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ELEMENTARY NOTIONS OF LATTICE
TRIGONOMETRY

OLEG KARPENKOV∗

Introduction

0.1. The goals of this paper and some background

Consider a two-dimensional oriented real vector space and fix some full-rank
lattice in it. A triangle or a polygon is said to be lattice if all its vertices belong
to the lattice. The angles of any lattice triangle are said to be lattice.

In this paper we introduce and study lattice trigonometric functions of
lattice angles. The lattice trigonometric functions are invariant under the ac-
tion of the group of lattice-affine transformations (i.e. affine transformations
preserving the lattice), like the ordinary trigonometric functions are invariant
under the action of the group of Euclidean length preserving transformations
of Euclidean space.

One of the initial goals of the present article is to make a complete de-
scription of lattice triangles up to the lattice-affine equivalence relation (see
Theorem 2.2). The classification problem of convex lattice polygons becomes
now classical. There is still no a good description of convex polygons. It is
only known that the number of such polygons with lattice area bounded from
above by n growths exponentially in n1/3, while n tends to infinity (see the
works of V. Arnold [2], and of I. Bárány and A. M. Vershik [3]).

We extend the geometric interpretation of ordinary continued fractions to
define lattice sums of lattice angles and to establish relations on lattice tangents
of lattice angles. Further, we describe lattice triangles in terms of lattice sums
of lattice angles.

In present paper we also show a lattice version of the sine formula and
introduce a relation between the lattice tangents for angles of lattice triangles
and the numbers of lattice points on the edges of triangles (see Theorem 1.15).
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We conclude the paper with applications to toric varieties and some unsolved
problems.

The study of lattice angles is an essential part of modern lattice geometry.
Invariants of lattice angles are used in the study of lattice convex polygons
and polytopes. Such polygons and polytopes play the principal role in Klein’s
theory of multidimensional continued fractions (see, for example, the works of
F. Klein [14], V. I. Arnold [1], E. Korkina [16], M. Kontsevich and Yu. Suhov
[15], G. Lachaud [17], and the author [10]).

Lattice polygons and polytopes of the lattice geometry are in the limelight
of complex projective toric varieties (see for more information the works of
V. I. Danilov [4], G. Ewald [5], T. Oda [18], and W. Fulton [6]). To illustrate, we
deduce (in Appendix A) from Theorem 2.2 the corresponding global relations
on the toric singularities for projective toric varieties associated to integer-
lattice triangles. We also show the following simple fact: for any collection
with multiplicities of complex-two-dimensional toric algebraic singularities
there exists a complex-two-dimensional toric projective variety with the given
collection of toric singularities (this result seems to be classical, but it is missing
in the literature).

The studies of lattice angles and measures related to them were started by
A. G. Khovanskii, A. Pukhlikov in [12] and [13] in 1992. They introduced and
investigated special additive polynomial measure for the extended notion of
polytopes. The relations between sum-formulas of lattice trigonometric func-
tions and lattice angles in Khovanskii-Pukhlikov sense are unknown to the
author.

0.2. Some distinctions between lattice and Euclidean cases

Lattice trigonometric functions and Euclidean trigonometric functions have
much in common. For example, the values of lattice tangents and Euclidean
tangents coincide in a special natural system of coordinates. Nevertheless,
lattice geometry differs a lot from Euclidean geometry. We show this with the
following four examples.

1. The angles � ABC and � CBA are always congruent in Euclidean geo-
metry, but not necessary lattice-congruent in lattice geometry.

2. In Euclidean geometry for any n ≥ 3 there exist a regular polygon with
n vertices, and any two regular polygons with the same number of vertices are
homothetic to each other. In lattice geometry there are only six non-homothetic
regular lattice polygons: two triangles (distinguished by lattice tangents of
angles), two quadrangles, and two octagons. (See a more detailed description
in [11].)

3. In Appendix B we will consider three natural criteria for triangle congru-
ence in Euclidean geometry. Only the first criterion can be taken to the case of
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lattice geometry. The others two are false in lattice trigonometry. (We refer to
Appendix B.)

4. There exist two non-congruent right angles in lattice geometry. (See
Corollary 1.12.)

0.3. Description of the paper

This paper is organized as follows.
We start in Section 1 with some general notation of lattice geometry. We

define ordinary lattice angles, and the functions lattice sine, tangent, and cosine
on the set of ordinary lattice angles, and lattice arctangent for rationals greater
than or equal 1. Further we indicate their basic properties. We proceed with the
geometrical interpretation of lattice tangents in terms of ordinary continued
fractions. In conclusion of Section 1 we study the basic properties of angles in
lattice triangles.

In Section 2 we introduce the sum formula for the lattice tangents of ordinary
lattice angles of lattice triangles. The sum formula is a lattice generalization of
the following Euclidean statement: three angles are the angles of some triangle
iff their sum equals π .

Further in Section 3 we introduce the notion of extended lattice angles and
their normal forms and give the definition of sums of extended and ordinary
lattice angles. Here we extend the notion of sails in the sense of Klein: we
define and study oriented broken lines at unit distance from lattice points.

In Section 4 we finally prove the first statement of the theorem on sums of
lattice tangents for angles in lattice triangles. In this section we also describe
some relations between continued fractions for lattice oriented broken lines
and the lattice tangents for the corresponding extended lattice angles. Further
we give a necessary and sufficient condition for an ordered n-tuple of angles
to be the angles of some convex lattice polygon.

We conclude this paper with three appendices. In Appendix A we describe
applications to theory of complex projective toric varieties mentioned above.
Further in Appendix B we formulate criterions of lattice congruence for lattice
triangles. Finally in Appendix C we give a list of unsolved problems and
questions.

Acknowledgement. The author is grateful to V. I. Arnold for constant
attention to this work, I. Bárány, A. G. Khovanskii, V. M. Kharlamov, J.-
M. Kantor, D. Zvonkine, and D. Panov for useful remarks and discussions, and
Université Paris-Dauphine — CEREMADE for the hospitality and excellent
working conditions.
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1. Definitions and elementary properties of lattice trigonometric
functions

1.1. Preliminary notions and definitions

By gcd(n1, . . . , nk) and by lcm(n1, . . . , nk) we denote the greater common
divisor and the less common multiple of the nonzero integers n1, . . . , nk re-
spectively. Suppose that a, b be arbitrary integers, and c be an arbitrary positive
integer. We write that a ≡ b (mod c) if the reminders of a and b modulo c

coincide.

1.1.1. Lattice notation. Here we define the main objects of lattice geometry,
their lattice characteristics, and the relation of L -congruence (lattice-congru-
ence).

Consider R2 and fix some orientation and some lattice in it. A straight line
is said to be lattice if it contains at least two distinct lattice points. A ray is said
to be lattice if its vertex is a lattice point, and it contains lattice points distinct
from its vertex. An angle (i.e. the union of two rays with the common vertex)
is said to be ordinary lattice (or just ordinary for short) if the rays defining it
are lattice. A segment is called lattice if its endpoints are lattice points.

By a convex polygon we mean a convex hulls of a finite number of points
that do not lie in a straight line. A straight line π is said to be supporting
a convex polygon P , if the intersections of P and π is not empty, and the
whole polygon P is contained in one of the closed half-planes bounded by
π . An intersection of a polygon P with its supporting straight line is called a
vertex or an edge of the polygon if the dimension of intersection is zero, or
one respectively.

A triangle (or convex polygon) is said to be lattice if all its vertices are lattice
points. A lattice triangle is said to be simple if the vectors corresponding to its
edges generate the lattice.

The affine transformation is called L -affine if it preserves the set of all
lattice points. Consider two arbitrary (not necessary lattice in the above sense)
sets. We say that these two sets are L -congruent to each other if there exist a
L -affine transformation of R2 taking the first set to the second.

Definition 1.1. The lattice length of a lattice segment AB is the ratio
between the Euclidean length of AB and the length of the basic lattice vector
for the straight line containing this segment. We denote the lattice length by
l�(AB).

By the (non-oriented) lattice area of the convex polygon P we will call the
ratio of the Euclidean area of the polygon and the area of any lattice simple
triangle, and denote it by lS(P ).
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Two lattice segments are L -congruent iff they have equal lattice lengths.
The lattice area of the convex polygon is well-defined and is proportional to
the Euclidean area of the polygon.

1.1.2. Finite ordinary continued fractions. For any finite sequence (a0, a1,

. . . , an) where the elements a1, . . . , an are positive integers and a0 is an arbit-
rary integer we associate the following rational number q:

q = a0 + 1

a1 + 1

. . .
...

an−1 + 1

an

.

This representation of the rational q is called an ordinary continued fraction
for q and denoted by [a0, a1, . . . , an].

An ordinary continued fraction [a0, a1, . . . , an] is said to be odd if n + 1
is odd, and even if n + 1 is even. Note that if an �= 1 then [a0, a1, . . . , an] =
[a0, a1, . . . , an − 1, 1]. Let us formulate the following classical theorem.

Theorem 1.2. For any rational there exist exactly one odd ordinary con-
tinued fraction and exactly one even ordinary continued fraction.

1.2. Definition of lattice trigonometric functions

In this subsection we define the functions lattice sine, tangent, and cosine
on the set of ordinary lattice angles and formulate their basic properties. We
describe a geometric interpretation of lattice trigonometric functions in terms
of ordinary continued fractions. Then we give the definitions of ordinary angles
that are adjacent, transpose, and opposite interior to the given angles. We use
the notions of adjacent and transpose ordinary angles to define ordinary lattice
right angles.

Let A, O, and B be three lattice points that do not lie in the same straight
line. We denote the ordinary angle with the vertex at O and the rays OA and
OB by � AOB.

One can chose any other lattice point C in the open lattice ray OA and any
lattice point D in the open lattice ray OB. For us the angle � AOB coincides
with � COD. We denote this by � AOB = � COD.

Definition 1.3. Two ordinary angles � AOB and � A′O ′B ′ are said to be
L -congruent if there exist a L -affine transformation that takes the point O to
O ′ and the rays OA and OB to the rays O ′A′ and O ′B ′ respectively. We denote
this as follows: � AOB ∼= � A′O ′B ′.
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Here we note that the relation � AOB ∼= � BOA holds only for special
ordinary angles. (See also below in Subsubsection 1.2.4.)

1.2.1. Definition of lattice sine, tangent, and cosine for an ordinary lattice
angle. Consider an arbitrary ordinary angle � AOB. Let us associate a special
basis to this angle. Denote by v1 and by v2 the lattice vectors generating the
rays of the angle:

v1 = OA

l�(OA)
, and v2 = OB

l�(OB)
.

The set of lattice points at unit lattice distance from the lattice straight line OA

coincides with the set of all lattice points of two lattice straight lines parallel to
OA. Since the vectors v1 and v2 are linearly independent, the ray OB intersects
exactly one of the above two lattice straight lines. Denote this straight line by
l. The intersection point of the ray OB with the straight line l divides l into
two parts. Choose one of the parts which lies in the complement to the convex
hull of the union of the rays OA and OB, and denote by D the lattice point
closest to the intersection of the ray OB with the straight line l (see Figure 1).

Now we choose the vectors e1 = v1 and e2 = OD. These two vectors are
linearly independent and generate the lattice. The basis (e1, e2) is said to be
associated to the angle � AOB.

Since (e1, e2) is a basis, the vector v2 has a unique representation of the
form:

v2 = x1e1 + x2e2,

where x1 and x2 are some integers.

Definition 1.4. In the above notation, the coordinates x2 and x1 are said
to be the lattice sine and the lattice cosine of the ordinary angle � AOB re-
spectively. The ratio of the lattice sine and the lattice cosine (x2/x1) is said to
be the lattice tangent of � AOB.

D

O

A

B

lē1 � v̄1

v̄2 � 5ē1 � 7ē2v̄2

ē2

lsin∠AOB � 7

lcos∠AOB � 5

ltan∠AOB � 7�5

Figure 1. An ordinary angle � AOB and its lattice trigonometric
functions.
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Figure 1 shows an example of lattice angle with the lattice sine equals 7 and
the lattice cosine equals 5.

Let us briefly enumerate some elementary properties of lattice trigonometric
functions.

Proposition 1.5. a) The lattice sine and cosine of any ordinary angle are
relatively-prime positive integers.

b) The values of lattice trigonometric functions for L -congruent ordinary
angles coincide.

c) The lattice sine of an ordinary angle coincide with the index of the
sublattice generated by all lattice vectors of two angle rays in the lattice.

d) For any ordinary angle α the following inequalities hold:

lsin α ≥ lcos α, and ltan α ≥ 1.

The equalities hold iff the lattice vectors of the angle rays generate the whole
lattice.

e) (Description of lattice angles) Two ordinary angles α and β are L -
congruent iff ltan α = ltan β.

1.2.2. Lattice arctangent. Let us fix the origin O and a lattice basis e1 and e2.

Definition 1.6. Consider an arbitrary rational p ≥ 1. Let p = m/n, where
m and n are positive integers. Suppose A = O + e1, and B = O +ne1 +me2.
The ordinary angle � AOB is said to be the arctangent of p in the fixed basis
and denoted by larctan(p).

The invariance of lattice tangents immediately implies the following prop-
erties.

Proposition 1.7. a) For any rational s ≥ 1, we have: ltan(larctan s) = s.
b) For any ordinary angle α the following holds: larctan(ltan α) ∼= α.

1.2.3. Lattice tangents, length-sine sequences, sails, and continued fractions.
Let us start with the notion of sails for the ordinary angles. This notion is taken
from theory of multidimensional continued fractions in the sense of Klein (see,
for example, the works of F. Klein [14], and V. Arnold [1]).

Consider an ordinary angle � AOB. Let also the vectors OA and OB be
linearly independent, and of unit lattice length. Denote the closed convex solid
cone for the ordinary angle � AOB by C(AOB). The boundary of the convex
hull of all lattice points of the cone C(AOB) except the origin is homeomorphic
to the straight line. This boundary contains the points A and B. The closed
part of this boundary contained between the points A and B is called the sail
for the cone C(AOB).
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A lattice point of the sail is said to be a vertex of the sail if there is no
lattice segment of the sail containing this point in the interior. The sail of the
cone C(AOB) is a broken line with a finite number of vertices and without self
intersections. Let us orient the sail in the direction from A to B, and denote
the vertices of the sail by Vi (for 0 ≤ i ≤ n) according to the orientation of
the sail (such that V0 = A, and Vn = B).

Definition 1.8. Let the vectors OA and OB of the ordinary angle � AOB

be linearly independent, and of unit lattice length. Let Vi , where 0 ≤ i ≤ n,
be the vertices of the corresponding sail. The sequence of lattice lengths and
sines

(l�(V0V1), lsin � V0V1V2, l�(V1V2), lsin � V1V2V3,

. . . , l�(Vn−2Vn−1), lsin � Vn−2Vn−1Vn, l�(Vn−1Vn))

is called the lattice length-sine sequence for the ordinary angle � AOB. Further
we say LLS-sequence for short.

Remark 1.9. The elements of the lattice LLS-sequence for any ordin-
ary angle are positive integers. The LLS-sequences of L -congruent ordinary
angles coincide.

Theorem 1.10. Let (a0, a1, . . . , a2n−3, a2n−2) be the LLS-sequence for the
ordinary angle � AOB. Then the lattice tangent of the ordinary angle � AOB

equals to the value of the following ordinary continued fraction

[a0, a1, . . . , a2n−3, a2n−2].

On Figure 2 we show an example of an ordinary angle with tangent equi-
valent to 7/5.

O

A

B
l�(V1V2) � 2

V0

V1

V2

lsin∠V0V1V2 � 2

l�(V0V1) � 1

Figure 2. ltan � AOB = 7
5 = 1 + 1

2+1/2 .

Further in Theorem 3.5 we formulate and prove a general statement for general-
ized sails and signed lattice length-sine sequences. In the proof of Theorem 3.5
we refer only on the preceding statements and definitions of Subsection 3.1,
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that are independent of the statements and theorems of all previous sections.
For these reasons we skip now the proof of Theorem 1.10 (see also Remark 3.6).

1.2.4. Adjacent, transpose, and opposite interior ordinary angles. An ordin-
ary angle � BOA is said to be transpose to the ordinary angle � AOB. We denote
it by ( � AOB)t . An ordinary angle � BOA′ is said to be adjacent to an ordinary
angle � AOB if the points A, O, and A′ are contained in the same straight line,
and the point O lies between A and A′. We denote the ordinary angle � BOA′
by π − � AOB. The ordinary angle is said to be right if it is L -congruent to
the adjacent and to the transpose ordinary angles.

It immediately follows from the definition, that for any ordinary angle α

the angles (αt )t and π − (π − α) are L -congruent to α.
In the next theorem we use the following notion. Suppose that some integers

a, b and c, where c ≥ 1, satisfy the following: ab ≡ 1 (mod c). Then we denote
a ≡ (

b (mod c)
)−1

.

Theorem 1.11. Consider an ordinary angle α. If α ∼= larctan(1), then

αt ∼= π − α ∼= larctan(1).

Suppose now, that α �∼= larctan(1), then

lsin(αt ) = lsin α,

lsin(π − α) = lsin α,

lcos(αt ) ≡ (
lcos α (mod lsin α)

)−1;
lcos(π−α) ≡ (− lcos α (mod lsin α)

)−1
.

Note also, that π − α ∼= larctant
(

ltan α
ltan(α)−1

)
.

Theorem 1.11 (after applying Theorem 1.10) immediately reduces to the
theorem of P. Popescu-Pampu. We refer the readers to his work [19] for the
proofs.

1.2.5. Right ordinary lattice angles. It turns out that in lattice geometry there
exist exactly two lattice non-equivalent right ordinary angles.

Corollary 1.12. Any ordinary right angle is L -congruent to exactly one
of the following two angles: larctan(1), or larctan(2).

Consider two lattice parallel distinct straight lines AB and CD, where A, B,
C, and D are lattice points. Let the points A and D be in different open half-
planes with respect to the straight line BC. Then the ordinary angle � ABC

is called opposite interior to the ordinary angle � DCB. Further we use the
following proposition on opposite interior ordinary angles.

Proposition 1.13. Two opposite interior to each other ordinary angles are
L -congruent.

The proof is left for the reader as an exercise.
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1.3. Basic lattice trigonometry of lattice angles in lattice triangles

In this subsection we introduce the sine formula for angles and edges of lattice
triangles. Further we show how to find the lattice tangents of all angles and the
lattice lengths of all edges of any lattice triangle, if the lattice lengths of two
edges and the lattice tangent of the angle between them are given.

Let A, B, C be three distinct and not collinear lattice points. We denote the
lattice triangle with the vertices A, B, and C by 	ABC. The lattice triangles
	ABC and 	A′B ′C ′ are said to be L -congruent if there exist a L -affine
transformation which takes the point A to A′, B to B ′, and C to C ′ respectively.
We denote: 	ABC∼=	A′B ′C ′.

Proposition 1.14 (The sine formula for lattice triangles). The following
holds for any lattice triangle 	ABC.

l�(AB)

lsin � BCA
= l�(BC)

lsin � CAB
= l�(CA)

lsin � ABC
= l�(AB) l�(BC) l�(CA)

lS(	ABC)
.

Proof. The statement of Proposition 1.14 follows directly from the defin-
ition of lattice sine.

Suppose that we know the lattice lengths of the edges AB, AC and the
lattice tangent of � BAC in the triangle 	ABC. Now we show how to restore
the lattice length and the lattice tangents for the the remaining edge and ordinary
angles of the triangle.

For the simplicity we fix some lattice basis and use the system of coordinates
OXY corresponding to this basis (denoted (∗, ∗)).

Theorem 1.15. Consider some triangle 	ABC. Let

l�(AB) = c, l�(AC) = b, and � CAB ∼= α.

Then the ordinary angles � BCA and � ABC are defined in the following way.

� BCA ∼=

⎧⎪⎪⎨
⎪⎪⎩

π − larctan
(

c lsin α
c lcos α−b

)
if c lcos α > b

larctan(1) if c lcos α = b

larctant
(

c lsin α
b−c lcos α

)
if c lcos α < b,

� ABC ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
π − larctan

(
b lsin(αt )

b lcos(αt )−c

))t

if b lcos(αt ) > c

larctan(1) if b lcos(αt ) = c

larctan
(

b lsin(αt )

c−b lcos(αt )

)
if b lcos(αt ) < c.
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For the lattice length of the edge CB we have

l�(CB)

lsin α
= b

lsin � ABC
= c

lsin � BCA
.

Proof. Let α ∼= larctan(p/q), where gcd(p, q) = 1. Then 	CAB ∼=
	DOE where D = (b, 0), O = (0, 0), and E = (qc, pc). Let us now find
the ordinary angle � EDO. Denote by Q the point (qc, 0). If qc − b = 0, then
� BCA = � EDO = larctan 1. If qc − b �= 0, then we have

� QDE ∼= larctan

(
cp

|cq − b|
)

∼= larctan

(
c lsin α

|c lcos α − b|
)

.

The expression for � BCA follows directly from the above expression for
� QDE, since � BCA ∼= � QDE. (See Figure 3: here l�(OD) = b, l�(OQ) =
c lcos α, and therefore l�(DQ) = |c lcos α − b|.)

O

E

D Q

OY

OX

c � lcos α � b

O

E

D (Q)

OY

OX

c � lcos α � b

O

E

DQ

OY

OX

c � lcos α � b

Figure 3. Three possible configuration of points O, D, and Q.

To obtain the expression for � ABC we consider the triangle 	BAC. Calculate
� CBA and then transpose all ordinary angles in the expression. Since

lS(ABC) = l�(AB) l�(AC) lsin � CAB

= l�(BA) l�(BC) lsin � BCA

= l�(CB) l�(CA) lsin � ABC,

we have the last statement of the theorem.
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2. Theorem on sum of lattice tangents for the ordinary lattice angles
of lattice triangles. Proof of its second statement

Throughout this section we fix some lattice basis and use the system of co-
ordinates OXY corresponding to this basis.

2.1. Finite continued fractions with not necessary positive elements

We start this section with the notation for finite continued fractions with not
necessary positive elements. Let us extend the set of rationals Q with the
operations + and 1/∗ on it with the element ∞. We pose q ± ∞ = ∞,
1/0 = ∞, 1/∞ = 0 (we do not define ∞ ± ∞ here). Denote this extension
by Q.

For any finite sequence of integers (a0, a1, . . . , an) we associate an element
q of Q:

q = a0 + 1

a1 + 1

. . .
...

an−1 + 1

an

.

and denote it by ]a0, a1, . . . , an[.
Let qi be some rationals, i = 1, . . . , k. Suppose that the odd contin-

ued fraction for qi is [ai,0, ai,1, . . . , ai,2ni
] for i = 1, . . . , k. We denote by

]q1, q2, . . . , qn[ the following number

]a1,0, a1;1, . . . , a1,2n1 , a2,0, a2,1, . . . , a2,2n2 , . . . ak,0, ak,1, . . . , ak,2nk
[.

2.2. Formulation of the theorem and proof of its second statement

In Euclidean geometry the sum of Euclidean angles of the triangle equals π .
For any 3-tuple of angles with the sum equals π there exist a triangle with these
angles. Two Euclidean triangles with the same angles are homothetic. Let us
show a generalization of these statements to the case of lattice geometry.

Let n be an arbitrary positive integer, and A = (x, y) be an arbitrary lattice
point. Denote by nA the point (nx, ny).

Definition 2.1. Consider any convex polygon or broken line with vertices
A0, . . . , Ak . The polygon or broken line nA0 . . . nAk is called n-multiple (or
multiple) to the given polygon or broken line.

Theorem 2.2 (On sum of lattice tangents of angles in lattice triangles).
a) Let (α1, α2, α3) be an ordered 3-tuple of ordinary angles. There exists a
triangle with three consecutive ordinary angles L -congruent to α1, α2, and
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α3 iff there exists i ∈ {1, 2, 3} such that the angles α = αi , β = αi+1 (mod 3),
and γ = αi+2 (mod 3) satisfy the following conditions:

i) for A = ]ltan α, −1, ltan β[ the following holds A < 0, or A > ltan α,
or A = ∞;

ii) ]ltan α, −1, ltan β, −1, ltan γ [ = 0.

b) Let the consecutive ordinary angles of some triangle be α, β, and γ .
Then this triangle is multiple to the triangle with vertices A0 = (0, 0), B0 =
(λ2 lcos α, λ2 lsin α), and C0 = (λ1, 0), where

λ1 = lcm(lsin α, lsin β, lsin γ )

gcd(lsin α, lsin γ )
, and λ2 = lcm(lsin α, lsin β, lsin γ )

gcd(lsin α, lsin β)
.

Let us say a few words about the essence of the theorem. In Euclidean
geometry on the plane the condition on the angles of triangles can be rewritten
with tangent functions in the following way. A triangle with angles exists α,
β, and γ iff tan(α+β+γ ) = 0 and tan(α+β) /∈ [0; tan α] (here without lose
of generality we suppose that α is acute). Theorem 2.2 is a translation of this
condition into lattice case.

In addition we say that there is no a good description of lattice polygons
terms of lattice invariants at present. Theorem 2.2 gives such description for
the case of triangles.

At this moment we do not have the necessary notation to prove the first
statement of Theorem 2.2. For a proof we need first to define extended angles
and their sums, and study their properties. We give a proof further in Subsec-
tions 4.2 and 4.3. We prove the second statement of the theorem below in this
subsection.

Remark 2.3. Note that the statement of Theorem 2.2a holds only for odd
continued fractions for the tangents of the correspondent angles. We illustrate
this with the following example. Consider a lattice triangle with the lattice
area equals 7 and all angles L -congruent to larctan 7/3. If we take the odd
continued fractions 7/3 = [2, 2, 1] for all lattice angles of the triangle, then
we have

]2, 2, 1, −1, 2, 2, 1, −1, 2, 2, 1[ = 0.

If we take the even continued fractions 7/3 = [2, 3] for all angles of the
triangle, then we have

]2, 3, −1, 2, 3, −1, 2, 3[ = 35

13
�= 0.
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Proof of the second statement of Theorem 2.2. Consider a triangle
	ABC with ordinary angles α, β, and γ (at vertices at A, B, and C respect-
ively). Suppose that for any k > 1 and any lattice triangle 	KLM the triangle
	ABC is not L -congruent to the k-multiple of 	KLM . In other world, we
have

gcd
(
l�(AB), l�(BC), l�(CA)

) = 1.

Suppose that S is the lattice area of 	ABC. Then by the sine formula the
following holds ⎧⎪⎨

⎪⎩
l�(AB) l�(AC) = S/ lsin α

l�(BC) l�(BA) = S/ lsin β

l�(CA) l�(CB) = S/ lsin γ

.

Since gcd(l�(AB), l�(BC), l�(CA)) = 1, we have l�(AB) = λ1 and l�(AC) =
λ2.

Therefore, the lattice triangle 	ABC is L -congruent to the lattice triangle
	A0B0C0 of the theorem.

3. Extension of ordinary lattice angles. Notion of sums of lattice
angles

Throughout this section we work in with an oriented two-dimensional real
vector space and a fixed lattice in it. We again fix some (positively oriented)
lattice basis and use the system of coordinates OXY corresponding to this
basis.

The L -affine transformation is said to be proper if it is orientation-preser-
ving (we denote it by L+-affine transformation).

We say that two sets are L+-congruent to each other if there exist a L+-
affine transformation of R2 taking the first set to the second.

3.1. On a particular generalization of sails in the sense of Klein

In this subsection we introduce the definition of an oriented broken lines at unit
lattice distance from a lattice point. This notion is a direct generalization of the
notion of a sail in the sense of Klein (see page 167 for the definition of a sail). We
extend the definition of LLS-sequences and continued fractions to the case of
these broken lines. We show that extended LLS-sequence for oriented broken
lines uniquely identifies the L+-congruence class of the corresponding broken
line. Further, we study the geometrical interpretation of the corresponding
continued fraction.

3.1.1. Definition of a lattice signed length-sine sequence. Let us extend the
definition of LLS-sequence to the case of certain broken lines.
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For the 3-tuples of lattice points A, B, and C we define the function sgn as
follows:

sgn(ABC) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1, if the pair of vectors BA and BC defines the positive
orientation.

0, if the points A, B, and C are contained in the same
straight line.

−1, if the pair of vectors BA and BC defines the negative
orientation.

We also denote by sign : R → {−1, 0, 1} the sign function over reals.
A segment AB is said to be at unit distance from the point C if the lattice

vectors of the segment AB, and the vector AC generate the lattice.
A union of (ordered) lattice segments A0A1, A1A2, . . . , An−1An (n > 0) is

said to be a lattice oriented broken line and denoted by A0A1A2 . . . An if any
two consecutive segments are not contained in the same straight line. We also
say that the lattice oriented broken line AnAn−1An−2 . . . A0 is inverse to the
lattice oriented broken line A0A1A2 . . . An.

Definition 3.1. Consider a lattice oriented broken line and a lattice point
V in the complement to this line. The broken line is said to be at unit distance
from the point V (or V -broken line for short) if all edges of the broken line are
at unit distance from V .

Let us now associate to any lattice oriented V -broken line for some lattice
point V the following sequence of non-zero elements.

Definition 3.2. Let A0A1 . . . An be a lattice oriented V -broken line. The
sequence of integers (a0, . . . , a2n−2) defined as follows:

a0 = sgn(A0VA1) l�(A0A1),

a1 = sgn(A0VA1) sgn(A1VA2) sgn(A0A1A2) lsin � A0A1A2,

a2 = sgn(A1VA2) l�(A1A2),

· · ·
a2n−3 = sgn(An−2VAn−1) sgn(An−1VAn)

sgn(An−2An−1An) lsin � An−2An−1An,

a2n−2 = sgn(An−1VAn) l�(An−1An),

is called an lattice signed length-sine sequence for the lattice oriented V -broken
line. Further we will say LSLS-sequence for short.

The element ]a0, a1, . . . , a2n−2[ of Q is called the continued fraction for
the broken line A0A1 . . . An.
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If we take LSLS-sequence for some broken line which is a sail, than LSLS-
sequence is exactly LLS-sequence for the corresponding angle. So LSLS-
sequence is a natural combinatorical-geometrical generalization of LLS-se-
quences. Note also that if we know the whole LSLS-sequence for some V -
broken line and the coordinates of points V , A0, and A1 then the coordinates
of A2, . . . can be restored in the unique way.

Let us show how to identify geometrically the signs of elements of the
LSLS-sequence for a lattice oriented V -broken line on Figure 4.

Ai

Ai�1
Ai�2

a2i�3 � 0 a2i�3 � 0 a2i�2 � 0 a2i�2 � 0

V

Ai Ai�1

Ai�2V

Ai

Ai�1

Ai�2

V

Ai

Ai�1

Ai�2

V
Ai

Ai�1 Ai�2

V

Ai
Ai�1

Ai�2V

Ai

Ai�1

Ai�2V

Ai�1

Ai

Ai�2

V

Ai

Ai�1V

Ai�1

AiV

Figure 4. All possible (non-degenerate) L+-affine decompositions for angles and
segments of a LSLS-sequence.

On Figure 5 we show an example of lattice oriented V -broken line and the
corresponding LSLS-sequence.

a0 � 1

a1 � �1

a2 � 2

a3 � 2

a4 � �1V

A1

A0A2

A3

Figure 5. A lattice oriented V -broken line and the corresponding LSLS-sequence.

Proposition 3.3. A LSLS-sequence for the given lattice oriented broken
line and the lattice point is invariant under the group action of the L+-affine
transformations.

3.1.2. On L+-congruence of lattice oriented V -broken lines. Let us formulate
necessary and sufficient conditions for two lattice oriented V -broken lines (for
the same lattice point V ) to be L+-congruent.
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Theorem 3.4. The LSLS-sequences of two lattice oriented V1-broken and
V2-broken lines (for two lattice points V1 and V2) coincide iff there exist a
L+-affine transformation taking the point V1 to V2 and one lattice oriented
broken line to the other.

Proof. The LSLS-sequence for any lattice oriented V -broken line is uni-
quely defined, and by Proposition 3.3 is invariant under the group action of L -
affine orientation preserving transformations. Therefore, the LSLS-sequences
for two L+-congruent lattice oriented broken lines coincide.

Suppose now that two lattice oriented V1-broken and V2-broken lines
A0 . . . An, and B0 . . . Bn respectively have the same LSLS-sequence (a0, a1,

. . . , a2n−3, a2n−2). Let us prove that these broken lines are L+-congruent.
Without loose of generality we consider the point V1 at the origin O.

Let ξ be the L+-affine transformation taking the point V2 to the point
V1 = O, B0 to A0, and the lattice straight line containing B0B1 to the lattice
straight line containing A0A1. Let us prove inductively that ξ(Bi) = Ai .

Base of induction. Since a0 = b0, we have

sgn(A0OA1) l�(A0A1) = sgn(ξ(B0)Oξ(B1)) l�(ξ(B0)ξ(B1)).

Thus, the lattice segments A0A1 and A0ξ(B1) are of the same lattice length
and of the same direction. Therefore, ξ(B1) = A1.

Step of induction. Suppose, that ξ(Bi) = Ai holds for any nonnegative
integer i ≤ k, where k ≥ 1. Let us prove, that ξ(Bk+1) = Ak+1. Denote byCk+1

the lattice point ξ(Bk+1). Let Ak = (qk, pk). Denote by A′
k the closest lattice

point of the segment Ak−1Ak to the vertex Ak . Suppose that A′
k = (q ′

k, p
′
k).

We know also

a2k−1 = sgn(Ak−1OAk) sgn(AkOCk+1) sgn(Ak−1AkCk+1) lsin � Ak−1AkCk+1,

a2k = sgn(AkOCk+1) l�(AkCk+1).

Let the coordinates of Ck+1 be (x, y). Since l�(AkCk+1) = |a2k| and the
segment AkCk+1 is at unit distance to the origin O, we have lS(	OAkCk+1) =
|a2k|. Since the segment OAk is of the unit lattice length, the coordinates of
Ck+1 satisfy the following equation:

|−pkx + qky| = |a2k|.
Since sgn(AkOCk+1) l�(AkCk+1) = sign(a2k), we have −pkx + qky = a2k .

Since lsin � A′
kAkCk+1= lsin � Ak−1AkCk+1=|a2k−1|, and the lattice lengths

of AkCk+1, and A′
kAk are |a2k| and 1 respectively, we have lS(	A′

kAkCk+1) =
|a2k−1a2k|. Therefore, the coordinates of Ck+1 satisfy the following equation:

|−(pk − p′
k)(x − qk) + (qk − q ′

k)(y − pk)| = |a2k−1a2k|.
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Since{
sgn(Ak−1OAk) sgn(AkOCk+1) sgn(Ak−1AkCk+1) = sign(a2k−1)

sgn(AkOCk+1) = sign(a2k)
,

we have (pk − p′
k)(x − qk) − (qk − q ′

k)(y − pk) = sgn(Ak−1OAk)a2k−1a2k .
We obtain the following:{

−pkx + qky = a2k

(pk − p′
k)(x − qk) − (qk − q ′

k)(y − pk) = sgn(Ak−1OAk)a2k−1a2k

.

Since ∣∣∣∣ det

( −pk qk

p′
k − pk qk − q ′

k

)∣∣∣∣ = 1,

there exist a unique integer solution for the system of equations for x and
y. Hence, the points Ak+1 and Ck+1 have the same coordinates. Therefore,
ξ(Bk+1) = Ak+1. We have proven the step of induction.

The proof of Theorem 3.4 is completed by induction.

3.1.3. Values of continued fractions for lattice oriented broken lines at unit
distance from the origin. Now we show the relation between lattice oriented
broken lines at unit distance from the origin O and the corresponding continued
fractions for them.

Theorem 3.5. Let A0A1 . . . An be a lattice oriented O-broken line. Let
also A0 = (1, 0), A1 = (1, a0), An = (p, q), where gcd(p, q) = 1, and
(a0, a1, . . . , a2n−2) be the corresponding LSLS-sequence. Then the following
holds: q

p
= ]a0, a1, . . . , a2n−2[.

Proof. To prove this theorem we use an induction on the number of edges
of the broken lines.

Base of induction. Suppose that a lattice oriented O-broken line has a unique
edge, and the corresponding sequence is (a0). Then A1 = (1, a0) by the as-
sumptions of the theorem. Therefore, we have a0

1 = ]a0[.
Step of induction. Suppose that the statement of the theorem is correct for

any lattice oriented O-broken line with k edges. Let us prove the theorem for
the arbitrary lattice oriented O-broken line with k+1 edges (and satisfying the
conditions of the theorem).

LetA0 . . . Ak+1 be a lattice orientedO-broken line with the following LSLS-
sequence (a0, a1, . . . , a2k−1, a2k). Let also

A0 = (1, 0), A1 = (1, a0), and Ak+1 = (p, q).
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Consider the lattice oriented O-broken line B1 . . . Bk+1 with shorter LSLS-
sequence for it: (a2, a3, . . . , a2k−2, a2k). Let also

B1 = (1, 0), B2 = (1, a2), and Bk+1 = (p′, q ′).

By the induction assumption we have

q ′

p′ = ]a2, a3, . . . , a2k[.

We extend the lattice oriented broken line B1 . . . Bk+1 to the lattice oriented
O-broken line B0B1 . . . Bk+1, where B0 = (1+a0a1, −a0). Let the lattice
LSLS-sequence for this broken line be (b0, b1, . . . , b2k−1, b2k). Note that

b0 = sgn(B0OB1) l�(B0B1) = sign(a0)|a0| = a0,

b1 = sgn(B0OB1) sgn(B1OB2) sgn(B0B1B2) lsin � B0B1B2

= sign a0 sign b2 sign(a0a1b2)|a1| = a1,

bl = al, for l = 2, . . . , 2k.

Consider a L+-linear transformation ξ that takes the point B0 to the point
(1, 0), and B1 to (1, a0). These two conditions uniquely define ξ :

ξ =
(

1 a1

a0 1 + a0a1

)
.

Since Bk+1 = (p′, q ′), we have ξ(Bk+1) = (p′+a1q
′, q ′a0+p′+p′a0a1).

q ′a1 + p′ + p′a0a1

p′ + a1q ′ = a0 + 1

a1 + q ′/p′ = ]a0, a1, a2, a3, . . . , a2n[.

Since, by Theorem 3.4 the lattice oriented broken lines B0B1 . . . Bk+1 and
A0A1 . . . Ak+1 are L -linear equivalent, B0 = A0, and B1 = A1, these broken
lines coincide. Therefore, for the coordinates (p, q) the following hold

q

p
= q ′a0 + p′ + p′a0a1

p′ + a1q ′ = ]a0, a1, a2, a3, . . . , a2k[.

On Figure 6 we illustrate the step of induction with an example of lattice ori-
ented O-broken line with the LSLS-sequence: (1, −1, 2, 2, −1). We start (the
left picture) with the broken line B1B2B3 with the LSLS-sequence: (2, 2, −1).
Note that the ratio of the coordinates of the point B3 is −3/−1 = ]2 : 2; −1[.
Then, (the picture in the middle) we extend the broken line B1B2B3 to the
broken line B0B1B2B3 with the LSLS-sequence: (1, −1, 2, 2, −1). Finally
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(the right picture) we apply a corresponding L+-linear transformation ξ to
achieve the resulting broken line A0A1A2A3. Now the ratio of the coordinates
of the point A3 is −1/2 = ]1 : −1; 2; 2; −1[.

O O O

A1

A0

A2

B1

B2

B1

B2

B3(�1,�3)

B0 � (1 � a0a1,�a0)

A3(2,�1)B0

B3

OY

OX

OY

OX

OY

OX

�3��1 � �2 � 2; �1� �1�2 � �1 � �1; 2; 2; �1�

Figure 6. The case of lattice oriented O-broken line with LSLS-sequence:
(1, −1, 2, 2, −1).

We have proven the step of induction.
The proof of Theorem 3.5 is completed.

Remark 3.6. Theorem 3.5 immediately implies the statement of The-
orem 1.10. One should put the sail of an angle as an oriented-broken line
A0A1 . . . An.

3.2. Extended lattice angles. Sums for ordinary and extended lattice angles

3.2.1. Equivalence classes of lattice oriented broken lines and the correspond-
ing extended angles.

Definition 3.7. Consider a lattice point V . Two lattice oriented V -broken
lines l1 and l2 are said to be equivalent if they have in common the first and
the last vertices and the closed broken line generated by l1 and the inverse of
l2 is homotopy equivalent to the point in R2 \ {V }.

An equivalence class of lattice oriented V -broken lines containing the
broken line A0A1 . . . An is called the extended lattice angle for the equivalence
class of A0A1 . . . An at the vertex V (or, for short, extended angle) and denoted
by � (V , A0A1 . . . An).

We study the extended angles up to L+-congruence.

Definition 3.8. Two extended angles 	1 and 	2 are said to be L+-
congruent iff there exist a L+-affine transformation sending the class of lattice
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oriented broken lines corresponding to 	1 to the class of lattice oriented broken
lines corresponding to 	2. We denote this by 	1

∼̂= 	2.

3.2.2. Revolution numbers for extended angles. Let r = {V +λv | λ ≥ 0} be
the oriented ray for an arbitrary vector v with the vertex at V , and AB be an
oriented (from A to B) segment not contained in the ray r . Suppose also, that
the vertex V of the ray r is not contained in the segment AB. We denote by
#(r, V , AB) the following number:

#(r, V , AB) =

⎧⎪⎨
⎪⎩

0, AB ∩ r = ∅
1
2 sgn

(
A(A−v )B

)
, AB ∩ r ∈ {A, B}

sgn
(
A(A−v )B

)
, AB ∩ r ∈ AB \ {A, B},

and call it the intersection number of the ray r and the segment AB.

Definition 3.9. Let A0A1 . . . An be some lattice oriented broken line, and
let r be an oriented ray {V +λv | λ ≥ 0}. Suppose that the ray r does not
contain the edges of the broken line, and the broken line does not contain the
point V . We call the number

n∑
i=1

#(r, V , Ai−1Ai)

the intersection number of the ray r and the lattice oriented broken line
A0A1 . . . An, and denote it by #(r, V , A0A1 . . . An).

Definition 3.10. Consider an arbitrary extended angle � (V , A0A1 . . . An).
Denote the rays {V + λVA0 | λ ≥ 0} and {V − λVA0 | λ ≥ 0} by r+ and r−
respectively. The number

1

2

(
#(r+, V , A0A1 . . . An) + #(r−, V , A0A1 . . . An)

)
is called the lattice revolution number for the extended angle � (V, A0A1. . .An),
and denoted by #(� (V , A0A1 . . . An)). We say also that #( � (V , A0)) = 0.

Let us give some examples. Let O = (0, 0), A = (1, 0), B = (0, 1),
C = (−1, −1), then

#( � (O, A)) = 0, #( � (O, AB)) = 1

4
,

#(� (O, ABCA)) = 1, #(� (O, ACB)) = −3

4
.

Now we show that the definition of revolution number is correct.
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Proposition 3.11. The revolution number of any extended angle is well-
defined.

Proof. Consider an arbitrary extended angle � (V , A0A1 . . . An). Let

r+ = {V + λVA0 | λ ≥ 0} and r− = {V − λVA0 | λ ≥ 0}.

Since the lattice oriented broken line A0A1 . . . An is at unit distance from
the point V , any segment of this broken line is at unit distance from V . Thus,
the broken line does not contain V , and the rays r+ and r− do not contain edges
of the curve.

Suppose that

� (V , A0A1 . . . An) = � (V ′, A′
0A

′
1 . . . A′

m).

This implies that V = V ′, A0 = A′
0, An = A′

m, and the broken line
A0A1 . . . AnA

′
m−1 . . . A′

1A
′
0 is homotopy equivalent to the point in R2 \ {V }.

Thus,
#( � (V , A0A1 . . . An)) − #( � (V ,′ A′

0A
′
1 . . . A′

m))

= 1

2

(
#(r+, V , A0A1 . . . AnA

′
m−1 . . . A′

1A
′
0)

+ #(r−, V , A0A1 . . . AnA
′
m−1 . . . A′

1A
′
0)

)
= 0 + 0 = 0.

Hence,
#( � (V , A0A1 . . . An)) = #( � (V ′, A′

0A1 . . . A′
m)).

Therefore, the revolution number of any extended angle is well-defined.

Proposition 3.12. The revolution number of extended angles is invariant
under the group action of the L+-affine transformations.

3.2.3. Zero ordinary angles. For the next theorem we will need to define zero
ordinary angles and their trigonometric functions. Let A, B, and C be three
lattice points of the same lattice straight line. Suppose that B is distinct to A

and C and the rays BA and BC coincide. We say that the ordinary angle with
the vertex at B and the rays BA and BC is zero. Suppose � ABC is zero, put
by definition

lsin( � ABC) = 0, lcos(� ABC) = 1, ltan(� ABC) = 0.

Denote by larctan(0) the angle � AOA where A = (1, 0), and O is the origin.
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3.2.4. On normal forms of extended angles. Let us formulate and prove a
theorem on normal forms of extended angles. We use the following notation:
by the sequence (

(a0, . . . , an) × k-times, b0, . . . , bm

)
,

where k ≥ 0, we denote the following sequence:

(a0, . . . , an, a0, . . . , an, . . . , a0, . . . , an︸ ︷︷ ︸
k-times

, b0, . . . , bm).

Definition 3.13. I) Suppose O be the origin, A0 be the point (1, 0). We say
that the extended angle � (O, A0) is of the type I and denote it by 0π+larctan(0)

(or 0, for short). The empty sequence is said to be characteristic for the angle
0π + larctan(0).

type I,

∠(O,A0) � 0π � larctan(0),

LSLS-sequence is ().

Example I:
O A0

Consider a lattice oriented O-broken line A0A1 . . . As , where O is the origin.
Let also A0 be the point (1, 0), and the point A1 be on the straight line x = 1.
If the LSLS-sequence of the extended angle 	0 = � (O, A0A1 . . . As) coin-
cides with the following sequence (we call it characteristic sequence for the
corresponding angle):

IIk)
(
(1, −2, 1, −2) × (k − 1)-times, 1, −2, 1

)
, where k ≥ 1, then we de-

note the angle 	0 by kπ+ larctan(0) (or kπ , for short) and say that 	0 is of
the type IIk;

O A0

A1
A2

type II1,

∠(O,A0A1A2) � π � larctan(0),

LSLS-sequence is (1,�2,1).

Exampe II:

IIIk)
(
(−1, 2, −1, 2) × (k − 1)-times, −1, 2, −1

)
, where k ≥ 1, then we

denote the angle 	0 by −kπ+ larctan(0) (or −kπ , for short) and say that 	0

is of the type IIIk;
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A0 � A4O

A1

A2

A3 type III2,
∠(O,A0A1A2A3A4) � �2π � larctan(0),
LSLS-sequence is (�1,2,�1,2,�1,2,�1).

Example III:

IVk)
(
(1, −2, 1, −2) × k-times, a0, . . . , a2n

)
, where k ≥ 0, n ≥ 0, ai > 0,

for i = 0, . . . , 2n, then we denote the angle 	0 by kπ+ larctan([a0, a1, . . . ,

a2n]) and say that 	0 is of the type IVk;

O

A4

A0

A1
A2

A3

type IV1,

∠(O,A0A1A2A3A4) � π � larctan�  �,
LSLS-sequence is (1,�2,1,�2,1,1,1).

Example IV: 3
2

Vk)
(
(−1, 2, −1, 2) × k-times, a0, . . . , a2n

)
, where k > 0, n ≥ 0, ai > 0,

for i = 0, . . . , 2n, then we denote the angle 	0 by −kπ + larctan([a0, a1, . . . ,

a2n]) and say that 	0 is of the type Vk .

O A0

A1

A2

A3

Example V:

type V1,

∠(O,A0A1A2A3) � �π � larctan(3),

LSLS-sequence is (�1,2,�1,2,3).

Theorem 3.14. For any extended angle 	 there exist a unique type among
the types I–V and a unique extended angle 	0 of that type such that 	0 is
L+-congruent to 	.

The extended angle 	0 is said to be the normal form for the extended angle
	.

For the proof of Theorem 3.14 we need the following lemma.

Lemma 3.15. Let m, k ≥ 1, and ai > 0 for i = 0, . . . , 2n be some integers.
a) Suppose the LSLS-sequences for the extended angles 	1 and 	2 are

respectively(
(1, −2, 1, −2) × (k−1)-times, 1, −2, 1, −2, a0, . . . , a2n

)
and (

(1, −2, 1, −2) × (k−1)-times, 1, −2, 1, m, a0, . . . , a2n

)
,

then 	1 is L+-congruent to 	2.
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b) Suppose the LSLS-sequences for the extended angles 	1 and 	2 are
respectively(

(−1, 2, −1, 2) × (k−1)-times, −1, 2, −1, m, a0, . . . , a2n

)
and (

(−1, 2, −1, 2) × (k−1)-times, −1, 2, −1, 2, a0, . . . , a2n

)
,

then 	1 is L+-congruent to 	2.

Proof. We prove the first statement of the lemma. Suppose that m is integer,
k is positive integer, and ai for i = 0, . . . , 2n are positive integers.

Let us construct the angle 
1 with vertex at the origin for the lattice oriented
broken line A0 . . . A2k+n+1, corresponding to the LSLS-sequence(

(1, −2, 1, −2) × (k−1)-times, 1, −2, 1, −2, a0, . . . , a2n

)
,

such that A0 = (1, 0), A1 = (1, 1). Note that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A2l = ((−1)l, 0), for l < k − 1

A2l+1 = ((−1)l, (−1)l), for l < k − 1

A2k = ((−1)k, 0)

A2k+1 = ((−1)k, (−1)ka0)

.

Let us construct the angle 
2 with vertex at the origin for the lattice oriented
broken line B0 . . . B2k+n+1, corresponding to the LSLS-sequence(

(1, −2, 1, −2) × (k−1)-times, 1, −2, 1, m, a0, . . . , a2n

)
.

such that B0 = (1, 0), B1 = (−m − 1, 1). Note also that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B2l = ((−1)l, 0), for l < k − 1

B2l+1 = ((−1)l(−m − 1), (−1)l), for l < k − 1

B2k = ((−1)k, 0)

B2k+1 = ((−1)k, (−1)ka0)

.

From the above we know, that the points A2k and A2k+1 coincide with the
points B2k and B2k+1 respectively. Since the remaining parts of both LSLS-
sequences (i. e. (a0, . . . , a2n)) coincide, the point Al coincide with the point
Bl for l > 2k.
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Since the lattice oriented broken lines A0 . . . A2k and B0 . . . B2k are of the
same equivalence class, and the point Al coincide with the point Bl for l > 2k,
we obtain


1 = � (O, A0 . . . A2k+n+1) = � (O, B0 . . . B2k+n+1) = 
2.

Therefore, by Theorem 3.4 we have the following:

	1
∼̂= 
1 = 
2

∼̂= 	2.

This concludes the proof of Lemma 3.15a.
Since the proof of Lemma 3.15b almost completely repeats the proof of

Lemma 3.15a, we omit the proof of Lemma 3.15b here.

Proof of Theorem 3.14. First, we prove that any two distinct extended
angles listed in Definition 3.13 are not L+-congruent. Let us note that the
revolution numbers of extended angles distinguish the types of the angles. The
revolution number for the extended angle of the type I is 0. The revolution
number for the extended angle of the type IIk is 1/2(k + 1) where k ≥ 0.
The revolution number for the extended angle of the type IIIk is −1/2(k + 1)

where k ≥ 0. The revolution number for the extended angles of the type IVk

is 1/4 + 1/2k where k ≥ 0. The revolution number for the extended angles of
the type Vk is 1/4 − 1/2k where k > 0.

So we have proven that two extended angles of different types are not L+-
congruent. For the types I, IIk , and IIIk the proof is completed, since any such
type consists of the unique extended angle.

Let us prove that normal forms of the same type IVk (or of the same type Vk)
are not L+-congruent for any integer k ≥ 0 (or k > 0). Consider an extended
angle 	 = kπ + larctan([a0, a1, . . . , a2n]). Suppose that a lattice oriented
O-broken line A0A1 . . . Am, where m = 2|k| + n + 1 defines the angle 	. Let
also that the LSLS-sequence for this broken line be characteristic.

Suppose, that k is even, then the ordinary angle � A0OAm is L+-congruent
to the ordinary angle larctan([a0, a1, . . . , a2n]). This angle is a L+-affine in-
variant for the extended angle 	. This invariant distinguish the extended angles
of type IVk (or Vk) with even k.

Suppose, that k is odd, then denote B = O + A0O. The ordinary angle
� BVAm is L+-congruent to the ordinary angle larctan([a0, a1, . . . , a2n]). This
angle is a L+-affine invariant for the extended angle 	. This invariant distin-
guish the extended angles of type IVk (or Vk) with odd k.

Therefore, the extended angles listed in Definition 3.13 are not L+-congru-
ent.

Now we prove that an arbitrary extended angle is L+-congruent to one of
the extended angles of the types I–V.
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Consider an arbitrary extended angle � (V , A0A1 . . . An) and denote it by 	.
If #(	) = k/2 for some integer k, then 	 is L+-congruent to an angle of one
of the types I–III. Let #(	) = 1/4, then the extended angle 	 is L+-congruent
to the extended angle defined by the sail of the ordinary angle � A0VAn of the
type IV0.

Suppose now, that #(	) = 1/4 + k/2 for some positive integer k, then one
of its LSLS-sequence is of the following form:(

(1, −2, 1, −2) × (k − 1)-times, 1, −2, 1, m, a0, . . . , a2n

)
,

where ai > 0, for i = 0, . . . , 2n. By Lemma 3.15 the extended angle defined
by this sequence is L+-congruent to an extended angle of the type IVk defined
by the sequence(

(1, −2, 1, −2) × (k − 1)-times, 1, −2, 1, −2, a0, . . . , a2n

)
.

Finally, let #(	) = 1/4 − k/2 for some positive integer k, then one of its
LSLS-sequence is of the following form:(

(−1, 2, −1, 2) × (k − 1)-times, −1, 2, −1, m, a0, . . . , a2n

)
,

where ai > 0, for i = 0, . . . , 2n. By Lemma 3.15 the extended angle defined
by this sequence is L+-congruent to an extended angle of the type Vk defined
by the sequence(

(−1, 2, −1, 2) × (k − 1)-times, −1, 2, −1, 2, a0, . . . , a2n

)
.

This completes the proof of Theorem 3.14.

Let us finally give the definition of trigonometric functions for the extended
angles and describe some relations between ordinary and extended angles.

Definition 3.16. Consider an arbitrary extended angle 	 with the normal
form kπ + ϕ for some ordinary (possible zero) angle ϕ and for an integer k.

a) The ordinary angle ϕ is said to be associated with the extended angle 	.
b) The numbers ltan(ϕ), lsin(ϕ), and lcos(ϕ) are called the lattice tangent,

the lattice sine, and the lattice cosine of the extended angle 	.

Since all sails for ordinary angles are lattice oriented broken lines, the set
of all ordinary angles is naturally embedded into the set of extended angles.

Definition 3.17. For an ordinary angle ϕ the angle

0π + larctan(ltan ϕ)

is said to be corresponding to the angle ϕ and denoted by ϕ.
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From Theorem 3.14 it follows that for every ordinary angle ϕ there exists
and unique an extended angle ϕ corresponding to ϕ. Therefore, two ordinary
angles ϕ1 and ϕ2 are L -congruent iff the corresponding lattice angles ϕ1 and
ϕ2 are L+-congruent.

3.2.5. Opposite extended angles. Sums of extended angles. Sums of ordinary
angles. Consider an extended angle 	 with the vertex V for some equivalence
class of a given lattice oriented broken line. The extended angle 
 with the
vertex V for the equivalence class of the inverse lattice oriented broken line is
called opposite to the given one and denoted by −	.

Proposition 3.18. For any extended angle 	 ∼̂= kπ+ϕ we have:

−	 ∼̂= (−k − 1)π + (π − ϕ).

Let us introduce the definition of sums of ordinary and extended angles.

Definition 3.19. Consider arbitrary extended angles 	i , i = 1, . . . , l. Let
the characteristic sequences for the normal forms of 	i be (a0,i , a1,i , . . . , a2ni ,i )

for i = 1, . . . , l. Let M = (m1, . . . , ml−1) be some (l − 1)-tuple of integers.
The normal form of any extended angle, corresponding to the following LSLS-
sequence(

a0,1, a1,1, . . . , a2n1,1, m1, a0,2, . . . , a2n2,2, m2, . . . , ml−1, a0,l , . . . , a2nl ,l

)
,

is called the M-sum of extended angles 	i (i = 1, . . . , l) and denoted by

l∑
M,i=1

	i, or equivalently by 	1 +m1 	2 +m2 · · · +ml−1 	l.

Proposition 3.20. The M-sum of extended angles 	i (i = 1, . . . , l) is
well-defined.

Let us say a few words about properties of M-sums.
Notice that M-sum of extended angles is non-associative. For example, let

	1
∼̂= larctan 2, 	2

∼̂= larctan(3/2), and 	3
∼̂= larctan 5. Then

	1 +−1 	2 +−1 	3 = π + larctan(4),

	1 +−1 (	2 +−1 	3) = 2π,

(	1 +−1 	2) +−1 	3 = larctan(1).
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The M-sum of extended angles is non-commutative. For example, let 	1
∼̂=

larctan 1, and 	2
∼̂= larctan 5/2. Then

	1 +1 	2 = larctan(12/7) �= larctan(13/5) = 	2 +1 	1.

Remark 3.21. The M-sum of extended angles is naturally extended to the
sum of classes of L+-congruences of extended angles.

We conclude this section with the definition of sums of ordinary angles.

Definition 3.22. Consider ordinary angles αi , where i = 1, . . . , l. Let
αi be the corresponding extended angles for αi , and M = (m1, . . . , ml−1)
be some (l−1)-tuple of integers. The ordinary angle ϕ associated with the
extended angle

	 = α1 +m1 α2 +m2 · · · +ml−1 αl.

is called the M-sum of ordinary angles αi (i = 1, . . . , l) and denoted by

l∑
M,i=1

αi, or equivalently by α1 +m1 α2 +m2 · · · +ml−1 αl.

Remark 3.23. Note that the sum of ordinary angles is naturally extended
to the classes of L -congruences of lattice angles.

4. Relations between extended and ordinary lattice angles. Proof of
the first statement of Theorem 2.2

Throughout this section we again fix some lattice basis and use the system of
coordinates OXY corresponding to this basis.

4.1. On relations between continued fractions for lattice oriented broken
lines and the lattice tangents of the corresponding extended angles

For a real number r we denote by �r� the maximal integer not greater than r .

Theorem 4.1. Consider an extended angle 	 = � (V , A0A1 . . . An). Sup-
pose, that the normal form for 	 is kπ +ϕ for some integer k and an ordinary
angle ϕ. Let (a0, a1, . . . , a2n−2) be the LSLS-sequence for the lattice oriented
broken line A0A1 . . . An. Suppose that

]a0, a1, . . . , a2n−2[ = q/p.
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Then the following holds:

ϕ ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

larctan(1), if q/p = ∞
larctan(q/p), if q/p ≥ 1

larctan
( |q|

|p|−�(|p|−1)/|q|�|q|
)
, if 0 < q/p < 1

0, if q/p = 0

π − larctan
( |q|

|p|−�(|p|−1)/|q|�|q|
)
, if −1 < q/p < 0

π − larctan(−q/p), if q/p ≤ −1

.

Proof. Consider the following linear coordinates (∗, ∗)′ on the plane, as-
sociated with the lattice oriented V -broken line A0A1 . . . An. Let the origin O ′
be at the vertex V , (1, 0)′ = A0, and (1, 1)′ = A0 + 1

a0
sgn(A0O

′A1)A0A1.
The other coordinates are uniquely defined by linearity. We denote this system
of coordinates by O ′X′Y ′.

The set of integer points for the coordinate system O ′X′Y ′ coincides with
the set of lattice points of the plane. The basis of vectors (1, 0)′ and (0, 1)′
defines a positive orientation.

Suppose that the new coordinates of the point An are (p′, q ′)′. Then by
Theorem 3.5 we have q ′/p′ = q/p. This directly implies the statement of the
theorem for the cases q ′ > p′>0, q ′/p′ = 0, and q ′/p′ = ∞.

Suppose now that p′ > q ′ > 0. Consider the ordinary angle ϕ = � A0PAn.
Let B0 . . . Bm be the sail for it. The direct calculations show that the point

D = B0 + B0B1

l�(B0B1)

coincides with the point (1+�(p′ − 1)/q ′�, 1) in the system of coordinates
O ′X′Y ′.

Consider the L+-linear (in the coordinates O ′X′Y ′) transformation ξ that
takes the point A0 = B0 to itself, and the point D to (1, 1)′. These conditions
uniquely identify ξ .

ξ =
(

1 −�(p′ − 1)/q ′�
0 1

)

The transformation ξ takes the point An = Bm with the coordinates (p′, q ′)
to the point with the coordinates (p′−�(p′−1)/q ′�q ′, q ′)′. Since q ′/p′ = q/p,
we obtain the following

ϕ = larctan

(
q ′

p′ − �(p′ − 1)/q ′�q ′

)
= larctan

(
q

p − �(p − 1)/q�q
)

.
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The proof for the case q ′ > 0 and p′ < 0 repeats the described cases after
taking to the consideration the adjacent angles.

Finally, the case of q ′ < 0 repeats all previous cases by the central symmetry
(centered at the point O ′) reasons.

This completes the proof of Theorem 4.1.

Corollary 4.2. The revolution number and the continued fraction for a
lattice oriented broken line at unit distance from the vertex uniquely define the
L+-congruence class of the corresponding extended angle.

4.2. Proof of Theorem 2.2a: two preliminary lemmas

We say that the lattice point P is at lattice distance k from the lattice segment
AB if the lattice vectors of the segment AB and the vector AP generate a
sublattice of the lattice of index k.

Definition 4.3. Consider a lattice triangle 	ABC. Denote the number of
lattice points at unit lattice distance from the segment AB and contained in the
(closed) triangle 	ABC by l�1(AB; C) (see on Figure 7).

Note that all lattice points at lattice unit lattice distance from the segment
AB in the (closed) lattice triangle 	ABC are contained in one straight line
parallel to the straight line AB. Besides, the integer l�1(AB; C) is positive for
any triangle 	ABC.

A

B

C

Figure 7. For the given triangle 	ABC we have l�1(AB; C) = 5.

Now we prove the following lemma.

Lemma 4.4. For any lattice triangle 	ABC the following holds

� CAB +l�(AB)−l�1(AB;C)−1 � ABC +l�(BC)−l�1(BC;A)−1 � BCA = π.

Proof. Consider an arbitrary lattice triangle 	ABC. Suppose that the pair
of vectors BA and BC defines the positive orientation of the plane (otherwise
we apply to the triangle 	ABC some L -affine transformation changing the
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orientation and come to the same position). Denote (see Figure 9 below):
D = A + BC, and E = A + AC.

Since CADB is a parallelogram, the triangle 	BAD is L+-congruent to the
triangle 	ABC. Thus, the angle � BAD is L+-congruent to the angle � ABC,
and l�1(BA; D) = l�1(AB; C). Since EABD is a parallelogram, the triangle
	AED is L+-congruent to the triangle 	BAD, and hence is L+-congruent
to the triangle 	ABC. Thus, Thus, � DAE is L+-congruent to � BCA, and
l�1(DA; E) = l�1(BC; A).

Let A0 . . . An be the sail of � CAB with the corresponding LLS-sequence
(a0, . . . , a2n−2). Let B0B1 . . . Bm be the sail of � BAD (where B0 = An)
with the corresponding LLS-sequence (b0, . . . , b2m−2). And let C0C1 . . . Cl

be the sail of � DAE (where C0 = Bm) with the corresponding LLS-sequence
(c0, . . . , c2l−2).

Consider now the lattice oriented broken line

A0 . . . AnB1B2 . . . BmC1C2 . . . Cl.

The LSLS-sequence for this broken line is

(a0, . . . , a2n−2, t, b0, . . . , b2m−2, u, c0, . . . , c2l−2),

where integers t and u are integers defined by the broken line. By definition
of the sum of extended angles this sequence defines the extended angle

� CAB +t
� BAD +u

� DAE.

By Theorem 4.1, we have � CAB +t
� BAD +u

� DAE = π .
We compute now the integer t . Denote by A′

n the closest lattice point to
the point An and distinct to An in the segment An−1An. Consider the set of
lattice points at unit lattice distance from the segment AB and lying in the half-
plane with the boundary straight line AB and containing the point D. This set
coincides with the following set (See Figure 8):{

An,k = An + A′
nAn + kAAn | k ∈ Z

}
.

Since An,−2 = A+A′
nA, the points An,k for k ≤ −2 are in the closed half-plane

bounded by the straight line AC and not containing the point B.
Since An,−1 = A + A′

nAn, the points An,k for k ≥ −1 are in the open
half-plane bounded by the straight line AC and containing the point B.

The intersection of the parallelogram AEDB and the open half-plane boun-
ded by the straight line AC and containing the point B contains exactly l�(AB)

points of the described set: only the points An,k with −1 ≤ k ≤ l�(AB) − 2.
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An,1

An,0

An,�1 � A � A�n An

A�n

An,�2 � A � A�n A

An � B0

CA

Figure 8. Lattice points An,t .

Since the triangle 	BAD is L+-congruent to 	ABC, the number of points
An,k in the closed triangle 	BAD is l�1(AB; C): the points An,k for

l�(AB) − l�1(AB; C) − 1 ≤ k ≤ l�(AB) − 2.

Denote the integer l�(AB) − l�1(AB; C) − 1 by k0.
The point An,k0 is contained in the segment B0B1 of the sail for the ordinary

angle � BAD (see Figure 9). Since the angles � BAD and � ABC are L+-
congruent, we have

t = sgn(An−1AAn) sgn(AnAB1) sgn(An−1AnB1) lsin � An−1AnB1

= 1 · 1 · sgn(An−1AnAn,k0) lsin � An−1AnAn,k0

= sign(k0)|k0| = k0 = l�(AB) − l�1(AB; C) − 1.

An,k0

D B

A
E

C

Figure 9. The point An,k0 .

Exactly by the same reasons,

u = l�(DA) − l�1(DA; E) − 1 = l�(BC) − l�1(BC; A) − 1.

Therefore, � CAB +l�(AB)−l�1(AB;C)−1 � ABC +l�(BC)−l�1(BC;A)−1 � BCA =
π .
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Lemma 4.5. Let α, β, and γ be nonzero ordinary angles. Suppose that
α +u β +v γ = π , then there exist a triangle with three consecutive ordinary
angles L -congruent to α, β, and γ .

Proof. Denote by O the point (0, 0), by A the point (1, 0), and by D the
point (−1, 0) in the fixed system of coordinates OXY .

Let us choose the points B = (p1, q1) and C = (p2, q2) with integers p1,
p2 and positive integers q1, q2 such that

� AOB = larctan(ltan α), and � AOC = � AOB +u β.

Thus the vectors OB and OC defines the positive orientation, and � BOC ∼= β.

Since
α +u β +v γ = π and α +u β ∼̂= � AOC,

the ordinary angle � COD is L -congruent to γ .
Denote by B ′ the point (p1q2, q1q2), and by C ′ the point (p2q1, q1q2) and

consider the triangle B ′OC ′. Since the ordinary angle � B ′OC ′ coincides with
the ordinary angle � BOC, we obtain

� B ′OC ′ ∼= β.

Since the ordinary angle β is nonzero, the points B ′ and C ′ are distinct and
the straight line B ′C ′ does not coincide with the straight line OA. Since the
second coordinate of the both points B ′ and C ′ equal q1q2, the straight line
B ′C ′ is parallel to the straight line OA. Thus, by Proposition 1.13 it follows
that

� C ′B ′O ∼= � AOB ′ = � AOB ∼= α, and � OC ′B ′ ∼= � C ′OD = � COD ∼= γ.

So, we have constructed the triangle 	B ′OC ′ with three consecutive ordin-
ary angles L -congruent to α, β, and γ .

4.3. Proof of Theorem 2.2a: conclusion of the proof

Now we return to the proof of the first statement of the theorem on sums of
lattice tangents for ordinary angles in lattice triangles.

Proof of Theorem 2.2a. Let α, β, and γ be nonzero ordinary angles
satisfying the conditions i) and ii) of Theorem 2.2a.

The second condition: ]ltan(α), −1, ltan(β), −1, ltan(γ )[ = 0 implies that

α +−1 β +−1 γ = kπ.

Since all three tangents are positive, we have k = 1, or k = 2.
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Consider the first condition: ]ltan α, −1, ltan β[ is either negative or greater
than ltan α. It implies that α +−1 β = 0π + ϕ, for some ordinary angle ϕ, and
hence k = 1.

Therefore, by Lemma 4.5 there exist a triangle with three consecutive or-
dinary angles L -congruent to α, β, and γ .

Let us prove the converse. We prove that condition ii) of Theorem 2.2a
holds by reductio ad absurdum. Suppose, that there exist a triangle 	ABC

with consecutive ordinary angles α = � CAB, β = � ABC, and γ = � BCA,
such that ⎧⎪⎨

⎪⎩
]ltan(α), −1, ltan(β), −1, ltan(γ )[ �= 0

]ltan(β), −1, ltan(γ ), −1, ltan(α)[ �= 0

]ltan(γ ), −1, ltan(α), −1, ltan(β)[ �= 0

.

These inequalities and Lemma 4.4 imply that at least two of the integers

l�(AB) − l�1(AB; C) − 1,

l�(BC) − l�1(BC; A) − 1,

and
l�(CA) − l�1(CA; B) − 1

are nonnegative.
Without losses of generality we suppose that{

l�(AB) − l�1(AB; C) − 1 ≥ 0

l�(BC) − l�1(BC; A) − 1 ≥ 0
.

Since all integers of the continued fraction

r = ]ltan(α), l�(AB) − l�1(AB; C) − 1,

ltan(β), l�(BC) − l�1(BC; A) − 1, ltan(γ )[

are non-negative and the last one is positive, we obtain that r > 0 (or r = ∞).
From the other hand, by Lemma 4.4 and by Theorem 4.1 we have that r =
0/−1 = 0. We come to the contradiction.

Now we prove that condition i) of Theorem 2.2a holds. Suppose that there
exist a triangle 	ABC with consecutive ordinary angles α = � CAB, β =
� ABC, and γ = � BCA, such that

]ltan(α), −1, ltan(β), −1, ltan(γ )[ = 0.

Since α +−1 β +−1 γ = π , we have α +−1 β = 0π + ϕ for some ordinary
angle ϕ. Therefore, the first condition of the theorem holds.

This concludes the proof of Theorem 2.2.
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4.4. Theorem on sum of lattice tangents for ordinary lattice angles of
convex polygons

A satisfactory description for L -congruence classes of lattice convex polygons
has not been yet found. It is only known that the number of convex polygons
with lattice area bounded from above by n growths exponentially in n1/3, while
n tends to infinity (see [2] and [3]). We conclude this section with the following
theorem on necessary and sufficient condition for the lattice angles to be the
angles of some convex lattice polygon.

Theorem 4.6. Let α1, . . . , αn be an arbitrary ordered n-tuple of ordinary
non-zero (lattice) angles. Then the following two conditions are equivalent:

– there exist a convex n-vertex polygon with consecutive ordinary angles L -
congruent to the ordinary angles αi for i = 1, . . . , n;

– there exist a set of integers M = {m1, . . . , mn−1} such that

n∑
M,i=1

π − αi = 2π.

Proof. Consider an arbitrary n-tuple of ordinary angles αi , here i =
1, . . . , n.

Suppose that there exist a convex polygon A1A2 . . . An with consecutive
angles αi for i = 1, . . . , n. Let also the pair of vectors A2A3 and A2A1

defines the positive orientation of the plane (otherwise we apply to the polygon
A1A2 . . . An some L -affine transformation changing the orientation and come
to the initial position).

Let B1 = O + AnA1, and Bi = O + Ai−1Ai for i = 2, . . . , n. We put by
definition

βi =
{ � BiOBi+1, if i = 1, . . . , n−1

� BnOB1, if i = n
.

Consider the union of the sails for all βi . This lattice oriented broken line is
of the class of the extended angle with the normal form 2π + 0. The LSLS-
sequence for this broken line contains exactly n − 1 elements that are not
contained in the LLS-sequences for the sails of βi . Denote these numbers by
m1, . . . , mn−1, and the set {m1, . . . , mn−1} by M . Then

n∑
M,i=1

βi = 2π.
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From the definition of βi for i = 1, . . . , n it follows that βi
∼= π − αi .

Therefore,
n∑

M,i=1

π − αi = 2π.

The proof of the first part of the statement is completed.
Suppose now, that there exist a set of integers M = {m1, . . . , mn−1} such

that n∑
M,i=1

π − αi = 2π.

This implies that there exist lattice points B1 = (1, 0), Bi = (xi, yi), for
i = 2, . . . n−1, and Bn = (−1, 0) such that

� BiOBi−1
∼= π − αi−1, for i = 2, . . . , n, and � B1OBn

∼= π − αn.

Denote by M the lattice point

O +
n∑

i=1

OBi.

Since all αi are non-zero, the angles π − αi are ordinary. Hence, the origin
O is an interior point of the convex hull of the points Bi for i = 1, . . . , k. This
implies that there exist two consecutive lattice points Bs and Bs+1 (or Bn and
B1), such that the lattice triangle 	BsMBs+1 contains O and the edge BsBs+1

does not contain O. Therefore,

O = λ1OM + λ2OBi + λ3OBi+1,

where λ1 is a positive integer, and λ2 and λ3 are nonnegative integers. So there
exist positive integers ai , where i = 1, . . . , n, such that

O = O +
n∑

i=1

(aiOBi).

Put by definition A0 = O, and Ai = Ai−1 + aiOBi for i = 2, . . . , n. The
broken line A0A1 . . . An is lattice and by the above it is closed (i. e. A0 = An).
By construction, the ordinary angle at the vertex Ai of the closed lattice broken
line is L+-congruent to αi (i = 1, . . . n). Since the integers ai are positive for
i = 1, . . . , n and the vectors OBi are all in the counterclockwise order, the
broken line is a convex polygon.

The proof of Theorem 4.6 is completed.
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Remark 4.7. Theorem 4.6 generalizes the statement of Theorem 2.2a. Note
that the direct generalization of Theorem 2.2b is false: the ordinary angles do
not uniquely determine the L+-affine homothety types of convex polygons.
See an example on Figure 10.

Figure 10. An example of different types of polygons with the L+-
congruent ordinary angles.

Appendix A. On global relations on algebraic singularities of complex
projective toric varieties corresponding to integer-lattice
triangles

In this appendix we describe an application of theorems on sums of lattice tan-
gents for the angles of lattice triangles and lattice convex polygons to theory
of complex projective toric varieties. We refer the reader to the general defini-
tions of theory of toric varieties to the works of V. I. Danilov [4], G. Ewald [5],
W. Fulton [6], and T. Oda [18].

Let us briefly recall the definition of complex projective toric varieties as-
sociated to lattice convex polygons. Consider a lattice convex polygon P with
vertices A0, A1, . . . , An. Let the intersection of this (closed) polygon with the
lattice consists of the points Bi = (xi, yi) for i = 0, . . . , m. Let also Bi = Ai

for i = 0, . . . , n. Denote by � the following set in CP m:{(
t
x1
1 t

y1
2 t

−x1−y1
3 : t

x2
1 t

y2
2 t

−x2−y2
3 : . . . : t

xm

1 t
ym

2 t
−xm−ym

3

) ∣∣ t1, t2, t3 ∈ C \ {0}}.
The closure of the set � in the natural topology of CP m is called the complex
toric variety associated with the polygon P and denoted by XP .

For any i = 0, . . . , m we denote by Ãi the point (0 : . . . : 0 : 1 : 0 : . . . : 0)

where 1 stands on the (i+1)-th place.
From general theory it follows that:

a) the set XP is a complex projective complex-two-dimensional variety
with isolated algebraic singularities;

b) the complex toric projective variety contains the points Ãi for i =
0, . . . , n (where n+1 is the number of vertices of convex polygon);

c) the points of XP \ {Ã0, Ã1, . . . , Ãn} are non-singular;

d) the point Ãi for any integer i satisfying 0 ≤ i ≤ n is singular iff the
corresponding ordinary angle αi at the vertex Ai of the polygon P is not
L -congruent to larctan(1);
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e) the algebraic singularity at Ãi for any integer i satisfying 0 ≤ i ≤ n is
uniquely determined by the L -affine type of the non-oriented sail of the
lattice angle αi .

The algebraic singularity is said to be toric if there exists a projective toric
variety with the given algebraic singularity.

Note that the L -affine classes of non-oriented sails for angles α and β

coincide iff β ∼= α, or β ∼= αt . This allows us to associate to any complex-two-
dimensional toric algebraic singularity, corresponding to the sail of the angle
α, the unordered pair of rationals (a, b), where a = ltan α and b = ltan αt .

Remark A.1. Note that the continued fraction for the sail α is slightly
different to the Hirzebruch-Jung continued fractions for toric singularities (see
the works [9] by H.W. E. Jung, and [8] by F. Hirzebruch). The relations between
these continued fractions is described in the paper [19] by P. Popescu-Pampu.

Corollary A.2. Suppose, that we are given by three complex-two-dimen-
sional toric singularities defined by pairs of rationals (ai, bi) for i = 1, 2, 3.
There exist a complex toric variety associated with some triangle with these
three singularities iff there exist a permutation σ ∈ S3 and the rationals ci

from the sets {ai, bi} for i = 1, 2, 3, such that the following conditions hold:
i) the continued fraction ]cσ(1), −1, cσ(2)[ is either negative, or greater than

cσ(1), or equals ∞;
ii) ]cσ(1), −1, cσ(2), −1, cσ(3)[ = 0.

We note again that we use odd continued fractions for c1, c2, and c3 in
the statement of the above proposition (see Subsection 2.1 for the notation of
continued fractions).

Proof. The proposition follows directly from Theorem 2.2a.

Proposition A.3. For any collection (with multiplicities) of complex-two-
dimensional toric algebraic singularities there exist a complex-two-dimen-
sional toric projective variety with exactly the given collection of toric singu-
larities.

For the proof of Proposition A.3 we need the following lemma.

Lemma A.4. For any collection of ordinary angles αi (i = 1, . . . , n), there
exist an integer k ≥ n−1 and a k-tuple of integers M = (m1, . . . , mk), such
that

α1 +m1 · · · +mn−1 αn +mn
larctan(1) +mn+1 · · · +mk

larctan(1) = 2π.

Proof. Consider any collection of ordinary angles αi (i = 1, . . . , n) and
denote

	 = α1 +1 α2 +1 · · · +1 αn.
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There exist an oriented lattice broken line for the angle 	 with the LSLS-
sequence with positive elements. Hence, 	 ∼̂= ϕ + 0π .

If ϕ ∼= larctan(1), we have

	 +−2 larctan(1) +−2 larctan(1) +−2 larctan(1) = 2π.

Then k = n + 2, and M = (1, . . . , 1, −2, −2, −2).
Suppose now ϕ �∼= larctan(1), then the following holds

ϕ +−1 π−ϕ +−2 larctan(1) +−2 larctan(1) = 2π.

Consider the sail for the angle π−ϕ. Suppose the sequence of all its lattice
points (not only vertices) is B0, . . . , Bs (with the order coinciding with the
order of the sail). Then we have

� BiOBi+1
∼̂= larctan(1) for any i = 1, . . . , s.

Denote by bi the values of lsin � BiOBi+1 for i = 1, . . . , s. Then we have

ϕ +−2 larctan(1) +−2 larctan(1) +−2 larctan(1)

= α1 +1 α2 +1 · · · +1 αn +−1 larctan(1) +b1 larctan(1)+b2

· · · +bs
larctan(1) +−2 larctan(1) +−2 larctan(1) +−2 larctan(1)

= 2π.

Therefore, k = n + s + 3, and

M = (1, 1, . . . , 1, 1︸ ︷︷ ︸
(n−1)-times

, −1, b1, . . . , bs, −2, −2, −2).

The proof of Lemma A.4 is completed.

Proof of the statement of the PropositionA.3. Consider an arbitrary
collection of two-dimensional toric algebraic singularities. Suppose that they
are represented by ordinary angles αi (i = 1, . . . , n). By Lemma A.4 there
exist an integer k ≥ n−1 and a k-tuple of integers M = (m1, . . . , mk), such
that

(π − α1)+m1 · · ·+mn−1 (π − αn)+mn
larctan(1)+mn+1 · · ·+mk

larctan(1) = 2π.

By Theorem 4.6 there exist a convex polygon P = A0 . . . Ak with angles
L+-congruent to the ordinary angles αi (i = 1, . . . , n), and k − n + 1 angles
larctan(1).

By the above, the toric variety XP is nonsingular at points of PX \ {Ã0, Ã1,

. . . , Ãk}. It is also nonsingular at the points Ãi with the corresponding ordinary
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angles L -congruent to larctan(1). The collection of the toric singularities at
the remaining points coincide with the given collection.

This concludes the proof of Proposition A.3.

On Figure 11 we show an example of the polygon for a projective toric
variety with the unique toric singularity, represented by the sail of larctan(7/5).
The ordinary angle α on the figure is L+-congruent to larctan(7/5), the angles
β and γ are L+-congruent to larctan(1).

π � α

γ

β

α

α

Figure 11. Constructing a polygon with all angles L+-congruent to
larctan(1) except one angle that is L+-congruent to larctan(7/5).

Appendix B. On L -congruence criterions for lattice triangles

Here we discuss the L -congruence criterions for lattice lattice triangles. By the
first criterion of L -congruence for lattice triangles we obtain that the number
of L -congruence classes for lattice triangles with bounded lattice area is finite.
We write down the numbers of L -congruence classes for triangles with lattice
area less then or equal to 20.

On criterions of lattice triangle L -congruence. We start with the study of
lattice analogs for the first, the second, and the third Euclidean criterions of
triangle congruence.

Statement B.1 (The first criterion of lattice triangle L -congruence). Con-
sider two lattice triangles 	ABC and 	A′B ′C ′. Suppose that the edge AB is
L -congruent to the edge A′B ′, the edge AC is L -congruent to the edge A′C ′,
and the ordinary angle � CAB is L -congruent to the ordinary angle � C ′A′B ′,
then the triangle 	A′B ′C ′ is L -congruent to the 	ABC.

It turns out that the second and the third criterions taken from Euclidean
geometry do not hold. The following two examples illustrate these phenomena.
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Example B.2. The second criterion of triangle L -congruence does not
hold in lattice geometry. On Figure 12 we show two lattice triangles 	ABC

and 	A′B ′C ′. The edge AB is L -congruent to the edge A′B ′ (here l�(A′B ′) =
l�(AB) = 4). The ordinary angle � ABC is L -congruent to the ordinary
angle � A′B ′C ′ (since � ABC ∼= � A′B ′C ′ ∼= larctan(1)), and the ordinary
angle � CAB is L -congruent to the ordinary angle � C ′A′B ′ (since � CAB ∼=
� C ′A′B ′ ∼= larctan(1)), The triangle 	A′B ′C ′ is not L -congruent to the tri-
angle 	ABC, since lS(	ABC) = 4 and lS(	A′B ′C ′) = 8.

AB

C

A�B�

C�

Figure 12. The second criterion of triangle L -congruence does not hold.

Example B.3. The third criterion of triangle L -congruence does not hold
in lattice geometry. On Figure 13 we show two lattice triangles 	ABC and
	A′B ′C ′. All edges of both triangles are L -congruent (of length one), but the
triangles are not L -congruent, since lS(	ABC) = 1 and lS(	A′B ′C ′) = 3.

AB

C

A�

B�

C�

Figure 13. The third criterion of triangle L -congruence does not hold.

Instead of the second and the third criterions there exists the following
additional criterion of lattice triangles L -congruence.

Statement B.4 (An additional criterion of lattice triangle integer-congru-
ence). Consider two lattice triangles 	ABC and 	A′B ′C ′ of the same lattice
area. Suppose that the ordinary angle � ABC is L -congruent to the ordinary
angle � A′B ′C ′, the ordinary angle � CAB is L -congruent to the ordinary
angle � C ′A′B ′, the ordinary angle � BCA is L -congruent to the ordinary
angle � B ′C ′A′, then the triangle 	A′B ′C ′ is L -congruent to the triangle
	ABC.

In the following example we show that the additional criterion of lattice
triangle L -congruence is not improvable.

Example B.5. On Figure 14 we show an example of two lattice non-
equivalent triangles 	ABC and 	A′B ′C ′ of the same lattice area equals 4
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and the same ordinary angles � ABC, � CAB, and � A′B ′C ′, � C ′A′B ′ all L -
equivalent to the angle larctan(1), but 	ABC �∼= 	A′B ′C ′.

A�B�

C�

A�B�

C�

Figure 14. The additional criterion of lattice triangle L -congruence
is not improvable.

Lattice triangles of small area. The above criterions allows to enumerate
all lattice triangles of small lattice area up to the lattice equivalence. In the
following table we write down the numbers N(d) of nonequivalent lattice
triangles of lattice area d for d ≤ 20.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N(d) 1 1 2 3 2 4 4 5 5 6 4 10 6 8 8 11 6 13 8 14

As it is easy to show, we always have d/3 ≤ N(d) ≤ d. The asymptotic
behaviour of N(d) and even of the average of N(d) (if they exist) is unknown
to the author.

Appendix C. Some unsolved question on lattice trigonometry

We conclude this paper with a small collection of unsolved questions.
Let us start with some questions on elementary definitions of lattice tri-

gonometry. In this paper we do not show any geometrical meaning of lattice
cosine. Here arise the following question.

Problem 1. Find a natural description of lattice cosine for ordinary angles
in terms of lattice invariants of the corresponding sublattices.

This problem seems to be close to the following one.

Problem 2. Does there exist a lattice analog of the cosine formula for the
angles of triangles in Euclidean geometry?

Let us continue with questions on lattice analogs of classical trigonomet-
ric formulas for trigonometric functions of angles of triangles in Euclidean
geometry.

Problem 3. a) Knowing the lattice trigonometric functions for lattice
angles α, β and integer n, find the explicit formula for the lattice trigono-
metric functions of the extended angle α +n β.
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b) Knowing the lattice trigonometric functions for a lattice angle α, an
integer m, and positive integer m, find the explicit formula for the lattice
trigonometric functions of the extended angle

l∑
M,i=1

α,

where M = (m, . . . , m) is an n-tuple.

Now we formulate a problem on generalization of the statement of The-
orem 2.2b to the case of n ordinary angles. Such generalization is important
in toric geometry and theory of multidimensional continued fractions.

Problem 4. Find a necessary and sufficient conditions for the existence of
an n-gon with the given ordered sequence of ordinary angles (α1, . . . , αn) and
the consistent sequence of lattice lengths of the edges (l1, . . . , ln) in terms of
continued fractions for n ≥ 4.

We conclude this paper with the following problem. We remind that (N(d))

is the numbers of nonequivalent lattice triangles having the lattice area being
equal to d (see Appendix B).

Problem 5. Find an explicit formula for the numbers N(d).
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