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ALGEBRAS ON SURFACES
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(Dedicated to the memory of Walter Rudin)

Abstract
The first part of the paper is devoted to algebras on one-dimensional varieties in Cn that are
bounded by finite unions of mutually disjoint rectifiable simple closed curves. The relevant Shilov
boundaries are considered, and certain nonapproximation phenomena are exhibited. The second
part of the paper is devoted to the study of uniform algebras whose maximal ideal spaces are
smooth surfaces and that admit sets of smooth generators. Such algebras are shown to consist of
functions holomorphic off their Shilov boundaries.

1. Introduction

It is known as a consequence work of Alexander [1], [19, p. 189, Cor. 4.5.6.]
that if� is an analytic disc in Cn withb� a rectifiable curveγ , then �̄ = �∪γ is
polynomially convex. In Section 2 of this note we investigate the more general
situation in which the disc� is replaced by a one-dimensional analytic variety
with boundary the disjoint union of finitely many rectifiable simple closed
curves. In the brief Section 3 we consider an approximation question related
to the work of Section 2. Section 4 of the paper is devoted to a discussion of the
structure of certain uniform algebras whose spectra (or maximal ideal spaces)
are compact surfaces, perhaps with boundary. Section 5 contains some open
problems suggested by the work of the preceding sections.

2. The convex hulls

We use the standard notations that for a compact subset X of Cn, P(X) is the
algebra of continuous functions on X that can be approximated uniformly on
X by polynomials and R(X) is the algebra of continuous functions on X that
can be approximated uniformly on X by rational functions without poles on
X.

For a compact set X in Cn, X̂ denotes the polynomially convex hull of X
and R-hullX denotes the rationally convex hull of X. The former set is given
by

X̂ = {
x ∈ Cn : |P(x)| ≤ sup

y∈X
|P(y)| for all polynomials P

}
,
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the latter by

R-hullX = {
x ∈ Cn : for all polynomials P ,

P (x) = 0 implies P−1(0) ∩X �= ∅}
.

To fix ideas, let the context be this: � is the finite union γ1 ∪ . . . ∪ γp of
mutually disjoint rectifiable simple closed curves in Cn and � is a bounded
one-dimensional complex subvariety of Cn \ � such that � = �̄ \ � = b�.
We do not assume �̄ to be a compact subset of an ambient one-dimensional
variety, we do not assume � to be nonsingular, and we do not assume it to
be irreducible. We shall see below that the variety � has at most p global
branches.

In addition to the algebras P(�̄) and R(�̄), we have the algebraA(�̄) that
is the algebra of continuous functions on �̄ that are holomorphic on �. Thus,
P(�̄) ⊂ R(�̄) ⊂ A(�̄).

The notation established in the last two paragraphs will be used consistently
through the first three sections of the paper.

We consider below the questions of when �̄ is polynomially convex or
rationally convex. It turns out that �̄ is always rationally convex and that,
although �̄ is not always polynomially convex, it is not difficult, given a
certain amount of general theory, to describe its polynomially convex hull.

Before taking up this analysis of the hulls, it seems worthwhile to glance
at some examples that suggest certain of the complications that arise in our
general setting and to look at some simple facts about the structure of the sets
we are considering.

Example 2.1. Let γ1 = {(eiϑ , 0) ∈ C2 : ϑ ∈ [−π, π ]} and γ2 = {(0, 1 +
eiϑ ) ∈ C2 : ϑ ∈ [−π, π ]}. Then � = γ1 ∪ γ2 is the boundary of the reducible
variety � that consists of the disc �2 = {(0, 1 + z2) ∈ C2 : |z2| < 1} and the
punctured disc �′

1 = {(z1, 0) ∈ C2 : 0 < |z1| < 1}. The point (0, 0) ∈ γ2 is
not a peak point for the algebra A(�̄).

For the next examples, let A∞(Ū) be the algebra of all functions holo-
morphic on the open unit disc U whose derivatives of all orders are continuous
on the closure of U.

Example 2.2. A more complicated example in the same spirit is this. Let
γ1 = {(2eiϑ , 0, 0) : ϑ ∈ R} so that γ1 is the boundary of the disc �1 =
{(z1, 0, 0) ∈ C3 : |z1| < 2}. Let E be a compact subset in the unit circle in the
plane that has zero length and that, in addition, satisfies the condition that if
{Jk}k=1,... are the intervals in the unit circle complementary to E and if εk is
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the length of Jk , then

−∞ <

∞∑
j=1

εk log εk.

Such sets are called Carleson sets. It is a result of Novinger [15] and, inde-
pendently, of Taylor and Williams [20] that if E is a Carleson set, then there is
a function f ∈ A∞(Ū)with f −1(0) = E. Let γ2 = {(eiϑ , f (eiϑ ), eiϑf (eiϑ )) :
ϑ ∈ [−π, π ]}, which is the boundary of the disc �2 = {(z, f (z), zf (z)) ∈
C3 : |z| < 1}. The curves γ1 and γ2 are rectifiable and disjoint, but the curve
γ2 meets the disc �1 in the circular set I = {(ζ, 0, 0) : ζ ∈ E}, which can be
a Cantor set.

Example 2.3. Let xn = 1 − e−n2
, n = 1, 2, . . ., so that

∑∞
n=1 n(1 − xn) <

∞, whence there are many functions in A∞(Ū) that vanish at all of the points
xn and, indeed, there is a rich supply of such functions that vanish to order n
at xn. See [20].

Letf ∈ A∞(Ū)have the set {1, x1, x2, . . .} as its zero set, and letg ∈ A∞(Ū)
be the function given by g(z) = zf (z). Let ϕ : Ū → C2 be the map given by
ϕ = (f, g). The map ϕ is injective on bU , so γ = ϕ(bU) is a simple closed
curve, which is the boundary of the bounded subvariety � = ϕ(U) \ (0, 0) of
C2 \ γ . We have ϕ(1) = ϕ(x1) = ϕ(x2) = · · · = (0, 0). Again the point (0, 0)
is not a peak point for the algebra A(�̄).

Example 2.4. This example is to show that distinct branches of � can
intersect in an infinite set. Let γ1 = {(2eiϑ , 0) : ϑ ∈ [−π, π ]} ⊂ C2, and let f
be as in the preceding example. The curve γ2 = {(eiϑ , f (eiϑ )) : ϑ ∈ [−π, π ]}
is smooth and disjoint from γ1. The curve γ1 bounds the disc �1 in the z1-
plane, and the curve γ2 bounds the variety �2 = {(z, f (z)) : z ∈ C, |z| < 1}.
The union � = γ1 ∪ γ1 is the boundary of the variety � = �1 ∪ �2 if �1 =
�1 \ (1, 0). The intersection �1 ∩�2 is the infinite set {(x1, 0), (x2, 0), . . .}.

Example 2.2 shows that the topological type of the variety � need not be
finite. However, � can have at most finitely many branches:

Lemma 2.5. The variety � has at most p global branches.

Proof. This is a consequence of the result [19, p. 213, Th. 4.7.1] that for
a bounded purely one-dimensional variety V in Cn with boundary of finite
length, the number of global branches of V does not exceed the rank of the
cohomology group Ȟ 1(bV ; Z).

In the event that � consists of a single curve, the set �̄ is polynomially
convex: �̂ \ � is a variety, which contains the variety �. The number of
global branches of the variety �̂ \ � does not exceed the rank of the group
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Ȟ 1(�; Z), which is one. In the case that � has more than one component, �̄
need not be polynomially convex. There is, though, a simple description of the
polynomially convex hull of �̄. The path to this description leads through a
discussion of the Shilov boundary for P(�̄).

Recall that the Shilov boundary for a uniform algebraB on a compact Haus-
dorff spaceX is the minimal closed subsetE ofX that satisfies maxx∈X |g(x)|
≤ maxx∈E |g(x)| for all g ∈ B. The Shilov boundary exists and is unique.
When the underlying spaceX is metrizable, the Shilov boundary is the closure
of the set of peak points for the algebra B.

The Shilov boundary for P(�̄) can perfectly well be a proper subset of �,
as in the case of an annular domain in the plane.

Lemma 2.6. The Shilov boundary for P(�̄) is a union of some of the γj s.

Alternatively put, the Shilov boundary for P(�̄) is open and closed in �.

Proof. Let E be the Shilov boundary for P(�̄). Then Ê ⊃ �̄, and the
maximum principle implies thatE ⊂ �. BecauseE is contained in a connected
set of finite length, the complementary set Ê \E is a variety, which we denote
by V . IfE∩γ1 is a proper, nonempty subset of γ1, then the variety V continues
throughE∩γ1, because this set has finite length and satisfies Ȟ 1(E∩γ1; Z) =
0. See [19, p.168, Cor.3.8.22]. It follows that no point of γ1 is a peak point for
the algebra P(�̄). Consequently, E ∩ γ1 is empty. Contradiction. Thus, if E
meets γ1, then E contains γ1, and the lemma is proved.

Theorem 2.7. The Shilov boundary for P(�̄) is the union of those γj s with

the property that near none of their points does the hull ̂̄� have the structure
of a one-dimensional variety.

Proof. The point is that if �̄ has the structure of a variety near a point
x ∈ γj , then by the continuation process used in the preceding proof, �̄ has
the structure of a variety along the whole of γj .

This formulation is not entirely satisfactory in that it subordinates the de-

termination of the Shilov boundary for P(�̄) to the determination of ̂̄�; one
would prefer a way to determine directly the points of �̄ that belong to the
Shilov boundary or, equivalently, to determine directly the points of �̄ that are
peak points for P(�̄). How to make such a direct determination is not obvious.

Theorem 2.8. If the Shilov boundary for P(�̄) coincides with �, the set �̄
is polynomially convex.

A consequence of the theorem is the criterion:

Corollary 2.9. The set �̄ is polynomially convex if each boundary com-
ponent γj contains a peak point for P(�).
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For the proof of the theorem, we need a lemma about the continuation of
analytic curves, which is a simple application of a result of King [14], [19,
p.157, Th.3.8.3].

Lemma 2.10. Let � be a domain in Cn, and let γ be a rectifiable simple
closed curve in�. If V and V ′ are distinct closed irreducible one-dimensional
subvarieties of � \ γ such that V̄ ∩ � = γ = V̄ ′ ∩ �, then V ∪ V ′ ∪ γ is a
(one-dimensional) subvariety of �.

Proof. The varieties V and V ′ have finite area near γ , so the currents [V ]
and [V ′] of integration overV andV ′, respectively, acting on smooth compactly
supported (1, 1)-forms on� are well defined. Moreover, by Stokes’s Theorem,
there are orientations on γ such that the current boundaries b[V ] and b[V ′]
are given by the condition that for all smooth compactly supported one-forms
α on �

b[V ](α) =
∫
γ ∗
α and b[V ′](α) =

∫
γ ∗∗

α

in which γ ∗ and γ ∗∗ denote the curve γ with the orientations suitable for
Stokes’s Theorem to hold. We see then that b[V ] = ±b[V ′]. These boundaries
cannot be equal for if they were, Stokes’s Theorem would yield that for every
smooth, compactly supported one-form α on �,

∫
V
dα = ∫

V ′ dα. But this
happens only if V = V ′, which contradicts our hypothesis that V and V ′
are distinct. We therefore have that b[V ] + b[V ′] = 0, which allows us to
invoke the theorem of King to conclude that V ∪ V ′ ∩ � = V ∪ γ ∪ V ′ is a
(one-dimensional) subvariety of �.

Proof of Theorem 2.8. Suppose that the Shilov boundary for P(�̄) is

� but that �̄ is not polynomially convex. We have that ̂̄� = �̂. If �̄ is not
polynomially convex, the variety�o = �̂ \� has a global branch, sayW , that
is not a branch of �. The branch W is a bounded closed subvariety of Cn \ �,
so bW ⊂ �. Thus bW has vanishing two-dimensional Hausdorff measure.
Accordingly, by [19, p. 164, Th. 3.8.15], the cohomology group Ȟ 1(bW ; Z)
does not vanish, which implies [19, p. 213, Lem. 4.7.4] that bW contains a
simple closed curve, say γ . Necessarily γ ⊂ �, so γ is one of the γj s, say
γ = γ1. But then the varietiesW and� abut along the rectifiable simple closed
curve γ1, whence, by Lemma 2.10, the unionW ∪γ1 ∪� has the structure of a
variety in the neighborhood of γ1, and the elements of P(�) are holomorphic
in this neighborhood. Consequently, no point of γ1 can be a peak point for the
algebra P(�), which implies that γ1 is not contained in the Shilov boundary
for P(�). Contradiction, and the theorem is proved.

In the case that �̄ is not polynomially convex, its hull can be described in

some detail. We have that ̂̄� = �̂ and that the set �̂ \ � is a variety, which we
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will denote by �o. The Shilov boundary E for P(�) is a union of the γj s, say
E = γ1 ∪ . . .∪ γq for some q with 1 ≤ q < p. Each of the remaining γj s, i.e.,
those with q < j ≤ p is contained in �o. This can happen in either of two
ways. It may be that � ∪ γj is itself a variety so that �̄ has the structure of a
variety along γj . An example is found by taking

� = {z ∈ C : 1 < |z| < 2 or 2 < |z| < 3},
and � = γ1 ∪ γ2 ∪ γ3 with γj the circle of radius j centered at the origin.
Here �̄ has the structure of a variety along γ2. Alternatively, with the same

example, we see that �̂ = ̂̄� = �̄o = {z : |z| ≤ 3}, and ̂̄� is obtained from �̄

by adjoining the disc � = {z : |z| < 1} to �̄.
In the general case, when �̄ is not polynomially convex, the passage from

�̄ to ̂̄� consists in adjoining to �̄ certain varieties V with bV ⊂ γ1 ∪ . . . ∪
γq . Heuristically speaking, the passage from �̄ to ̂̄� amounts to filling in a
holomorphic way certain holes in �̄.

As concerns rational convexity, we have the following result.

Theorem 2.11. The set �̄ is rationally convex.

Proof. As �̄ ⊂ R-hull �̄ ⊂ ̂̄�, we need only show that no point of ̂̄� \ �̄
lies in R-hull �̄.

We begin by treating the case that n = 2. In this case, we know Ȟ 2(̂̄�; Z) =
0: A polynomially convex subset X of Cn satisfies Ȟ n(X; Z) = 0. See [19,
p. 96, Cor. 2.3.6].

Suppose then that x ∈ ̂̄�\�̄ = �̂\�̄. There is an open ball Bx in C2 centered

at the point x and small enough that it is disjoint from �̄. Accordingly, ̂̄� ∩ Bx
is a one-dimensional subvariety of Bx , and it follows that there is a function

f ∈ O (Bx) such that x is an isolated point of f −1(0) ∩ ̂̄� ∩ Bx . By shrinking

Bx we can suppose that f −1(0) ∩ ̂̄� ∩ Bx = {x}.
Let U be a neighborhood in C2 of ̂̄� \ {x} that is disjoint from the closed

set f −1(0) of Bx . The set ̂̄� is polynomially convex and so is the intersection

of Stein domains in C2, so there is a Stein domain W with ̂̄� ⊂ W ⊂ Bx ∪U .
Consider the covering {W ′,W ′′} ofW given byW ′ = Bx∩W andW ′′ = U∩W
of W . Define g′ ∈ O (W ′) and g′′ ∈ O (W ′′) by g′ = f |W ′ and g′′ = 1. On
W ′ ∩ W ′′, g′/g′′ = g′ is zero-free. That is to say, we have constructed a
set of Cousin II data on the Stein manifold W . There is no reason for this
Cousin II problem to be solvable onW . However, ̂̄� has a neighborhood basis

consisting of Stein domains, and as Ȟ 2(̂̄�; Z) = 0, the continuity of Čech
cohomology, implies that our Cousin II problem is solvable on a sufficiently
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thin neighborhood � of �̄ that is contained in W . Thus, if � is thin enough,
there is F ∈ O (�) with g′/F holomorphic and zero-free on W ′ and g′′/F
holomorphic and zero-free on �̄.

We have constructed therefore a functionF holomorphic on� that vanishes

at the point x and that does not vanish on �̄. Because ̂̄� is polynomially
convex, the Oka-Weil approximation theorem implies that the function F can

be approximated on ̂̄� by polynomials, whence we can supposeF itself to be a
polynomial. But this precludes the possibility that the point x lies in R-hull �̄.
Thus, �̄ is seen to be rationally convex.1

It remains to treat the case that n > 2. Again choose a point x0 ∈ ̂̄� \ �̄.
As a set with two-dimensional measure zero, the set � is rationally convex
[19, p. 52, Th. 1.6.7], so there is a polynomial P such that P(x0) = 0 and

0 /∈ P(�). Thus, the set P−1(0) ∩ ̂̄� is a finite set, say

P−1(0) ∩ ̂̄� = {x0, x1, . . . , xs}.
Let Q be a polynomial with Q(xj ) = j , j = 0, . . . , s. Define π : Cn → C2

by π(z) = (P (z),Q(z)). We have then that π−1(0, 0) ∩ ̂̄� = x0 and that
(0, 0) /∈ π(�).

The set π(�) is the union of a finite number of rectifiable curves, not neces-
sarily simple, and so is contained in a connected set of finite length. Accord-
ingly, π̂(�) \ π(�) is a one-dimensional subvariety of C2 \ π(�). The variety
π̂(�) \π(�) contains the origin. As above, there is a polynomialH on C2 that

vanishes at (0, 0) = π(x0) and nowhere else on π(̂̄�). The polynomial A on

Cn given by A = H ◦ π vanishes at x0 and nowhere else on ̂̄�. In particular,
it has no zero on �̄. Thus, x0 /∈ R-hull �̄.

The theorem is proved.

We can now determine the Shilov boundary for R(�̄).

Theorem 2.12. The Shilov boundary for R(�̄) is the union of those γj s
near no point of which does �̄ have the structure of a one-dimensional variety.

Proof. There is a function f defined and of class C ∞ on all of Cn with
f |�̄ ∈ R(�̄) that generates R(�̄) over P(�̄), i.e., such that polynomials in
f with coefficients in P(�̄) are dense in R(�̄). For the existence of such an
f , see [19, p.9]. Then there is a natural identification of R(�̄) with P(�̃)

if �̃ ⊂ Cn+1 is the graph of the function f |�̄. We have P(�̃) = P(�̃) if

1 Notice that, in the n-dimensional case, if we knew the group Ȟ 2(̂̄�; Z) to vanish, the argument
just given would yield the n dimensional case of the theorem we are proving. That, in general,

Ȟ 2(̂̄�; Z) vanishes seems likely, but the author has found no proof.
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�̃ is the graph of f |�. Because f is smooth �̃ consists of mutually disjoint
rectifiable simple closed curves. In addition, f is holomorphic on every open
set in �̄ that has the structure of an analytic variety. The Shilov boundary for
P(�̃) is described by the Theorem 2.7, and that description is seen to yield
the assertion of the present theorem.

Theorem 2.13. The Shilov boundary for A(�̄) is the union of those γj s
near no point of which does �̄ have the structure of a one-dimensional variety.

That is, the Shilov boundaries for R(�̄) and A(�̄) coincide.

Proof. Let E be the Shilov boundary for R(�̄) and E′ that for A(�̄). We
have E ⊂ E′ ⊂ �.

We first observe that if x ∈ �̄ is a point with a neighborhood U in �̄
that has the structure of a one-dimensional variety, then either x is not in E′
or else x is an isolated point of E′: If x ∈ �, then the maximum principle
applies immediately to yield that x /∈ E′. If, on the other hand x ∈ γj , then we
consider two cases. First, it may be that x is a regular point of U . In this case
each f ∈ A(�̄) continues holomorphically into some neighborhood of x inU .
This is a consequence of the result that a function continuous on an open disc in
the plane that is holomorphic off a rectifiable curve in it is actually holomorphic
throughout the disc. For this classical removable singularity theorem due to
Painlevé one can consult [5, p. 321, Exercise 9.28]. Thus, the only points of U
that can lie inE′ are those that are singular points of the varietyU . These points
constitute a discrete set. Thus, either x is not inE′ or else x is an isolated point
of E′. In fact, we will show x cannot be an isolated point of E′. Peak points
are dense in the Shilov boundary, so an isolated point of the Shilov boundary
must be a peak point.

A remark is in order here: The elements of A(�̄) are holomorphic on the
variety� by definition, and we have just seen that they extend holomorphically
to the regular points of U if U is any open subset of �̄ that has the structure of
a variety. A priori this does not imply that they are holomorphic on the entire
variety U ; they might not be holomorphic at the singular points of U . This
difficulty can be circumvented by the following legerdemain.

Let (Ũ , η) be the normalization of the spaceU so that Ũ is a not necessarily
connected nonsingular space, i.e., a Riemann surface,2 and η : Ũ → U is a
holomorphic map that effects a biholomorphism between Ũ \ η−1(Using) and
Ureg = U \Using in which Using denotes the singular locus of the space U . The
function f ◦η is continuous on Ũ and is holomorphic off the finite set η−1(x).
Thus, by the Riemann removable singularity theorem, f ◦ η is holomorphic
on all of Ũ . Consequently |f | cannot attain its maximum at x.

2 For the theory of the normalization, one can consult, e.g., [10].
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We have now that E′ ∩ U = ∅.
To conclude: If a point x ∈ γj has a neighborhood in �̄ that has the structure

of a variety, then again by [19, p. 168, Cor. 3.8.22] �̄ has the structure of an
analytic variety in a neighborhood of γ1, and by the argument we have just
given, E′ must be disjoint from γj .

The theorem is proved.

We have shown that �̄ is rationally convex, so the spectrum of the algebra

R(�̄) is �̄ itself. Similarly, the spectrum of the algebra P(�̄) is ̂̄�. What
is not contained in the work above is a determination of the spectrum of the
algebra A(�̄).

Example 2.14. So far we have dealt with varieties bounded by rectifiable
curves. Without some restriction on the boundary, the situation can become
much more complicated: If � is an analytic disc in Cn bounded by a simple
closed curve, then the closure �̄ need not be polynomially convex; there are
well-known examples. Let J be a simple closed curve in the plane that has
locally positive measure. The curve J divides the Riemann sphere C∗ into two
domains D+ and D−. Constructions going back to Wermer and Rudin – see
[19, pp.53-54] – show that there exist three functions, say g1, g2, g3, that are
continuous on C∗ and holomorphic onD+∪D− such that the mapG : C∗ → C3

defined by
G(z) = (g1(z), g2(z), g3(z))

carries C∗ homeomorphically onto the topological sphere S = G(C∗), which
is contained in the polynomially convex hull of the simple closed curveG(J ).
Thus the closure G(J ∪D+) of the analytic disc G(D+) is not polynomially
convex.

There is a small technical point that should be noted. Without further ado, we
do not know that the mapG is regular, i.e., that it has nonvanishing differential,
onD+ ∪D−. Thus, the discsG(D+) andG(D−)may have some singularities.
The result of [16] implies that by choosing g1, g2, g3 and then a fourth function
g4 suitably, we can obtain a map G̃ : C∗ → C4 that is assured to be regular on
D+ ∪D−.

3. Approximation

A reasonable initial guess would be that in the context considered in the pre-
ceding section, the equality R(�̄) = A(�̄) should obtain, and thus that, in
the event that �̄ is polynomially convex, we should have P(�̄) = A(�̄). The
situation is more complicated than this even in the case of discs, as shown by
the following example, which is closely related to work of Dinh [7].
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Example 3.1. For this example, we shall use the standard factorization of
elements of the disc algebra (or of functions of the Hardy class Hp(U)): If
f ∈ A(Ū), then f admits a unique factorization of the form f = BSF in
which B is a Blaschke product, S is a singular inner function, and F is an
outer function. This theory is developed in detail in the book of Hoffman [12].

For positive integers p and q, let Bp,q be the closed subalgebra of the disc
algebra generated by the functions fp and fq where, for a positive integer k,
we understand fk to be the function given by fk(z) = (z− 1)kH(z) in which
H is the singular inner function given by H(z) = exp z+1

z−1 . Thus, Bp,q is the
uniform closure of the algebra of functions on the closed disc of the form

(1)
N∑

μ,ν=0

cμ,ν(z− 1)pμ+qνHμ+ν(z)

for constants cμ,ν . We shall show that the algebraBp,q contains no nonconstant
outer function that vanishes at the point 1.

Suppose, for the sake of contradiction, that the nonconstant outer function
h, which is supposed to satisfy h(1) = 0, is the limit of the sequence {hn}n=1,...,
with each hn of the form (1). As h(1) = 0, it follows that hn(1) → 0, so we
can suppose that each hn has vanishing constant term whence

hn(z) =
∑

0≤μ,ν≤N(n)
1≤μ+ν

cμ,ν(n)(z− 1)pμ+qνHμ+ν(z).

Multiply both sides of this equation by H̄ and use the fact thatH is continuous
and unimodular on bU \ {1} to find that the sequence of functions

H̄ (z)hn(z) =
∑

0≤μ,ν≤N(n)
1≤μ+ν

cμ,ν(n)(z− 1)pμ+qνHμ+ν−1(z)

converges uniformly on bU and so on Ū, say toG. We then have the factoriza-
tion h = GH withG ∈ A(Ū). The function h is thus seen to have a nontrivial
singular inner factor. However, h is an outer function. We have reached a
contradiction, and know, therefore that h /∈ Bp,q .

Observe that this argument shows, in fact, that every nonconstant element
of Bp,q that vanishes at the point 1 has a nontrivial inner factor.

Now notice that if p ≥ 3, then the derivative f ′
p lies in A(Ū), so the

restriction of fp to bU is of class C 1 and is, in particular, of bounded variation
on bU. For this derivative, we have

(2) f ′
p(z) = (z− 1)p−2(p(z− 1)− 2) exp

z+ 1

z− 1
.
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Consider then fp and fp+1 for p ≥ 3. The derivative f ′
p vanishes at the

points z = 1 and z = (p + 2)/p, so that f ′
p has no zero on the punctured

closed disc Ū \ {1}. Moreover, fp and fp+1 separate points on Ū: Suppose
z, ζ ∈ Ū and that

(3) fp(z) = fp(ζ ) and fp+1(z) = fp+1(ζ ).

The only point in Ū at which either of fp or fp+1 vanishes is the point 1. If
z �= 1, the equalities (3) imply that z = ζ .

The map f = (fp, fp+1) : Ū → C2 is injective, its differential vanishes at
no point of U, and it carries bU onto the rectifiable curve� = b� if� = f (U).

The algebra P(�̄) is not all of A(�): If it were, then the algebra Bp,p+1

considered above would be all of A(Ū), but, as we have seen, it is not: It
contains no outer function that vanishes at 1.

The curve � is somewhat better than rectifiable: The open arc � \ {0} is
real-analytic. The parameterization for � that we have given is by functions
of class C 1, but the differential of this map vanishes at the point 1, so � is not
presented as a curve of class C 1, and, indeed, it is not such a curve because of
the singularity at the origin.

We have seen that the algebra Bp,p+1 contains no outer function. The disc
algebra contains an infinite sequence of linearly independent outer functions,
e.g., {gn}n=1,... withgn(z) = (z−1)n. The functions are, moreover, independent
modBp,p+1: If the polynomial P given by P(z) = ∑m

k=0 ck(z − 1)k lies in
Bp,p+1, then, as we saw above, P has the inner factor H , which is impossible
as is seen by considering rates of decay along the radius [0, 1).

It follows that the quotient vector spaceA(�̄)/P(�̄) is infinite-dimensional.

4. Differentiably generated algebras on surfaces

We now turn our attention to uniform algebras with spectra compact surfaces.
Under a mild smoothness hypothesis, such algebras admit a rather simple
description.

Theorem 4.1. If � is a compact surface, perhaps with boundary, of class
C 1, if � ⊂ C (�) is a uniform algebra on � for which � is the spectrum, if
there is a set G of generators for � each of which is of class C 1, and if � is
the Shilov boundary for �, then the set � \ � admits the structure of a one-
dimensional reduced complex space on which each f ∈ � is holomorphic,
and the algebra of restrictions �|(� \ �) is dense in the algebra O (� \ �) in
the sense of uniform convergence on compacta. Moreover, the set � contains
the boundary of �. If G can be chosen as a finite set, the complex space� \�
is biholomorphically equivalent to a subvariety of a bounded open set in Cn,
n the cardinality of G .
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In particular we have a result about algebras on discs:

Corollary 4.2. If � is a uniform algebra on the closed unit disc Ū in the
plane that is generated by continuously differentiable functions, and if the the
spectrum of � is Ū, then the Shilov boundary for � contains the boundary of
U.

It is a long-open problem to show that the same conclusion can be drawn for
every uniform algebra with spectrum the closed disc (omitting the hypothesis
of smooth generators). This general question appears in Jarosz’s list of open
problems [13, p. 150, Question 7.2].3 In fact, the problem is much older: It is
mentioned in Gamelin’s book [9, p. 10] and had already been posed as an open
problem by Hoffman at the Tulane Symposium of 1965. See [4, p. 348].

That b� ⊂ � implies that the surface � \ � is a not necessarily connected
surface that is open, i.e., that each component of � \ � is noncompact and
without boundary.

In the case that � admits a set of generators of class C 1 but no finite set
of such generators, the space � \ � may not have globally bounded local
embedding dimension in which case it cannot be realized as a subvariety of an
open set in any Cn for n a positive integer. An example is given below.

We should point out explicitly that the complex structure on � \ � is not
claimed to be the structure of a Riemann surface, i.e., a one-dimensional com-
plex manifold; there may well be singular points as in the case that � is the
closed unit disc in the complex plane, and � is the algebra generated by the
functions z2 and z3 in which case the complex structure provided by the theorem
has a singularity at the origin. The subalgebra of the disc algebra generated by
the functions z2 and z3 does not contain the function z.

Corollary 4.3. The surface � \ � is orientable.

Proof of Theorem 4.1. We deal first with the case that the chosen set G

of generators for � is finite, say G = {g1, . . . , gn}. Define a map� : � → Cn

by the condition that�(s) = (g1(s), . . . , gn(s)) for all s ∈ �. The map� is a
homeomorphism from� onto a compact surface, perhaps with boundary, S, in
Cn. As G is a set of generators for � and � is the spectrum of �, the surface S
is polynomially convex. Set B = �(�), so that S is the polynomially convex
hull of B, and B is minimal with respect to this condition. Define the algebra
A ⊂ C (S) to be the algebra {f ◦ �−1 : f ∈ �}. As G is a set of generators
for �, it follows that A = P(S).

Since the surface� is compact and of class C 1 and the map� is of class C 1,
it follows that the surface S has finite area – finite two-dimensional Hausdorff

3 I am indebted to Alexander Izzo for this reference.
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measure, whence, a fortiori, the set S \ B = B̂ \ B has finite area. It follows
from a result due, independently, to Alexander, Basner, and Sibony [19, p. 150,
Th. 3.6.3] that S \ B is a one-dimensional variety.

We now show that B ⊃ bS. Suppose, to the contrary, that there is a point
x ∈ bS \ B. The boundary of the surface S, if nonempty, consists of a finite
number of mutually disjoint simple closed curves of class C 1, and each point
in this boundary has a neighborhood in S that is homeomorphic to the closed
upper half-plane in the two-dimensional Euclidean plane. Consequently, there
is an arc λ in S with both end points in bS that separates the point x from
B. Moreover, the arc λ can be chosen to be rectifiable. The local maximum
modulus principle implies that x ∈ λ̂. However, rectifiable arcs are polynomi-
ally convex. We conclude that there are no points with the property we have
ascribed to x.

Finally, we must establish the density assertion of the theorem, which is
equivalent to the following statement.

Lemma 4.4. The algebra P(S) is dense in the algebra O (S \B) in the sense
of uniform convergence on compacta.

Proof. Set � = S \ B. Let f ∈ O (�), and let K be a compact subset of
�. Let γ = γ1 ∪ . . . ∪ γs be a finite system of mutually disjoint rectifiable
simple closed curves in �reg, the set of nonsingular points of �, that jointly
bound a relatively compact domain in � that contains K . The polynomially
convex hull γ̂ is a subset of �, and γ̂ \ γ is a one-dimensional variety, say V .
The variety V is disjoint from the Shilov boundary B: If x ∈ B ∩ V , then as
S is a surface, possibly with boundary, and V is a one-dimensional variety, a
full neighborhood of x in S has to lie in V . Because peak points for P(S) are
dense in B, this full neighborhood contains peak points for the algebra P(S);
such points cannot lie in γ̂ . Thus, γ̂ ⊂ S \ B.

The variety � contains γ̂ . Accordingly, there is a polynomial polyhedron
P such that P ∩ B = ∅ and P ⊃ γ̂ . There is a function F holomorphic on
P that agrees with f on W ∩ P . The function F is uniformly approximable
on compacta in P by polynomials by virtue of the Oka-Weil approximation
theorem. In particular, the function f can be approximated uniformly on the
set K by polynomials and therefore, a fortiori, by elements of P(S).

Theorem 4.1 is proved in the case that � admits a finite set of smooth
generators.

The treatment of the case of algebras that are not finitely generated is more
involved. To begin with, it depends in an essential way on the theory of max-
imum modulus algebras.

Definition 4.5. A maximum modulus algebra onX with projectionp over
� is a quadruple (A,X,�, p) in which X is a locally compact space, A is an
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algebra of continuous C-valued functions onX that separates points onX,� is
an open set in C, and p is an element of A that effects a proper map from X to
�. It is required further that for every disc� contained with its closure in� and
centered at ζ and for every g ∈ A, maxx∈p−1(ζ ) |g(x)| ≤ maxx∈p−1(b�) |g(x)|.

Recall that a map f : � → � is proper if for every compact set K ⊂ �,
the preimage f −1(K) is a compact subset of �.

For our purposes the most important example of a maximum modulus al-
gebra is given as follows. Let Xo be the spectrum of the uniform algebra Ao,
and let � be the Shilov boundary for Ao. Let f ∈ Ao, let� be a component of
f (Xo) \ f (�), let X = f −1(�), and let A be the algebra of restrictions g|X,
g ∈ Ao. Then f : f −1(�) → � is proper, and the quadruple (A,X,�, f |X)
is a maximum modulus algebra on X with projection f over �, as follows
from the local maximum modulus principle.

The theory of maximum modulus algebras is treated in detail in the book
[2] of Alexander and Wermer.

A fundamental result in the theory of maximum modulus algebras exhib-
its one-dimensional analytic structure in the space X. Precisely, there is the
following result:

Theorem 4.6. Let (A,X,�, f ) be a maximum modulus algebra with pro-
jection f over�. Assume that for some integer n there exists a Borel setE ⊂ �

of positive logarithmic capacity such that for every ζ ∈ E, the cardinality of
the fiber f −1(ζ ) is not more than n. Then

(i) for every ξ ∈ � the cardinality of the fiber f −1(ξ) is bounded by n, and

(ii) there exists a discrete subset S of � such that f −1(� \ S) admits the
structure of a Riemann surface on which every element in A is holo-
morphic.

For this theorem we refer to [2, p. 76, Th. 11.8.].
We shall make essential use of an inequality from geometric measure theory:

Theorem 4.7. IfX andY are metric spaces andf : X → Y is a Lipschitzian
map, if A ⊂ X, if 0 ≤ k < ∞, and if 0 ≤ m < ∞, then

(4)
∫ ∗

Y

�k(A ∩ f −1(y)) d�m(y) ≤ C(f, k,m)�k+m(A).

In this statement
∫ ∗ is the upper integral, and�α isα-dimensional Hausdorff

measure. Also, C(f, k,m) is a constant that depends on the dimensions k and
m and on the Lipschitz constant of the map f .

This result, with an additional hypothesis onY , which will be satisfied in our
application, is given in [8, p. 188, Th. 2.10.25.]. Subsequent to the publication
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of [8] it was shown in [6] that the supplementary hypotheses imposed on Y is
unnecessary.

We now consider our uniform algebra � on the surface � with Shilov
boundary �. Set � = � \ �.

Let x ∈ �. Choose a domain D that is a relatively compact subset of �
with x ∈ D and with bD = γ , a finite union of mutually disjoint simple closed
curves of class C 1. There are finitely many elements f1, . . . , fn ∈ � of the
form fj = gj −αj with each gj in the set G of generators and therefore of class
C 1 and with αj ∈ C such that if F = (f1, . . . , fn) : � → Cn then F(x) = 0
andF(x) /∈ F(γ ). AsF(γ ) is a union of smooth curves,�2(F (γ )) = 0, which
implies that F(γ ) is rationally convex. Accordingly there is a polynomial P
such that P(F(x)) = 0 but 0 /∈ P(F(γ )). The composition g = P ◦ F is an
element of �.

Denote by �γ the uniform closure of the algebra �|γ of restrictions to γ
of the elements of the algebra �. Its spectrum spec �γ is in a natural way the
set �-hull γ given by

(5) �-hull γ = {
x ∈ � : for all f ∈ �, |f (x)| ≤ sup

y∈γ
|f (y)|}.

This hull, which is a certain compact subset of �, contains D by the local
maximum principle.

Introduce the notation that�γ = spec �γ \g−1(γ ), a certain open, perhaps
not connected, subset of spec � that contains x. Put W = g(�γ ), which is a
union of certain components of C\g(γ ). The quadruple (�γ |�γ ,�γ ,W, g|�γ )
is a maximum modulus algebra. The set W contains the origin, i.e., the point
g(x).

The smoothness of g implies that the fibers �γ ∩ g−1(ζ ), ζ ∈ W are
generally finite: Apply the inequality (4) to the map g : � → C. The surface
� has finite area, andg, as a function of class C 1, satisfies a Lipschitz condition.
Accordingly, the set �γ has finite area, and we find that∫ ∗

W

�0(�γ ∩ g−1(ζ )) d�2(ζ ) ≤ const. �2(�γ ) < ∞,

whence there is an integer n such that for some set Sn of positive area and, a
fortiori, positive capacity, in W , the fibers �γ ∩ g−1(ζ ), ζ ∈ Sn, have exactly
n elements.

The principal result on maximum modulus algebras quoted above, Theorem
4.6, implies the existence of a discrete subset S ofW such that�γ \g−1(S) has
the structure of a Riemann surface on which each element of � is holomorphic.
Moreover, for every ζ ∈ W , the fiber �γ ∩ g−1(ζ ) has cardinality not more
than n.
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To proceed, note that the set S̃ = g−1(S) is a discrete subset of �γ : If not,
let x ∈ �γ be a limit point of S̃. As each of the fibers �γ ∩ g−1(ζ ) for ζ ∈ W
has cardinality at most n, the point g(x) ∈ W is necessarily a limit point of S,
a contradiction of the discreteness of S as a subset of W .

We need now a simple function-theoretic lemma:

Lemma 4.8. Let � be an open disc in a surface of class C 1, let x ∈ �,
and let � \ {x} have the structure of a Riemann surface. Let � ⊂ C (�) be
a point-separating algebra of bounded continuous functions each of which is
holomorphic on � \ {x} with respect to the given conformal structure on the
latter set. Then there exists a unique conformal structure on � with respect
to which the identity map � \ {x} ↪→ � is holomorphic and such that the
elements of � are holomorphic on � with respect to the extended conformal
structure.

Perhaps it is well to be clear about the notion of conformal structure. By the
given conformal structure on� we understand a collection K = {(Uι, ψι)}ι∈I
of open subsetsUι of�\ {x} and homeomorphismsψι fromUι to open sets Vι
in the complex plane such that for all ι, κ ∈ I , the mapψι◦ψ−1

κ is holomorphic
on its set of definition, which, if not empty, is some open set in the plane. The
Uι are supposed to constitute a cover for � \ {x}. That f ∈ � is holomorphic
with respect to this structure means that each of the compositions f ◦ ψ−1

ι is
holomorphic where it is defined.

To extend the conformal structure through x is to find a corresponding
family K� on the entire disc � with K� ⊃ K .

Proof of Lemma 4.8. The uniformization theorem implies that the domain
� \ {x} is conformally equivalent to a doubly connected domain in the plane.
Thus, there is a conformal4 map χ : D → � \ {x} from a doubly connected
domain D ⊂ C onto � \ {x}. As a doubly connected domain in the plane, we
can suppose D to be one of three canonical domains:

(i) D = D∞ = C \ {0}, or

(ii) D = Dr = {ζ ∈ C : r < |ζ | < 1/r} for a unique r ∈ (0, 1), or

(iii) D = D0 = {ζ ∈ C : 0 < |z| < 1}.
We exclude case (i) because if D = D∞, then as � contains bounded, non-
constant functions f , for which f ◦ χ is nonconstant bounded holomorphic
function on C \ {0}, we have a contradiction.

In case (ii), we can suppose that the cluster set ofχ atCr = {ζ ∈ C : |ζ | = r}
is the set {x}. Then for a nonconstant f ∈ �, we have that the cluster set of the

4 We understand conformal maps to be injective.
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nonconstant holomorphic function f ◦χ onDr at Cr is the set {f (x)}. This is
impossible.

Consequently, the domain D must be the domain D0. In this case the con-
formal map χ extends to a continuous map, also denoted by χ , from the unit
disc U to �. The extended χ is a homeomorphism from U onto �. Moreover,
for each function f ∈ �, the function f ◦ χ is holomorphic on U , as follows
from the Riemann removable singularity theorem.

Thus, if we add to the atlas K defining the complex structure on � \ {x}
the pair (�,ψ) with ψ = χ−1, we obtain on � the structure of a Riemann
surface on which each f ∈ � is holomorphic. Moreover, the identity map
from � \ {x} to � is holomorphic.

The lemma is proved.

We apply the lemma just proved at each point of the discrete subset Ẽ of�γ
considered above to find that the entire open subset�γ admits the structure of
a Riemann surface on which the elements of the algebra � are holomorphic.
In particular, the neighborhood D of the point x with which we began this
discussion has the structure of a Riemann surface on which all elements of
� are holomorphic. It follows that the whole surface � = � \ � has the
structure of a Riemann surface on which all the elements of the algebra � are
holomorphic. This surface may not be connected.

We do not know, nor is it to be expected, that in general � is dense in
O (�) in the sense of uniform convergence on compacta. To obtain the density
assertion of Theorem 4.1 we must, in general, alter the complex structure on
� to obtain a one-dimensional complex space, which, typically, will not be
nonsingular.

For this construction we need a lemma:

Lemma 4.9. The Riemann surface � is convex with respect to the algebra
�.

The assertion is that if K is a compact subset of �, then with the �-hull of
K defined as in equation (5), the set � ∩ (�-hullK) is compact.

Proof. Fix a compact setK in�. The maximum modulus theorem implies
that �-hullK can contain no peak point for the algebra �. To prove the lemma,
it suffices to show that �-hullK is disjoint from �. Suppose this is false so
that there is a point z ∈ (�-hullK) ∩ �. The analysis we have given above
implies that the setW = �-hullK \K has the structure of a Riemann surface
on which each element of � is holomorphic. The point z lies inW and so must
contain a neighborhood of the point x in �. As peak points for � are dense in
�, this neighborhood contains a peak point for �, and we have a contradiction.

The lemma is proved.
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Our situation now is the following: The set � is known to be a Riemann
surface on which each element of � is holomorphic. Moreover, the algebra
� separates points on �, and � is convex with respect to �. Denote by �
the closure of the algebra of restrictions �|� in C (�) so that � is a closed
subalgebra of O (�). (We are taking C (�) and O (�) to have the topology of
uniform convergence on compacta.) The spectrum of �5 is in a natural way
� in that the topology on � is that induced by � and each character ϕ of the
algebra � is of the form ϕ(g) = g(x) for some necessarily unique point x ∈ �.
The latter point is clear: The functional ϕ acts on the dense subalgebra � of �
by evaluation at some point x of �. Moreover, the functional ϕ is continuous,
so there is an inequality |f (x)| = |ϕ(f )| ≤ ‖f ‖K for some compact subset
K of �. It follows that the point x must lie in �.

To conclude, we need only invoke a theorem of Rossi [18, p. 147, Th. 6.8]
– see also the paper [17] – which implies the existence of a complex structure
on � with respect to which the algebra � is the algebra of all holomorphic
functions.6

Theorem 4.1 is proved.

Example 4.10. We now construct the promised example to show that the
complex space of Theorem 4.1 may not be biholomorphically equivalent to
a subvariety of an open subset in Cn for any positive integer n. This kind of
example is familiar.

Again let {xn}n=1,... be the sequence defined by xn = 1 − e−n2
. We have

already noted, there are many functions in A∞(Ū) that vanish to order n at xn
for all n = 1, . . .. Denote by �o the algebra of all functions f ∈ A∞(Ū)whose
derivatives f ′ vanish to order n at xn. Let � be the uniform closure of �o. The
uniform algebra � has Ū as its spectrum, i.e., it separates points on Ū, and each
nonzero C-algebra homomorphism from � to C is of the form g �→ g(z) for
some fixed z ∈ Ū.

In proving this, we will use the fact that the multiplicative linear functionals,
or characters, on the algebraA∞(Ū) are point evaluations at points of the closed
unit disc Ū. Let ϕ be a character on �. Let I be the ideal of A∞(Ū) consisting
of those functions f in �o that vanish at each point xn, and let � be the closure
of I in �. There are two cases to consider: First, it may be that ϕ does not

5 The algebra � is a Fréchet algebra with identity but not a Banach algebra. By its spectrum
we understand the set of its continuous characters, i.e., the set of continuous nonzeero C-algebra
homomorphisms ϕ : � → C, endowed with the weak topology induced by the algebra �.

6 The theorem of Rossi just cited is in a context much more general than ours in that it treats
algebras of holomorphic functions on complex spaces of arbitrary dimension. One could rewrite
its proof in the particular case of algebras on one-dimensional spaces and obtain thereby a consid-
erably simpler demonstration of our Theorem 4.1 Doing so would require a few pages and does
not seem appropriate in the present setting.
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annihilate the ideal �, whence it does not annihilate the ideal I in A∞(Ū).
If g ∈ I satisfies ϕ(g) �= 0, then we can consider, for any f ∈ A∞(Ū), the
quantity ϕ(fg)/ϕ(g). In fact this quantity is independent of the choice of g,
subject only to the condition that ϕ(g) �= 0: If g, h ∈ I and neither ϕ(g) nor
ϕ(h) vanishes, then for each f ∈ A∞(Ū),

(6)
ϕ(fg)/ϕ(g) = (ϕ(fg)ϕ(h))/(ϕ(g)ϕ(h))

= ϕ(fgh)/ϕ(gh) = ϕ(f h)/ϕ(h).

Thus, if we fix a g ∈ I that is not annihilated byϕ and define the functional ϕ̃ on
A∞(Ū) by ϕ̃(f ) = ϕ(fg)/ϕ(g), we have a well-defined functional. It is linear
and multiplicative, and it satisfies ϕ̃(1) = 1. Thus, there is a point zϕ ∈ Ū such
that for all f ∈ A∞(Ū), ϕ(f ) = zϕ . The functional ϕ̃ agrees on the algebra �o

with ϕ, for ϕ is multiplicative on �o. Thus, ϕ acts on � as evaluation at zϕ . If
ϕ annihilates the ideal �, then it annihilates I , and so gives rise to a character
ϕ∗ on the quotient algebra A∞(Ū)/I . The characters on this quotient algebra
are of the form [f ] �→ f (y) for some y in the set {1, x1, x2, . . .}. (Here [f ]
denotes the residue class of f in the quotient algebra A∞(Ū)/I .) It follows
that ϕ acts on � as evaluation at the point y. As � separates points on Ū, we
have that spec � = Ū.

The algebra � is thus an algebra of the sort considered in Theorem 4.1.
The complex space associated with this example by Theorem 4.1 is the open

unit disc U with the structure sheaf F defined by the condition that for each
open subset V in U the space of sections F (V ) is the space of all ordinary
holomorphic functions f onV that satisfy f (j)(xn) = 0 in the range 1 ≤ j ≤ n

for all those n for which xn ∈ V . We denote this space by UF . This is a reduced
one-dimensional space and as such, it can be mapped holomorphically and
homeomorphically onto a one-dimensional subvariety of C3. See [11, p. 224,
Th. VII.C.10].

There is, however, no biholomorphic embedding of UF as a subvariety
of Cm for any positive integer m. This is so because the local embedding
dimension (or tangential dimension) of UF at the point xn is n + 1, whence
the local embedding dimension is not globally bounded. Recall that if � is a
complex space and � ∈ �, then the local embedding dimension of � at � is the
dimension of the complex vector space ��/�2

� in which �� is the maximal
ideal in the local ring of germs of functions holomorphic at �. In the case
of UF , the maximal ideal �xn is the ring of germs of functions with power
series expansion about xn of the form

∑∞
k=n+1 αk+1(z − xn)

k . Consequently,
the dimension of �xn/�2

xn
has dimension n+ 1.

Thus, the complex space UF is not biholomorphically equivalent to a sub-
variety of any Cm.
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5. Further questions

Certain questions suggested by the results above seem worthy of further in-
vestigation.

1. Find the correct analogue of Theorem 4.1 without the condition that the
algebra admit a set of differentiable generators. The essence of the problem is
found already in the disc case: If � is a uniform algebra with the closed unit
disc Ū as its spectrum and with Shilov boundary contained in the circle bU,
is there a complex structure on U with respect to which the elements of � are
holomorphic?

2. If M is a compact manifold of dimension n > 2 and of class C 1, if �
is a uniform algebra on M generated by functions of class C 1 and with M as
its spectrum, and if � is the Shilov boundary for �, does the set M \ �, if not
empty, exhibit some residual one-dimensional analytic structure? Specifically,
is there any one-dimensional complex manifold in M\� on which the elements
of � are holomorphic? Erlend Fornæss Wold has recently informed me that
he, in collaboration with Alexander Izzo and Håken Samuelsson, has settled
this question.

3. Show that if � is a one-dimensional subvariety of a bounded open set in
Cn with b� a finite union of mutually disjoint rectifiable simple closed curves,
then the spectrum of the Banach algebra A(�̄) is �̄. In the case that � is a
relatively compact subset of a larger ambient Riemann surface, the result is
known and due to Arens [3].

The following remarks throw some light on this question but do not settle
it.

We know that the set �̄ is rationally convex so that spec R(�̄) is naturally
identified with �̄.

The inclusion R(�̄) ↪→ A(�̄) induces a mapρ : specA(�̄) → spec R(�̄)

= �̄. This map is surjective; it is merely the restriction map that takes ϕ ∈
specA(�̄) to ϕ|R(�̄) ∈ spec R(�̄). What must be verified is that ρ is inject-
ive, i.e., that two elements of specA(�̄) that agree on R(�̄) coincide.

We first note that the map is injective over �̄ \ � = � \ �. That is, we
show that if ϕ ∈ specA(�̄), if x ∈ � \ �, and if for each g ∈ R(�̄),
ϕ(g) = g(x), then for each f ∈ A(�̄), ϕ(f ) = f (x). Equivalently, we show
that if f ∈ A(�̄) vanishes at x, then ϕ(f ) = 0. Suppose ϕ ∈ specA(�̄)
and that for all f ∈ R(�̄), ϕ(f ) = f (x) for the fixed point x ∈ � \ �.
The rational convexity of � implies the existence of a function g ∈ R(�̄)

that vanishes at x and that does not vanish at any point of the boundary �.
Thus, the zero locus g−1(0) is a finite subset of �. If f ∈ A(�̄) vanishes at
x, then the Nullstellensatz yields the existence of a function h holomorphic
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on a neighborhood of x in � such that for some positive integer μ we have
the equality f μ = gh near x. As h = f μ/g near x, we see that h is naturally
defined as a holomorphic function on of (� \ g−1(0)) ∪ {x} and that it has
continuous boundary values along �. Let r ∈ R(�̄) satisfy r(x) = 1 and
r(y) = 0 for all y other than x at which g vanishes. Then for a sufficiently
large positive integer ν we have that rνf μ = ghrν with the function hrν

an element of A(�̄). Thus ϕ(f μ) = ϕ(rνf μ) = ϕ(g)ϕ(hrν) = 0 whence
ϕ(f ) = 0. Accordingly for all f ∈ A(�̄), ϕ(f ) = f (x).

Next, ρ is injective over the set of peak points for R(�̄). To see this, let be
a peak point for R(�̄), and let ho ∈ R(�̄) peak at x. Suppose ϕ ∈ specA(�̄)
to satisfy ρϕ = x. There is a probability measure μ on � such that for all
f ∈ A(�̄), ϕ(f ) = ∫

f dμ. For every f ∈ A(�̄) we have

ϕ(f ) = ϕ(f )ϕ(hko) =
∫
f hko dμ

k→∞−→ f (x)μ({x}),

so the kernelϕ contains the maximal ideal ofA(�̄) that consists of the functions
in A(�̄) that vanish at the point x. Thus ϕ is found to be evaluation at x, and
ρ is seen to be injective over the peak point x.

It remains to show that ρ is injective over points of the Shilov boundary for
R(�̄) that are not peak points for R(�̄). Such points do exist in general as
we have seen in examples given above.
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