire analytic function, and can therefore only have isolated zeros. Hence,
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supp F −1(f ∗ α) = supp F −1(f ). Since ε > 0 was arbitrary, we finally
conclude that

supp F −1(f ) ⊂ (−∞, b].

Then u = F −1(f ) belongs to S ′− by assumption (iii), so by Lemma 3.3 we
conclude that f (z) = û(z) for all z ∈ C+.

It remains to prove the statements concerning the upper support limit usl u.
We already have usl u ≤ b, and the converse inequality follows by (2.12).

3.2. Entire functions

We can now easily provide a slight generalization of the Paley-Wiener-
Schwartz Theorem in C. Let ch(�) denote the closed convex hull of a set
�.

Theorem 3.5. Let f be an entire function of order/type ≤ (2, 0). Moreover,
suppose that f |R ∈ S ′ and that

lim sup
y→∞

y−1 ln |f (iy)| = b, lim sup
y→−∞

y−1 ln |f (iy)| = a

where a, b are finite. Then ch(supp F −1(f |R)) = [a, b].
Conversely, let u ∈ D ′ be such that ch(supp u) = [a, b]. Then f (z) =

〈u, e−izt 〉 is of exponential type max (|a|, |b|) and there are C,N > 0 such
that

|f (z)| ≤ C(1 + |z|)Nemax (|a|,|b|) Im z.

Proof. Letf be as in the first part of the theorem. That ch(supp F −1(f )) ⊂
(−∞, b] is immediate by Proposition 3.2. The other inclusion follows by
applying Proposition 3.2 to z 
→ f (z̄), since

F −1(f (t))(ξ) = F −1(f (t))(ξ)

= F −1(f (t))(−ξ) = F −1(f |R)(−ξ). (3.5)

The converse part is an ingredient in the traditional Paley-Wiener-Schwartz
Theorem. To prove it, use (2.12) and the flip trick (3.5).

We remark that as a consequence of the theorem we see that any f satisfying
the conditions in the first part will automatically be of exponential type. Hence
there are no functions with order/type between (1,∞) and (2, 0) that satisfy
the other conditions. The improvement over earlier results in the same category
lies in that one does not need to assume f to be of exponential type from the
outset. In particular the theorem can be used to prove that a given function
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f , for which there is limited information, is indeed of exponential type. This
feature is shared by Theorems 3.8 and 3.9 below.

The next example shows that the growth restrictions imposed inTheorem 3.5
cannot be relaxed further, in the sense that (2, 0) is the weakest growth con-
dition which, together with the other conditions, yields the conclusion of the
theorem.

Example 3.6. Given τ > 0, consider the entire function

f (z) = eiτz
2 − 1

z
.

It is easy to see that it has order 2 and type τ . Moreover, f |R ∈ L2 and

lim sup
y→±∞

y−1 ln |f (iy)| = 0.

However, the conclusion of the Paley-Wiener Theorem is clearly false, since
otherwise F −1(f |R) would be a function in L2 with support in {0}.

3.3. Functions on C+
The setting of Proposition 3.2 is a bit restrictive, since it assumes a priori
information about f on R. In most applications, this is not the case. Consider
for example the well-known characterization of the Hardy spaceH 2(C+), see
e.g. Theorems 11.2 and 11.9 in Duren [3].

Theorem 3.7. If f ∈ Hol (C+) satisfies

sup
y>0

‖f (.+ iy)‖L2(R) < ∞, (3.6)

then f (. + iy) converges in L2(R) as y → 0+. Moreover, if we denote the
limit by F and set u = F −1(F ), then supp u ⊂ R− and

f (z) = û(z) =
∫ 0

−∞
u(t)e−izt dt, z ∈ C+.

In the same spirit, we now provide a generalization of Proposition 3.2. As
an example of potential applications, we show in Section 4 how the assump-
tion (3.6) in Theorem 3.7 can be relaxed.

Theorem 3.8. Suppose that f ∈ Hol (C+) satisfies:

(i) f restricted to { Im z > y0 } is of order/type ≤ (2, 0) for every y0 > 0,

(ii) b = lim supy→∞ y−1 ln |f (iy)| is finite,
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(iii) for some Y > 0 we have f |R+iy ∈ S ′ for all 0 < y ≤ Y .

Then there exists a distribution u ∈ M ′− with usl u = b such that f = û. In
particular, f ∈ H .

Note that by (2.12) we actually have that f restricted to { Im z > y0 } is of
exponential type; in fact, it has order/type ≤ (1, b) independent of y0. Also
note that (i) for y0 = 0 may fail for functions f ∈ H , that is, they might be
unbounded near R and thus not of order/type ≤ (2, 0) in all of C+. Consider
e.g. u = 1R− , whose Fourier-Laplace transform is

û(z) =
∫ 0

−∞
e−izsds = 1

iz
, z ∈ C+.

We also stress that this identity is only valid for Im z > 0; for z = x ∈ R we
have û = p.v. ( 1

ix
) − πδ0, where δ0 is the Dirac measure at 0. We will return

to this example in Section 4.

Proof. Set uY = F −1(f (. + iY )) and u = e−Y tuY . We claim that u
has the desired properties. To see this, let 0 < y0 < Y be fixed and apply
Proposition 3.2 to the function z 
→ f (z+ iy0), to get a distribution uy0 ∈ S ′−
with usl uy0 = b and

ûy0(z) = f (iy0 + z).

By Proposition 2.10 we then have for all h > 0

F (ehtuy0)(x) = ûy0(x + ih) = f (x + i(y0 + h)), (3.7)

where the first identity is to be interpreted in S ′. If h ≤ Y − y0 then Proposi-
tion 3.2 also gives that f (.+ i(y0 + h)) = F (uy0+h) as an identity in S ′, and
thus

ehtuy0 = uy0+h in S ′.

In particular, for h = Y − y0 we have, upon multiplication by e−ht , that
uy0 = e(y0−Y )tuY = ey0t u as an identity in D ′. Since usl uy0 = b the same
clearly holds for u. Moreover,

ey0t u = uy0 ∈ S ′ (3.8)

by assumption (iii), so in view of Proposition 2.7 we conclude that u ∈ M ′−
since y0 > 0 was arbitrary. Finally, given z = x+ iy pick any y0 < min (y, Y )
and note that by Proposition 2.10 and (3.8) we have

û(z) = 〈u, e−izt 〉 = 〈uy0 , e
−i(z−iy0))t 〉 = ûy0(z− iy0) = f (z),

where the last identity follows by (3.7). The proof is complete.
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3.4. The Paley-Wiener-Schwartz Theorem in Cn

Theorem 3.9. Let f ∈ Hol (Cn) be an entire function of order/type ≤ (2, 0)
such that f |Rn ∈ S ′. Let v1, . . . , vn be a basis ofRn and, given j ∈ {1, . . . , n},
let Vj ⊂ Rn be the span of {vk}k �=j . Suppose there exists a number B > 0 such
that for each j and R > 0 we have

lim
y→±∞ sup

{ x∈Vj :|x|<R }
y−1ln |f (iyvj + x)| ≤ B.

Then F (f |Rn ) ∈ E ′.

Note that once it is established that f is the Fourier transform of a compactly
supported distribution, the classical Paley-Wiener-Schwartz Theorem already
gives a precise relation between the actual growth and the support. We refer
the reader e.g. to Hörmander [9, Theorem 7.3.1] or Trèves [22, Theorem 29.1].
For the proof we need the following standard lemmas, which are just slight
variations of Theorems 1.3.2 and 4.1.2 in Hörmander [9].

Lemma 3.10. Let γ ∈ S be such that
∫
γ = 1, and set γk(x) = kγ (kx),

k ∈ N. Then, given any ϕ ∈ S , we have limk→∞ γk ∗ ϕ = ϕ in the topology
of S .

Lemma 3.11. Let ϕ,ψ ∈ S and u ∈ S ′ be given. Then

〈u,ψ ∗ ϕ〉 =
∫

〈u, ϕ(.− x)〉ψ(x) dx.

Proof of Theorem 3.9. By a change of variables we may assume that
{vj }nj=1 is the canonical basis of Rn. Given any ψ ′ ∈ C ∞

c (R
n−1), let z ∈ C and

x ′ ∈ Rn−1 be independent variables and consider

g(z) =
∫
Rn−1

f (z, x ′)ψ ′(x ′) dx ′.

By Theorem 3.5 it follows that F (g|R) is a distribution with support in [−B,B].
Thus, given any ψ1 ∈ C ∞

c with suppψ1 ⊂ R \ [−B,B] we have

0 =
∫
R
g(x1)ψ̂1(x1) dx1 =

∫
Rn
f (x1, x

′)ψ̂1(x1)ψ
′(x ′) dx

= 〈f̂ , ψ1 ⊗ F −1(ψ ′)〉.
(3.9)

Now suppose that
supp f̂ �⊂ [−B,B] × Rn−1, (3.10)
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where f̂ denotes F (f |Rn ). Choose a ϕ ∈ C ∞
c (R

n) such that 〈f̂ , ϕ〉 �= 0 and

suppϕ ∩ ([−B,B] × Rn−1) = ∅. (3.11)

Let γ ∈ S (Rn) be of the form γ (x1, x
′) = φ1(x1)F

−1(φ′)(x ′), where φ1 ∈
C ∞
c (R) and φ′ ∈ C ∞

c (R
n−1) are chosen such that suppφ1 ⊂ [−1, 1] and∫

γ = 1. We now construct (γk)∞k=1 as in Lemma 3.10. By Lemmas 3.10
and 3.11 we then have

0 �= 〈f̂ , ϕ〉 = lim
k→∞〈f̂ , ϕ ∗ γk〉 = lim

k→∞

∫
〈f̂ , γk(.− x)〉ϕ(x) dx. (3.12)

However, for each fixed x = (x1, x
′) ∈ Rn, γk(. − x) can be written on the

form ψ1 ⊗ F −1(ψ ′) where ψ1 = φ1(k(.− x1)). This function has support

suppψ1 = { x1 + s/k : s ∈ suppφ1 } ⊂ [x1 − 1/k, x1 + 1/k].

By (3.11) it is clear thatK can be chosen such that suppψ1 ⊂ R\ [−B,B] for
all k ≥ K and all x ∈ suppϕ. By (3.9) it follows that 〈f̂ , γk(. − x)〉 = 0 for
all such x and k. But this is impossible by (3.12), and hence we conclude that
(3.10) is false. The same argument can of course be carried out with respect to
any of the other coordinate axes, yielding

supp f̂ ⊂ [−B,B]n,

and the proof is complete.

4. Applications and examples

We recall from Definition 2.11 that H denotes the class of all functions of the
form z 
→ û(z) for some u ∈ M ′−. We show in this section that functions in H

can be quite ill-behaved near R, whereas they are quite stable away from it.
As a first example, let us consider f (z) = z−1, which is clearly in H

by Theorem 3.8. Moreover, by the same result there is a u ∈ M ′− such that
û(z) = z−1 and usl u = 0. This may seem to be a contradiction at first,
since it is well-known that F ( i2 sgn (t))(x) = x−1, where x ∈ R and sgn
denotes the sign function, which clearly is not supported onR−. However, with
u(t) = −i1R−(t)we also have û(z) = z−1 inC+, as expected by Theorem 3.8.
The slight confusion arises from the fact that

1

x + iy
= x

x2 + y2
− i

y

x2 + y2
= x

x2 + y2
− iπPiy,

where Piy is the Poisson kernel. Thus, as a family of distributions acting in
the x variable, y 
→ f (x + iy) does not converge to the function f (x) as
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y → 0+, but to the distribution f (x) − iπδ0. Compare with Theorem 3.1.12
and Example 3.1.13 in Hörmander [9]. This shows that the growth nearR of an
f ∈ H can be quite strong. However, as long as u ∈ S ′−, there areC,m, n ∈ N
such that û(x + iy) ≤ C〈x〉ny−m for 0 < y < 1, see e.g. the presentation by
Vladimirov [23, Section II.12] or Shambayati and Zielezny [21, Theorem 2].
Functions in H can have much more erratic behavior nearR, consider e.g. ei/z

(which is in H by Theorem 3.8).
As an illustration of the possible applications of the material in Section 3,

we now show how it can be used to obtain softer conditions for checking
membership in classical Hardy spaces.

Proposition 4.1. Let 1 ≤ p ≤ ∞ be given. Suppose that f ∈ Hol (C+)
satisfies:

(i) f restricted to { Im z > y0 } is of order/type ≤ (2, 0) for every y0 > 0,

(ii) lim supy→∞ y−1 ln |f (iy)| ≤ 0,

(iii) there are Y and C such that ‖f |R+iy‖Lp ≤ C for all 0 < y < Y .

Then f ∈ Hp(C+).

Proof. By Theorem 3.8 we immediately get that f ∈ H . We need to
show that ‖f ‖Hp = supy>0 ‖f |R+iy‖Lp < ∞. It clearly suffices to show
this for the function z 
→ f (iY/2 + z), and hence we can simply assume
that f is holomorphic in a neighborhood of C+, f |R ∈ Lp and that f has
polynomial growth in C+ by (2.12). It follows that we can fix an N ∈ N
such that fε(z) = (1 − iεz)−Nf (z) belongs to H∞(C+) for all ε > 0. This
means that we can express fε(.+ iy) as a Poisson integral (see e.g. Duren [3,
Theorem 11.2]), i.e.

fε(x + iy) =
∫
fε(x − t)Piy(t) dt. (4.1)

If we now assume that p < ∞, then it is clear that limε→0+ fε|R = f |R in
Lp, so upon taking this limit on both sides in (4.1), we see that this equation is
valid also for f = f0. This immediately gives that f ∈ Hp and ‖f ‖Hp ≤ C

by Young’s inequality. When p = ∞ the same argument applies, although
limε→0+ fε = f only holds in the weak-* topology of L∞.

Finally, we remark that H contains functions f that extend analytically
across R, while at the same time f (. + iy) �∈ S ′ for values y < 0. More
precisely, we can pick an entire function f such that f |C+ ∈ H∞(C+), but
f |−iy+R �∈ S ′ for some y < 0. To see an example of this, consider the function
f (z) = ∫ ∞

0 t−t ezt dt . In Newman [15] it is shown that this is an entire function
with the curious property of being unbounded in the strip −π/2 < Im z < π/2,
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whereas it is bounded elsewhere. In fact, it is easy to see that it grows extremely
rapidly onR; the integrand increases until the point t = ex−1 so we can estimate

f (x) ≥
∫ ex−1

ex−2
e(x−ln ex−2)ex−2

dt = (e−1 − e−2)ex+2ex−2
.

Summing up, we have that f (z+ iy) ∈ H for all y > π/2, but at some value
of y between π/2 and 0 it ceases to belong to H .

Appendix A

Throughout the appendix we will repeatedly use that eε〈t〉 is an order function
in the sense of Martinez [14, p. 11], i.e. one which satisfies (d/dt)keε〈t〉 =
O (eε〈t〉) for any k ∈ N, uniformly on R, see (2.5). As before we write ϕ(k) for
the kth derivative of ϕ ∈ C k . (All function spaces are assumed to be defined
on R unless explicitly stated otherwise.)

Lemma A.1. The topology of Sε is given by the semi-norms

pε,m,n(ϕ) = sup
t

∣∣〈t〉meε〈t〉ϕ(n)(t)∣∣ , m, n ∈ N.

Proof. Note that the semi-norms {p0,m,n}m,n give the topology of S . By
definition, Sε has the topology such that the map ιε: Sε → S given by ι(ϕ) =
eε〈t〉ϕ is an isomorphism, which means that the topology of Sε is given by the
semi-norms

ϕ 
→ p0,m,n(e
ε〈t〉ϕ) = sup

t

∣∣∣∣〈t〉m d
n

dtn

(
eε〈t〉ϕ(t)

)∣∣∣∣, m, n ∈ N.

The proof is complete upon showing that a fixed element in this class of semi-
norms can be bounded by a finite sum of the semi-norms in {pε,m,n}m,n, and
vice versa. That this is the case follows by routine estimates which we omit.

Proof of Proposition 2.2. We first show that the identity map I is con-
tinuous from C ∞

c into M. Recall that the topology of C ∞
c is given e.g. by the

inductive limit of C ∞
c ([−N,N ]), N ∈ N. By Trèves [22, Proposition 13.1]

we only need to show that I restricted to this subspace is continuous. Since
C ∞
c ([−N,N ]) ⊂ Sε for any ε > 0, and since the restriction of the inductive

limit topology on M to Sε is the same as the original topology (Trèves [22,
Lemma 13.1]), it suffices to show that I : C ∞

c ([−N,N ]) → Sε is continuous
for any fixed ε. For all ϕ ∈ C ∞

c ([−N,N ]) we clearly have

pε,m,n(ϕ) = sup
t

∣∣〈t〉meε〈t〉ϕ(n)(t)∣∣ ≤ eε〈N〉p0,m,n(ϕ)
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and hence we are done by Lemma A.1 and the fact that the latter semi-
norms define the topology of C ∞

c ([−N,N ]), see Example II in Trèves [22,
Chapter 13]. Similarly, to show that I : M → S is continuous it suffices ac-
cording to Trèves [22, Proposition 13.1] to show that I : Sε → S is continuous,
which is immediate by Lemma A.1 and the obvious inequality p0,m,n(ϕ) ≤
pε,m,n(ϕ).

Finally, we turn to the statements concerning density. It is well-known that
C ∞
c is dense in S (see Hörmander [9, Lemma 7.1.8]). It immediately follows

that C ∞
c is dense in each Sε, ε > 0, since ι−ε is an isomorphism from S to

Sε and ι−ε(C ∞
c ) ⊂ C ∞

c . To prove the corresponding statement concerning
M, let M be an open set in M. Then M ∩ Sε is open in Sε and non-void for
sufficiently small ε, by definition of the inductive limit topology, and hence
M ∩ C ∞

c �= ∅, as desired.

Proof of Proposition 2.3. The first statement is an immediate con-
sequence of Lemma A.1, whereas the second follows by the definition of
M and the fact that OM · S ⊂ S .

Proof of Proposition 2.4. By the corollary to Theorem 33.1 in Trèves
[22] (a general version of the Banach-Steinhaus Theorem), uk converges uni-
formly on compacts to u and u is continuous, i.e. u ∈ V ′. Write

〈u, ϕ〉 − 〈uk, ϕk〉 = 〈u, ϕ − ϕk〉 + 〈u− uk, ϕk〉.
By the continuity of u, the first bracket goes to zero as k → ∞, and the same
is true for the second as well since {ϕj }∞j=1 is a compact set.
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