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ON THE NAGELL-LJUNGGREN EQUATION
xn − 1

x − 1
= yq

YANN BUGEAUD and PREDA MIHĂILESCU

Abstract

We establish several new results on the Nagell-Ljunggren equation (xn −1)/(x−1) = yq . Among
others, we prove that, for every solution (x, y, n, q) to this equation, n has at most four prime
divisors, counted with their multiplicities.

1. Introduction

The first results on the Diophantine equation

(1)
xn − 1

x − 1
= yq, in integers x > 1, y > 1, n > 2, q ≥ 2,

go back to 1920 and Nagell’s papers [12], [13]. Some twenty years later,
Ljunggren [8] clarified some points in Nagell’s arguments and completed the
proof of the following statement.

Theorem NL. Apart from the solutions

(S)
35 − 1

3 − 1
= 112,

74 − 1

7 − 1
= 202 and

183 − 1

18 − 1
= 73

Equation (1) has no other solution (x, y, n, q) if either one of the following
conditions is satisfied:

(i) q = 2,

(ii) 3 divides n,

(iii) 4 divides n,

(iv) q = 3 and n �≡ 5 (mod 6).

Equation (1) asks for pure powers written with only the digit 1 in base x.
It has only finitely many solutions when x is fixed, as proved by Shorey and
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Tijdeman [18]. We refer the reader to [5], [17] for surveys of known results on
(1), now called the Nagell-Ljunggren equation. Presumably, the only solutions
to (1) are given by (S), however, we are still unable to prove that (1) has only
finitely many solutions.

Very recently, the second author [10], [11] established sharp upper bounds
for the solutions of the Diophantine equation

(2)
xp − 1

x − 1
= pe · yq, in integers x > 1, y > 1, e ∈ {0, 1},

where p and q are (not necessarily distinct) odd prime numbers. The main
purpose of the present work is to show how these results together with older
ones [2], [3], [6], obtained by the first author with collaborators, apply to
Equation (1). Among other statements, we establish that, for any solution
(x, y, n, q) to (1), the exponent n has at most four prime factors counted with
multiplicities.

2. Statement of the results

For any integer n ≥ 2, we denote by ω(n) the number of distinct prime factors
of n, and by �(n) the total number of prime divisors of n, counted with
multiplicities. Observe that we have 1 ≤ ω(n) ≤ �(n).

Theorem 1. Let (x, y, n, q) be a solution of Equation (1) not in (S). Then,
the least prime divisor of n is at least equal to 29 and �(n) ≤ 4. Furthermore,
n is prime if q = 3. Moreover, if q divides n, then n = q.

It is an open problem to prove that (1) has only finitely many solutions
(x, y, n, q) with n = q. The fact that (1) has no further solution with n even
follows from Catalan’s Conjecture [9].

Our Theorem 1 considerably improves part (i) of Theorem 2 of Shorey
[16], who established that (1) has only finitely many solutions (x, y, n, q) with
ω(n) > q −2.(∗) According to Shorey [17], page 477, ‘An easier question than
the conjecture that (1) has only finitely many solutions is to replace ω(n) >

q − 2 by ω(n) ≥ 2 in the above result’. Theorem 1 is a step in this direction:
presumably, (1) has only one solution with n composite, namely (74 −1)/(7−
1) = 202.

Besides the new upper bounds obtained in [10], [11], the main ingredient
for the proof of Theorem 1 is a factorisation recalled in Lemma 1 below. It
easily follows from Lemma 1 and from Theorem NL that, in order to prove

(∗) Actually, it is explained in [17], page 476, and in [5], Théorème 15, that inserting results from
[7] and [1] in the same proof yields that (1) has no solution (x, y, n, q) with ω(n) > q − 2
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that (1) has no solution outside (S), it is sufficient to solve (2) for any odd
prime numbers p and q. We are able to considerably improve this assertion.

Theorem 2. For proving that Equation (1) has no solution outside (S), it
is sufficient to establish that, for any odd prime numbers p and q with p ≥ 5,
the Diophantine equation

xp − 1

x − 1
= yq

has no solution in positive integers x, y.

Theorem 2 asserts that for proving that Equation (1) has no fourth solution
(x, y, n, q), it is sufficient to establish that it has no fourth solution (x, y, p, q)

with p prime. We do not have to deal anymore with Equation (2) with e = 1.

3. Auxiliary results

Let ϕ denote the Euler totient function. For any positive integer n, let G(n)

denote the square-free part of n and set Qn := ϕ(G(n)).
We begin by quoting a result of Shorey [15].

Lemma 1. Let (x, y, n, q) be a solution of (1) with n odd. If the divisor D

of n satisfies (D, n/D) = (D, Qn/D) = 1, then there exist integers y1 and y2

with y1y2 = y and

(xD)n/D − 1

xD − 1
= y

q

1 and
xD − 1

x − 1
= y

q

2 .

By successive applications of Lemma 1, we get the first part of the next
statement (see [15]). A detailed proof of the second part is given in Ribenboim’s
book [14].

Lemma 2. If Equation (1) has a solution (x, y, n, q) where n = 2ap
u1
1 . . .

p
u�

� , with a ∈ {0, 1}, ui > 0, and pi distinct odd primes, then for each
i = 1, . . . , �, there exists an integer yi such that

xp
ui
i − 1

x − 1
= y

q

i .

Furthermore, there exist integers wi ≥ 2 and zi ≥ 2 such that

w
pi

i − 1

wi − 1
= z

q

i or pi · z
q

i ,

the second possibility occurring only if q divides ui .
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Next Lemmas gather various results useful for our proofs.

Lemma 3. If Equation (1) has a solution (x, y, n, q) outside (S), then
x ≥ 106, x ≥ 2q + 1 and the least odd prime divisor of n is at least 29.

Proof. The lower bounds on x are established in [3] and in [6]. The last
result of the Lemma follows from Théorème 2 from [2] and [10].

Lemma 4. Let (x, y, p, q) be an integer quadruple satisfying (2) with p

and q odd prime numbers. Then, we have q < (p − 1)2 and

x < q10p2
, if q ≤ p,

x < 2q10p2(p−1), if q ≥ p + 2.

Furthermore, if p = q, then x ≤ (2p)p.

Proof. The first statement is contained in Theorem 1 from [11], and the
remaining part of the lemma follows from Theorem 2 from [11].

4. Proofs

Proof of Theorem 1. The first assertion of the theorem is contained in
Lemma 3.

Let (x, y, n, q) be a solution of (1) with n even. Write n = 2am with m

odd. In view of Lemma 1, we may assume that a = 1, and thus we get

(3)
xm − 1

x − 1
· (xm + 1) = yq.

Clearly, the greatest common divisor of xm − 1 and xm + 1 is at most 2, and is
2 only if x is odd. But in this case (xm − 1)/(x − 1) is odd, and the two factors
in the left-hand side of (3) are coprime. Consequently, xm + 1 is a q-th power
in any case. By the proof of Catalan’s Conjecture [9], this never happens.

Let (x, y, n, q) be a solution of (1). Write n = p
u1
1 . . . p

u�

� with positive
integers u1, . . . , u� and prime numbers p1 > · · · > p�. Assume that � ≥ 2
and set D = p

u1
1 . . . p

u�−1
�−1 . By Lemma 2, the equation

Xp
u�
� − 1

X − 1
= yq

has the solution X = xD . If u� = 1, then we infer from Lemmas 3 and 4 that

(4) (2q + 1)D ≤ xD < q10p3
� .
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Since p� ≥ 29, it follows that 10p3
� < p4

� < p4
�−1, and we get u1+· · ·+u�−1 ≤

3. Thus,

(5) u1 + · · · + u� ≤ 4.

If u� > 1, then

Xp
u�
� − 1

Xp
u�−1
� − 1

× Xp
u�−1
� − 1

Xp
u�−2
� − 1

× · · · × Xp� − 1

X − 1
= yq,

and we see that
Xp

u�
� − 1

Xp
u�−1
� − 1

= zq or p� · zq,

the latter possibility occurring only if p� divides u�. Consequently, the equation

Xp� − 1

X − 1
= pe

� · Y q

has a solution given by e = 0 or 1 and X = xDp
u�−1
� . Arguing as above, we

also get (5) in this case, that is �(n) ≤ 4, as claimed.
Assume now that q = 3. As mentionned after the statement of Theorem 1,

we already know that ω(n) = 1. Thus, n must be a prime power, say n = pa ,
with 1 ≤ a ≤ 4 and p ≥ 5, by Theorem NL and by what has just been
proved. Since, again by Theorem NL, Equation (1) has no solution with n ≡ 1
(mod 3), we get that a = 1 or a = 3. Assume that there are positive integers
x, y and a prime number p ≥ 5 with

xp3 − 1

x − 1
= y3.

Then X = xp2
is a solution of the equation

Xp − 1

X − 1
= pe · y3, e ∈ {0, 1},

and from Lemmas 3 and 4 we gather that

106p2
< xp2

< 310p2
,

a contradiction. Consequently, a = 1 and n must be a prime number.
Now, we consider the last assertion of the theorem. Let (x, y, n, q) be

a solution to (1) with q divides n. Then, as proved by Shorey [17], n is a
q-th power. Consequently, n is either equal to q, q2, q3 or q4. In view of
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Theorem NL, we may assume that q ≥ 5, and Lemma 2 implies that if n �= q,
then X = xq satisfies

Xq − 1

X − 1
= yq.

The combination of Lemmas 3 and 4 then yields that

(2q + 1)q ≤ xq ≤ (2q)q,

a contradiction. Alternatively, we can apply a result of Le [7], asserting that
Equation (1) has no solution with x being a q-th power. Consequently, we have
proved that if n is a power of q, then n = q.

Proof of Theorem 2. In view of Lemma 2, we encounter the equation

xp − 1

x − 1
= pyq

only if Equation (1) has a solution (x, y, n, q) with n = pu and q divides u.
By Theorem 1, this can only happen when q = u = 3. Thus, to establish
Theorem 2, it only remains to prove that the Diophantine equation

xp3 − 1

x − 1
= y3

has no solution, which has already been done in the proof of Theorem 1.

Acknowledgements. We are grateful to the referee for his very careful
reading.
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11. Mihăilescu, P., New bounds and conditions for the equation of Nagell-Ljunggren, J. Number
Theory 124 (2007), 380–395.

12. Nagell, T., Des équations indéterminées x2 + x + 1 = yn et x2 + x + 1 = 3yn, Norsk Mat.
Forenings Skr. ser. 1 nr. 2 (1920), 14 pages.

13. Nagell, T., Note sur l’équation indéterminée (xn − 1)/(x − 1) = yq , Norsk Mat. Tidsskr. 2
(1920), 75–78.

14. Ribenboim, P., Catalan’s Equation. Are 8 and 9 the only Consecutive Powers? Academic
Press, Boston, 1994.

15. Shorey, T. N., Perfect powers in values of certain polynomials at integer points, Math. Proc.
Cambridge Philos. Soc. 99 (1986), 195–207.

16. Shorey, T. N., On the equation zq = (xn − 1)/(x − 1), Indag. Math. 48 (1986), 345–351.
17. Shorey, T. N., Exponential Diophantine equations involving products of consecutive integers

and related equations, Number Theory, 463–495, Trends Math. Birkhäuser, Basel, 2000.
18. Shorey, T. N., and Tijdeman, R., New applications of Diophantine approximations to Dio-

phantine equations, Math. Scand. 39 (1976), 5–18.

UNIVERSITÉ LOUIS PASTEUR
U. F. R. DE MATHÉMATIQUES
7, RUE RENÉ DESCARTES
67084 STRASBOURG CEDEX
FRANCE
E-mail: bugeaud@math.u-strasbg.fr

UNIVERSITÄT GÖTTINGEN
MATHEMATISCHES INSTITUT
BUNSENSTR. 3–5
DE-37073 GÖTTINGEN
GERMANY
E-mail: preda@uni-math.gwdg.de


