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ON THE CLASSIFICATION OF COMPLEX
MULTI-GERMS OF CORANK ONE

AND CODIMENSION ONE

KEVIN HOUSTON

Abstract
Corank one multi-germs f : (Cn, S) → (Cp, 0), n < p, of Ae-codimension one are classified.
The mono-germs are given in an explicit normal form and the multi-germs are described in terms
of augmentations, and concatenations of mono-germs and a special bi-germ.

1. Introduction

The classification of singularities of mappings up to A -equivalence (that is,
equivalence up to diffeomorphic changes in source and target) is a central
problem within Singularity Theory. In his classic paper [12] Mather classified
the A -stable map-germs, which are also known as Ae-codimension 0 germs.
The next target for classification, the Ae-codimension 1 germs, is considerably
more difficult and has taken a long time to develop. One reason for this is
one does not have an analogue of Mather’s result that K -equivalent A -stable
maps are A -equivalent – a result which reduces the A -equivalence problem
to a more tractable equivalence. In the codimension 1 case for example, the
two real maps, (x, y) → (x, y2, y3 ± x2y), have Ae-codimension 1, are K -
equivalent but not A -equivalent, see [13]. To further complicate matters this
problem does not occur in the complex situation for this example; the two
maps are A -equivalent.

Examples of Ae-codimension 1 maps are found in low dimensional classi-
fications, for example [13], and some general classifications of simple singular-
ities, such as [6]. But until recently there have been few general classifications
of the class itself.

In his Ph.D. thesis [1] Cooper classified corank 1 (the rank of the differential
is 1 less than maximal) Ae-codimension 1 map-germs from Cn to Cn+1 by using
explicit coordinate changes in source and target to reduce the map to a normal
form. A more elementary proof of the classification is given in [2]; many of
his other results are in this more accessible publication. Surprisingly, just as in
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the case of stable germs the situation involves dealing with the K -equivalence
class of the germ. This is because if the map is not an augmentation, then its
A -orbit is open in its K -orbit, and in the complex case there is at most one
open orbit.

In [2] it is also shown that one can classify the multi-germs of Ae-codimen-
sion 1 corank 1 maps from Cn to Cp with n ≥ p − 1 and (n, p) in the nice
dimensions. (It should be noted that here and throughout the paper, corank 1
for a germ with more than 1 branch means that the individual branches can
have corank at most 1, i.e. corank 0 for any or all branches is acceptable.)
The classification is given in terms of the augmentation and concatenation of
mono-germs and a single bi-germ.

A less explicitly stated classification for n ≥ p was given by Damon in [3].
The approaches from there and [2] can be combined to give a more explicit
classification of Ae-codimension 1 multi-germs, n ≥ p, with the branches
having the K -type of simple hypersurface singularities. Since by [6] all corank
1 singularities in the nice dimensions with n ≥ p have branches of this type
we recover the n ≥ p classification in [2].

In this paper we classify corank 1 Ae-codimension 1 map-germs from Cn to
Cp with n < p but with no nice dimension restrictions. First, an explicit mono-
germ description is given in Theorem 3.1. Then, in Theorem 6.4 the description
of multi-germs is given in terms of the augmentation and concatenation of
mono-germs and a special bi-germ. The processes of augmentation and binary
concatenation are in essence the same as in [2] but the monic concatenation
process is slightly different.

Furthermore, the multi-germ description of Theorem 6.4 is more precise
than the analogue in [2]. That is, rather than state that the multi-germs can
be constructed from mono-germs by augmentation and the two concatenation
processes we show precisely how this can be done. To achieve this we first prove
the useful result that for codimension 1 map-germs the three processes are
pairwise commmutative and that binary concatenation is associative. Applying
these gives a simple and elegant statement of the classification.

The author began this paper while he was a guest of the Isaac Newton In-
stitute of Mathematical Sciences, Cambridge. He is grateful for the hospitality
and financial support received from the Institute.

2. Augmentation

First we give some notation used throughout the paper. The Ae-codimension of
a map-germ f will be denoted cod(f ). If two germs f and g are A -equivalent,
then we use the notation f ∼A g. The set S will be a finite set of points and
usually these will be the origins of a collection of copies of Cn for some n.
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The results of this section were originally proved in [1], a more accessible
reference for them is [2]. First we define the augmentation of a map-germ.

Definition 2.1. Let f : (Cn, S) → (Cp, 0) be a map with a 1-parameter
stable unfolding F : (Cn × C, S × {0}) → (Cp × C, 0), where F(x, λ) =
(fλ(x), λ). Then the augmentation of f by F is the map AF (f ) given by
(x, λ) �→ (fλ2(x), λ).

The real picture of the example of the standard cusp x �→ (x2, x3) unfolded
by (x2, x3 − λx, λ) and augmented to (x2, x3 − λ2x, λ) is shown in Figure 1.

A

Figure 1. Augmentation of a cusp.

Theorem 2.2 (See [2]). Suppose that f : (Cn, S) → (Cp, 0) is a finitely A -
determined map-germ with a 1-parameter stable unfolding. Then the following
are true.

(i) If f has Ae-codimension 1, then AF (f ) has Ae-codimension 1.

(ii) The A -equivalence class of AF (f ) is independent of the choice of
miniversal unfolding of f .

(iii) If f ∼A f ′ and both have Ae-codimension 1, then A(f ) ∼A A(f ′).

Thus we can produce new codimension 1 maps from old ones. If f is not
the augmentation of another germ, then f is called primitive.

One can also generalise this definition so that the unfolding parameter is
replaced by a general function and not just a quadratic one, see [7].

Since the augmentation of an Ae-codimension one map is again codimen-
sion one we can augment repeatedly. Thus, define Am(f ) to be the m-fold
augmentation of f . For m > 0 this is the augmentation process repeated m

times and for the trivial case A0(f ) = f .
A stable map is called a prism if it is the trivial unfolding of another map. An

important lemma is the following, taken from [2] (Theorem 2.7) but originally
proved in Proposition 2.5 of [1]. Damon proved a similar theorem in [3] under
the more restrictive assumptions of homogeneity and n ≥ p. Essentially the
lemma provides a process which allows us to reverse augmentation. In analogy
with musical theory we shall call the process diminishing (the opposite of
augmentation).
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Lemma 2.3 (Diminishing Lemma). Let g be an Ae-codimension 1 multi-
germ such that the miniversal unfolding of g is a prism. Then g is an augment-
ation of an Ae-codimension 1 map-germ.

Using this one can often prove results by reducing to the case of a primitive
map.

3. Classification of mono-germs

The main theorem on the classification of mono-germs is the following.

Theorem 3.1. Suppose that f : (Cn, 0) → (Cp, 0), n < p, is a corank 1
Ae-codimension 1 map-germ, then the following are true.

(i) f is A -equivalent to a map of the form,

(u1, . . . , ul−1, v1, . . . , vl−1, w11, w12, . . . , wrl, x1, . . . , xn−l(r+2)+1, y)

�→
(
u1, . . . , ul−1, v1, . . . , vl−1, w11, w12, . . . , wrl, x1, . . . , xn−l(r+2)+1,

yl+1 +
l−1∑
i=1

uiy
i, yl+2 +

l−1∑
i=1

viy
i +yl

n−l(r+2)+1∑
i=1

x2
i ,

l∑
i=1

w1iy
i, . . . ,

l∑
i=1

wriy
i

)
,

where r = p− n− 1 and l+ 1 is the multiplicity of the germ. Conversely, any
such germ has Ae-codimension 1.

(ii) An Ae-versal unfolding is given by unfolding with the addition of the
term λyl to the (p−rl−1)th component function, i.e. the term beginning yl+2.

(iii) The germ is precisely l + 2-determined.

The proof of Theorem 3.1 is given in the rest of this section. From the
theorem one immediately deduces the following.

Corollary 3.2. Corank 1 Ae-codimension 1 map-germs from Cn to Cp,
n < p, which are K -equivalent are A -equivalent.

Remark 3.3. The squared terms in x and the unfolding parameter term
yl show that a map of the above form is an augmentation of the form where
n = l(r + 2)− 1.

Mather’s classification of stable singularities held for real and complex
germs and obviously we would like a real version of the above theorem. Calcu-
lations and classifications in low dimensions suggest the following statement.

Conjecture 3.4. Suppose f : (Rn, 0) → (Rp, 0) is a corank 1 Ae-
codimension 1 real map-germ with n < p. Then f is A -equivalent to a
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germ of the form

(u, v,w, x, y) �→
(
u, v,w, x, yl+1 +

l−1∑
i=1

uiy
i,

yl+2 +
l−1∑
i=1

viy
i + yl

n−l(r+2)+1∑
i=1

±x2
i ,

l∑
i=1

w1iy
i, . . . ,

l∑
i=1

wriy
i

)
,

That is, it has the same form as the complex version, but the sum of squares
arising from the repeated use of augmentation may have negative terms.

3.1. Proof of Theorem 3.1 parts (i) and (ii)

To prove part (i) of Theorem 3.1 we use results from the classification in the
p = n + 1 case given in [2]. Let us follow the method there and begin by
defining a map f l : (C2l−1, 0) → (C2l , 0) by

f l(u, v, y) =
(
u, v, yl+1 +

l−1∑
i=1

uiy
i, yl+2 +

l−1∑
i=1

viy
i

)
.

By Lemma 4.1 of [2] the Ae-codimension is 1 and the Ae-tangent space is
given there as

TAef
l = θ(f l)\ {

yl∂/∂Y2, y
l−1∂/∂v1, . . . , y∂/∂vl−1

}
+ 〈

yl−1∂/∂v1 + yl∂/∂Y2, . . . , y∂/∂vl−1 + yl∂/∂Y2
〉
,

where we label the last two coordinates of C2l with Y1 and Y2. Let us now
define an extension of this map, f l,r : (C2l−1+rl , 0) → (C2l+r(l+1), 0):

f l,r (u, v,w, y)

=
(
u, v, yl+1 +

l−1∑
i=1

uiy
i, yl+2 +

l−1∑
i=1

viy
i, w,

l∑
i=1

w1iy
i, . . . ,

l∑
i=1

wriy
i

)
.

By the proof of Proposition 3.7 of [8] it is known thatf l,r is finitely determined.
We can do better than this as the following shows.

Theorem 3.5. The map f l,r has Ae-tangent space equal to

TAef
l,r = θ(f l,r )\ {

yl∂/∂Y2, y
l−1∂/∂v1, . . . , y∂/∂vl−1

}
+ 〈

yl−1∂/∂v1 + yl∂/∂Y2, . . . , y∂/∂vl−1 + yl∂/∂Y2
〉
.
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Proof. One can prove this via a standard calculation involving Nakayama’s
lemma.

Hence, f l,r has Ae-codimension equal to 1 with unfolding given by λyl

added to the term beginning yl+2. So augmentation of f l,r will produce a map
of the form in Theorem 3.1.

The maps f l,r have the following useful property.

Lemma 3.6. The A -orbit of f l,r is open in its K -orbit.

Proof. For simplicity let the dimension of the source be n and that of the
target be p. Denote the normal space of the G-orbit by NG and the extended
one by NGe. It is easy to calculate that dimNKe(f

l,r ) = p+ 1. Thus we find
that dimNAe = dimNKe − p. But dimNAe = dimNA − n (as f l,r is not
A -stable, see [14] p. 510) and dimNKe = dimNK + (p − n) ([14] p. 509).
So dimNA = dimNK , implying that the A -orbit is open in the K -orbit.

It should be noted that this is not true for an augmentation of f l,r as one
can easily calculate using the same method as in the proof above.

Proof of Theorem 3.1. We generalise the proof of Proposition 4.3 of [2]
which is essentially the p = n+1 case. Suppose that f : (Cn, 0) → (Cp, 0) is
a corank 1 Ae-codimension 1 map-germ, n < p, with multiplicity l + 1. The
versal unfoldingG : (Cn×C, 0) → (Cp ×C, 0) is an n− l(p−n+1)+1-fold
prism on a minimal stable map-germ of multiplicity l+1. Thus by Theorem 2.7
of [2], quoted above as Lemma 2.3, f is the n − l(p − n + 1) + 1-fold
augmentation of an Ae-codimension 1, corank 1, multiplicity l+ 1 map-germ
f ′ : (C2l+l(p−n+1)−1, 0) → (C2l+(p−n−1)(l+1), 0). Such a map is obviously K -
equivalent to the map f l,p−n−1. The A -orbit of f l,p−n−1 is open in its K -orbit
by Lemma 3.6 and by Lemma 3.12 of [2] there is at most one open A -orbit
in a given complex contact class, thus we conclude that f ′ and f l,p−n−1 are
A -equivalent.

The n−l(p−n+1)+1-fold augmentation of f l,p−n−1 is A -equivalent to f
by Theorem 2.2: the A -equivalence class of the augmentation of codimension
1 map-germ g depends only on the A -equivalence class of g.

3.2. Proof of Theorem 3.1 part (iii): Order of determinacy

To find the order of determinacy we use the techniques of [5], in particular
Proposition 3.8 there, which we summarise in the next proposition. We now
need some more notation. Suppose we have a finitely A -determined map
h : (Cn, 0) → (Cp, 0). Let OX denote the ring of function germs at 0 for the
germ (X, 0). The tangent space TAeh is a h∗(OCp ) submodule of (OCn )

p. Let
ei denote the standard basis vector for the ith copy of OCn . Denote the maximal
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ideal of OCd by md and use the standard tf and wf notation of Singularity
Theory, see [14].

Proposition 3.7. Let f : (Cn, 0) → (Cp, 0) be a map-germ and let

D ⊂ tf (θCn )+ wf (θCp )+ ms
nθf

be an OCn -module such that

ms
nθf ⊂ tf (mnθCn )+ f ∗(mp) ·D + ms+1

n θf .

Then, f is s-determined.

Let f be as in Theorem 3.1. Then by calculation one can see that TAef has
the same type of structure as TAe(f

l,r ): Let m = p − rl − 1 then ylem, and
yl−iel+i−1, i = 1, . . . , l − 1 are missing from TAef , but ylem + yl−iel+i−1

is included. Thus if we let mn−1 denote the ideal generated by the variables
other than y and

D = 〈On, . . . ,On,mn−1On + 〈yl〉On, . . . ,mn−1On + 〈y2〉On,

On,mn−1On + 〈yl+1〉On,On, . . . ,On〉
where the mn−1On +〈yj 〉On terms begin at position l, then D is an On-module
contained in TAef .

The non-trivial problem is to show that, for all i, yl+2ei is in the right hand
side of the second inclusion in the proposition. For the positions correspond-
ing to the functions u1, . . . , ul−1, v1, . . . , vl−1 and w11, . . . , wrl we can use
elements of tf (mnθCn ) modulo ml+3

n . For the r extension terms and position
2l − 1 we use yl+2 + ∑l−1

i=1 viy
i , elements of tf and f ∗(mp) · D. For the

remaining position we use y∂f/∂y and terms in tf and f ∗(mp) ·D.
So f is at least (l + 2)-determined. This is in fact exact. The (l + 1)-jet is

not finitely A -determined as can be seen by using the method of [11] to show
that the (l + 1)th multiple point space has dimension greater than that arising
from a finitely determined map-germ.

4. Concatenation

In [2] there are two methods for producing multi-germs from germs with fewer
branches: monic and binary concatenation. The monic concatenation process
below is a generalisation of the version in [2] for thep = n+1 case. The binary
concatenation process is almost the same as in [2]. To avoid overcomplicated
statements and proofs we ask for the codimensions of the images of the two
maps used in the concatenation to be the same. Without this the resulting germ
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has branches with different source dimensions; this is an interesting situation
but one rarely treated in Singularity Theory.

In [3] Damon uses the notion of product union to classify multi-germs. Us-
ing the two concatenation constructions is equivalent to his method. However
concatenations allow us to produce a clearer classification list and also allow
us to describe multiple point spaces in a simpler manner than would otherwise
be the case, see [9].

4.1. Monic concatenation

Monic concatenation produces a new germ by adding an immersive branch to
the stable unfolding of a map.

Definition 4.1. Let f : (Cn, S) → (Cp, 0), n < p, be a multi-germ of
finite Ae-codimension with a stable unfolding on the single parameter λ. Let
r = p − n − 1. Then the monic concatenation of f with respect to F is the
multi-germ CF (f ) : (Cn+r+1, S ∪ {0}) → (Cp+r+1, 0) given by

(x, x ′, λ) �→ (fλ(x), x
′, λ)

y �→ (y, 0, . . . , 0),

where x = (x1, . . . , xn), x ′ = (x ′
1, . . . , x

′
r ) and y = (y1, . . . , yn+r+1).

Note that p = n + r + 1 and so the zeroes in the lower branch above
correspond to the coordinates x ′ and λ in the upper branch. The definition is
different to that given in [2] and generalises their C0 operation for the case
p = n+ 1.

The real picture of the example of the monic concatenation of the standard
cusp x �→ (x2, x3) unfolded by (x2, x3 − λx, λ) is shown in Figure 2.

C

Figure 2. Monic concatenation of a cusp.

The next proposition is analogous to statements in Theorem 2.2 on augment-
ation.

Proposition 4.2. Suppose that f : (Cn, S) → (Cp, 0), n < p, is a
finitely A -determined multi-germ with a 1-parameter stable unfolding. Then
the following are true.
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(i) The Ae-codimension of CF (f ) is equal to the Ae-codimension of f .

(ii) If the Ae-codimension of f is one, then under A -equivalence CF (f ) is
independent of the choice of the unfolding F . Hence we use the notation
C(f ).

(iii) If f has Ae-codimension one and f ∼A f ′, then C(f ) ∼A C(f ′).

Proof. The proofs of the first two statements are just trivially modified
versions of the proofs of Theorems 3.1 and 3.3 in [2]. The proof of the third
statement follows from the fact that f and f ′ can be induced from the same
unfolding.

For Ae-codimension one germs we can apply this concatenation operation
repeatedly without being concerned about the precise unfolding used and so
we define Cm(f ) to be the m-fold concatenation of f , where C0(f ) = f .

4.2. Binary Concatenation

Suppose that f : (Cn, S) → (Cp, 0), n < p, and g : (Cn′
, T ) → (Cp′

, 0), n′ <
p′, are finitely A -determined map-germs with 1-parameter stable unfoldings
and p − n = p′ − n′. Let F(x, λ) = (fλ(x), λ) and G(y,µ) = (gµ(y), µ)

be the unfoldings of f and g respectively. Purely for reasons of exposition the
following definition is slightly less general than in [2].

Definition 4.3. The binary concatenation off and gwith respect toF and
G, denoted BF,G(f, g), is the multi-germ BF,G(f, g) : (Cn+p′+1, S ∪ T ) →
(Cp+p′+1, 0) given by

(X, x, u) �→ (X, fu(x), u)

(y, Y, u) �→ (gu(y), Y, u).

It is difficult to draw real (non-schematic) pictures of binary concatenation.
The only relevant example possible is the concatenation of two copies of the
bi-germ which maps two distinct isolated points to the origin in C. In Figure 3
it is shown that this bi-germ can be unfolded to give a map with the axes in C2

as its image. The two copies then combine to give a quadruple point.
We now state some important results from [2] about the binary concatenation
process.

Proposition 4.4. The following are true.

(i) ([2] Proposition 3.8) We have cod(BF,G(f, g)) ≥ cod(f ) × cod(g),
with equality if λ ∈ dλ(Derlog(D(F ))) or µ ∈ dµ(Derlog(D(G))),
and where Derlog(D(F )) is the module of liftable vector fields over F
(see [4] for the properties of this module).
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Figure 3. Binary concatenation of two simple bi-germs.

(ii) ([2] Proposition 3.11) Suppose that BF,G(f, g), f and g all have Ae-
codimension 1. Then, up to A -equivalence, BF,G(f, g) is independent
of the choice of unfoldings F andG. Hence we use the notationB(f, g).

(iii) Suppose that B(f, g), f and g all have Ae-codimension 1. If f ∼A f ′
and g ∼A g′, then B(f ′, g′) ∼A B(f, g).

Remark 4.5. Though it is not stated there Proposition 3.11 of [2] needs the
extra condition that the concatenation has Ae-codimension 1.

Remark 4.6. Asking for B(f, g), to have codimension 1 means asking for
BF,G(f, g) to have Ae-codimension 1 for some (and hence any) unfoldings F
and G.

In view of (i) above and unlike the other two methods of creating new germs,
we do not yet have a guarantee that the Ae-codimension of B(f, g) is equal
to 1 when f and g are Ae-codimension 1. For corank 1 mono-germs we have
the following.

Theorem 4.7. Suppose that f : (Cn, 0) → (Cp, 0), n < p, has both
corank and Ae-codimension equal to 1, that g : (Cn′

, S) → (Cp′
, 0) is a

multi-germ with a 1-parameter stable unfolding G and p′ − n′ = p− n. Then
cod(BF,G(f, g)) = cod(g).

Proof. From Theorem 3.1 we know that the map f and its unfolding F

are quasihomogeneous. The image of F is quasihomogeneous and hence the
usual Euler vector field is in Derlog(D(F )). Since the unfolding parameter,
call it λ, has non-zero weight we deduce that λ ∈ dλ(Derlog(D(F ))) and so
by Proposition 4.4 we have the required equality.
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5. The three operations commute and the binary one is associative

We have 3 operations, A, B and C. It is natural to look for relations between
these and in this section we show that for codimension 1 maps they are pairwise
commutative and binary concatenation is associative. We also show that a bin-
ary concatenation of a particularly special bi-germ and a germ f is equivalent
to the 2-fold monic concatenation of f .

Throughout this section f : (Cn, S) → (Cp, 0) and g : (Cn′
, T ) → (Cp′

, 0)
are Ae-codimension 1 multi-germs with n < p and p′ − n′ = p − n.

Figure 4 shows an example of the commutation of the processes of aug-
mentation and monic concatenation.

A

C C

A

Figure 4. Commutation of A and C.

Theorem 5.1. TheA andC operations commute: A(C(f )) ∼A C(A(f )).

Proof. The assumption that f is codimension 1 implies, by Proposition
4.2, that the A -class of a monic concatenation is independent of the unfolding
used.

Suppose that F(x, λ) = (fλ(x), λ) is a versal unfolding of f with f0(x) =
f (x). Then C(f ) is given by

(x, x ′, λ) �→ (fλ(x), x
′, λ),

y �→ (y, 0, . . . , 0),
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where x ′ = (x ′
1, . . . , x

′
r ), (r = p − n − 1 as usual) and y = (y1, . . . , yp). We

can unfold with the map

(x, x ′, λ, µ) �→ (fλ(x), x
′, λ, µ),

(y, µ) �→ (y, 0, . . . , 0, µ, µ).

By Mather’s criterion for multi-germs ([12]) this is stable and so A(C(f )) can
be given by

(x, x ′, λ, µ) �→ (fλ(x), x
′, λ, µ),

(y, µ) �→ (y, 0, . . . , 0, µ2, µ).

Now we turn to CA(f ). The map

(x, λ, µ) �→ (fλ2+µ(x), λ, µ)

is a stable unfolding of A(f ) and so we can construct CA(f ):

(x, λ, x ′, µ) �→ (fλ2+µ(x), λ, x
′, µ),

(y, ỹ) �→ (y, ỹ, 0, . . . , 0).

The right change of coordinates given by µ′ = λ2 + µ produces

(x, λ, x ′, µ′) �→ (fµ′(x), λ, x ′, µ′ − λ2),

(y, ỹ) �→ (y, ỹ, 0, . . . , 0).

An equally simple left change of coordinates produces

(x, λ, x ′, µ′) �→ (fµ′(x), λ, x ′, µ′),

(y, ỹ) �→ (y, ỹ, 0, . . . , 0, ỹ2).

By exchanging coordinates in the target and relabelling we obtain A(C(f )) as
described earlier.

Augmentation commutes with binary concatenation.

Theorem 5.2. Suppose that B(f, g) or B(A(f ), g) is Ae-codimension 1.
Then the A and B operations commute: A(B(f, g)) ∼A B(A(f ), g).

Proof. Take as an unfolding of B(f, g) the map

(X, y, u, v) �→ (X, fu(y), u− v, v)

(x, Y, u, v) �→ (gu(x), Y, u, v).
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Then A(B(f, g)) is given by

(X, y, u, v) �→ (X, fu(y), u− v2, v)

(x, Y, u, v) �→ (gu(x), Y, u, v).

Turning our attention to B(A(f ), g) the components of A(f ) are (fλ2(y), λ)

and (fλ2+µ(y), λ, µ) is a versal unfolding. So B(A(f ), g) can be given by

(X, y, λ, µ) �→ (X, fλ2+µ(y), λ, µ)

(x, Z, u) �→ (gu(x), Z, u).

We make the change of coordinates µ′ = λ2 + µ to get

(X, y, λ, µ′) �→ (X, fµ′(y), λ, µ′ − λ2)

(x, Z, u) �→ (gu(x), Z, u).

This is the same as the description of A(B(f, g)) given above (the coordinates
Z correspond to the coordinates Y and v), and shows that A(B(f, g)) is A -
equivalent to B(A(f ), g).

Thus for these particular unfoldings A(B(f, g)) ∼A B(A(f ), g). How-
ever, by assumption one of these is codimension 1 (and hence so is the other).
Therefore we conclude from Proposition 4.4 that the unfoldings used to pro-
duce the binary concatentions are not significant.

The binary and monic concatenation processes also commute.

Theorem 5.3. Suppose thatB(f, g) orB(C(f ), g) has Ae-codimension 1.
Then the B and C operations commute: C(B(f, g)) ∼A B(C(f ), g).

Proof. As in the previous theorem we show the equivalence for certain
unfoldings and then by the assumption that the maps are codimension 1 we
can assume that the operations are independent of the unfoldings chosen.

Suppose that we have versal unfoldings of f and g given by (fλ(x), λ) and
(gµ(y), µ) respectively. Then C(f ) is given by

(x, x ′, λ) �→ (fλ(x), x
′, λ)

z �→ (z, 0, . . . , 0),

which can be versally unfolded with

(x, x ′, λ, ν) �→ (fλ(x), x
′, λ, ν)

(z, ν) �→ (z, 0, . . . , 0, ν, ν),
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to yield B(C(f ), g) as

(X, x, x ′, λ, ν) �→ (X, fλ(x), x
′, λ, ν)

(X, z, ν) �→ (X, z, 0, . . . , 0, ν, ν)

(y, Y, ν) �→ (gν(y), Y1, Y2, Y3, ν),

where Y1 is a set of p coordinates, Y2 a set of r coordinates and Y3 is a single
coordinate.

By the left change of coordinates given by subtracting the last coordinate
from the second to last we produce

(X, x, x ′, λ, ν) �→ (X, fλ(x), x
′, λ− ν, ν)

(X, z, ν) �→ (X, z, 0, . . . , 0, 0, ν)

(y, Y, ν) �→ (gν(y), Y1, Y2, Y3 − ν, ν).

Using the right change of coordinates λ = - + ν and Y3 = Ỹ3 + ν we find
that B(C(f ), g) is equivalent to

(X, x, x ′,-, ν) �→ (X, f-+ν(x), x
′,-, ν)

(X, z, ν) �→ (X, z, 0, . . . , 0, 0, ν)

(y, Y, ν) �→ (gν(y), Y1, Y2, Ỹ3, ν).

This is equivalent to C(B(f, g)) since B(f, g) can be induced from the stable
unfolding given by

(X, x,-, ν) �→ (X, f-+ν(x), ν,-)

(y, Y1, Ỹ3, ν) �→ (gν(y), Y1, ν,-),

where - is the unfolding parameter. Then C(B(f, g)) is A -equivalent to the
earlier description by a trivial permutation of coordinates in the target.

We now show that the B operation is associative. Assume that h is an Ae-
codimension 1 multi-germ with the codimension of its image the same as for
f and g.

Theorem 5.4. Suppose that B(f, g) and B(B(f, g), h) have Ae-codimen-
sion 1. Then B is associative: B(f, B(g, h)) ∼A B(B(f, g), h).

Proof. Again as the maps are codimension 1 we can assume that the oper-
ations are independent of the unfoldings chosen. Suppose that we have versal
unfoldings of f , g and h given by (fλ(x), λ), (gµ(y), µ) and (hη(z), η) re-
spectively.
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Then, B(B(f, g), h) can be given by

(X1, X2, x, u,w) �→ (X2, X1, fu(x), u,w)

(Y1, Y2, y, u,w) �→ (Y2, gu(y), Y1, u+ w,w)

(z, Z1, Z2, Z3, w) �→ (hw(z), Z1, Z2, Z3, w).

By letting u = v − w in the source coordinates for the second row and by
exchanging the last two coordinates in the target we produce

(X1, X2, x, u,w) �→ (X2, X1, fu(x), w, u)

(Y1, Y2, y, w, v) �→ (Y2, gv−w(y), Y1, v, w)

(z, Z1, Z2, Z3, w) �→ (hw(z), Z1, Z2, w,Z3).

Now we describe B(f, B(g, h)). The unfolding (g−w(y),w) is also a stable
unfolding of g and so we can construct B(g, h) by

(Y2, y, w) �→ (Y2, g−w(y),w)

(z, Z1, w) �→ (hw(z), Z1, w).

A stable unfolding of this is

(Y2, y, w, v) �→ (Y2, gv−w(y),w, v)

(z, Z1, w, v) �→ (hw(z), Z1, w, v).

From this we can produce B(f, B(g, h)). By relabelling this is the form for
the concatenation B(B(f, g), h) given above.

We finish this section with a relation between B and C when one of the
germs is a special bi-germ that will be of interest later.

Theorem 5.5. Let g : (Cn, {0, 0}) → (C2n+1, 0), n ≥ 0, be the Ae-
codimension 1 bi-germ

(w1, . . . , wn) �→ (w1, . . . , wn, 0, . . . , 0, 0)

(z1, . . . , zn) �→ (0, . . . , 0, z1, . . . , zn, 0),

(this gives two n-planes intersecting in a single point), and let f : (Cn′
, S) →

(Cn′+n+1, 0), n′ ≥ 0, be an Ae-codimension 1 multi-germ.
Then B(f, g) ∼A C2(f ), and has Ae-codimension 1.

Proof. By Proposition 4.4(i) and an elementary calculation for g we can
show that B(f, g) is Ae-codimension 1 and so by (ii) of the same proposition
we can assume that this concatenation is independent of the unfoldings chosen.
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We can versally unfold the bi-germ with

(w1, . . . , wn, λ) �→ (w1, . . . , wn, 0, . . . , 0, λ, λ)

(z1, . . . , zn, λ) �→ (0, . . . , 0, z1, . . . , zn, 0, λ).

Then B(f, g) can be given by

(X, x, λ) �→ (X1, X2, X3, fλ(x), λ)

(w1, . . . , wn, Y, λ) �→ (w1, . . . , wn, 0, . . . , 0, λ, Y, λ)

(z1, . . . , zn, Y, λ) �→ (0, . . . , 0, z1, . . . , zn, 0, Y, λ),

where X1, X2 and Y are each a collection of n coordinates and X3 is a single
coordinate.

Now consider C(f ) which is given by

(x,X2, u) �→ (fu(x),X2, u)

Y �→ (Y, 0, . . . , 0, 0),

and can be unfolded with

(x,X2, u, λ) �→ (fu(x),X2, u, λ)

(Y, λ) �→ (Y, 0, . . . , 0, λ, λ).

This is stable by Mather’s criteria for stability. So C(C(f )) is given by

(X1, x,X2, u, λ) �→ (fu(x),X2, u,X1, λ)

(X1, Y, λ) �→ (Y, 0, . . . , 0, λ,X1, λ)

(Z1, Z2, Z3) �→ (Z1, Z2, Z3, 0, . . . , 0, 0),

which by exchanging left coordinates and relabelling gives B(f, g) above.

6. Classification of multi-germs

In this section we classify corank 1 Ae-codimension 1 multi-germs f : (Cn, S)

→ (Cp, 0), n < p, by constructing them through augmentation and concaten-
ation of a bi-germ and primitive Ae-codimension 1 mono-germs. The initial
part of the proof is similar to that given in [2] for corank 1 codimension 1
map-germs with n ≥ p − 1 and so we only highlight the differences.

First we need to make some definitions and state some results from [2].
Suppose that f : (Cn, S) → (Cp, 0) is a multi-germ with branches f 1, . . . , f s .
Then the analytic stratum of f is the submanifold in the target along which
f is trivial. If f is stable, then define τ(f ) to be the tangent space at 0 of the
analytic stratum of f .
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Theorem 6.1.
(i) (Corollary 5.7 of [2]) If f has Ae-codimension 1, then for any proper

subset S ′ of S the restriction of f to (Cn, S ′) → (Cp, 0) is stable.

(ii) (Corollary 5.13 of [2]) Suppose that h = {f, g} is a primitive Ae-
codimension 1 multi-germ. Then there is a decomposition T0(Cp) =
τ(f )⊕ τ(g)⊕ C.

The following proposition is a generalisation of the p = n + 1 case in
Proposition 5.16 of [2].

Proposition 6.2. Suppose that h = {f, g} is a primitive Ae-codimension
1 multi-germ such that g is not transverse to τ(f ). Then the following two
cases can occur.

(i) If f and g are transverse, then g has exactly one immersive branch
and h is A -equivalent to C(f0), where f is a versal unfolding of the
Ae-codimension 1 germ f0.

(ii) If f and g are not transverse, then h is A -equivalent to the bi-germ
given by two n-planes intersecting in a point in (2n+ 1)-space.

Proof. (i) In the same way as in the proof of Proposition 5.16 in [2] we
prove that g has one branch and that it is a prism on a germ of rank 0. Hence,
as n < p it is an immersion.

Using right and left changes of coordinates we put g into the form y �→
(y, 0, . . . , 0). Then using df i(TxiC

n)+dg(TxiC
n) = T0(Cp), where xi ∈ S, we

can put f into the form (x, Y, u) �→ (f (x, Y, u), Y, u). As, by Theorem 6.1(ii),
T0(Cp) = τ(g)⊕τ(f )⊕C, we can assume that f is trivial in the Y coordinates
and so by a change of coordinates h is A -equivalent to

(x, Y, u) �→ (f ′(x, u), Y, u)
y �→ (ϕ(y), 0, . . . , 0),

for some f ′ and ϕ. Through a change of coordinates we can produce the form

(x, Y, u) �→ (f ′′(x, u), Y, u)
y �→ (y, 0, . . . , 0).

That is, {f, g} is A -equivalent to C(f0) where f0(x) = f ′′(x, 0). By The-
orem 4.2(i) the Ae-codimension of f0 is 1. Since (x, Y, u) �→ (f ′′(x, u), Y, u)
is stable by Theorem 6.1(i) it must be an A -versal unfolding of f0.

(ii) If f and g are not transverse, then the argument above reverses and f

has exactly one immersive branch as well. Now as T0(Cp) = τ(g)⊕ τ(f )⊕C
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we deduce that h is A -equivalent to the bi-germ

(w1, . . . , wn) �→ (w1, . . . , wn, 0, . . . , 0, 0)

(z1, . . . , zn) �→ (0, . . . , 0, z1, . . . , zn, 0).

In particular, p = 2n+ 1.

If f is transverse to τ(g) and g is transverse to τ(f ), then, subject to extra
conditions on our map, we can construct h by binary concatenation. Using
the proof of Theorem 5.21 of [2] and the observation that its statement can be
modified so that we require the existence of an unfolding parameter of positive
weight for g0 we have the following.

Theorem 6.3. If h = {f, g} is a multi-germ of Ae-codimension 1, in
which f is transverse to τ(g) and g is transverse to τ(f ), and if either the
pullback of f by τ(g) or the pullback of g by τ(f ) is quasihomogeneous with
a unfolding parameter of positive weight, then {f, g} is equivalent to a binary
concatenation B(f0, g0); that is, to a germ of the form

(X, y, u) �→ (X, fu(y), u)

(x, Y, v) �→ (gv(x), Y, v).

We are now in a position to classify corank 1 Ae-codimension 1 maps germs
in terms of augmentations and concatenations of primitive Ae-codimension 1
mono-germs and a special Ae-codimension 1 bi-germ.

The statement, included in the following, that h is quasihomogeneous and
can be constructed from the 3 operations, was proved in [2] in the casep = n+1
with (n, p) in the nice dimensions. Here we are more precise about how the
construction is made, we assume more generally that n < p and also drop the
nice dimensions condition.

Theorem 6.4. Suppose that h : (Cn, S) → (Cp, 0), n < p, is a corank 1
multi-germ of Ae-codimension 1. Then, the following are true.

(i) The map-germ h is A -equivalent to one of the following distinct map-
pings:

(a) AmCsg, (all branches non-singular),
(b) AmCsf1, (exactly one singular branch),
(c) AmCsB(f1, B(f2, B(f3, . . . , B(ft−1, ft )))), (multiple singular

branches),

where fi : (Cn′
, 0) → (Cn′+p−n, 0) is a primitive corank 1 Ae-codimension 1

mono-germ; g is the bi-germ given by two (p − n− 1)-planes intersecting at
a single point in 2(p − n)− 1 space; m, s, n′ ∈ N ∪ {0}; and t ≥ 2.



on the classification of complex multi-germs of corank . . . 221

(ii) The map h is quasihomogeneous.

(iii) Conversely, any map of the form above has Ae-codimension 1.

Proof. That the mappings are distinct is obvious. As in [2] we use induction
on the number of branches but in contrast we work by removing one branch at
a time until we reduce to a mono-germ or the special bi-germ. The statements
are true for |S| = 1 by Theorem 3.1. Thus, suppose the statements (i) and
(ii) are true for |S| ≤ k and that h is a multi-germ with k + 1 branches. Then
h = {f, g} where g is a mono-germ and f has k branches. By Lemma 2.3 we
can assume that h is primitive. We have two cases.

(a) g not transverse to τ(f ): If f and g are transverse, then by Proposi-
tion 6.2 g is an immersive branch and h is equivalent to C(f ′) where f ′ is a
codimension 1 map germ arising from f .

If f and g are not tranverse, then h is the augmentation of the bi-germ
above, again by Proposition 6.2.

(b) g is tranverse to τ(f ) and f is transverse to τ(g): The germ g is quasi-
homogeneous with positive unfolding weight by Theorem 3.1 and so by The-
orem 6.3 h is equivalent to the binary concatenation of two codimension 1
germs. By the inductive hypothesis these two germs are quasihomogeneous.
The concatenation of two such germs must also have this property.

Using the above we see that any corank 1 codimension 1 multi-germ can
be constructed from primitive mono-germs or the special bi-germ by the A, B
and C processes. Using Theorems 5.1, 5.2 and 5.3 on the commutativity of the
operations we can move any A and C operations to the front of our form for h.
We can then use the associativity of B as described in Theorem 5.4 to produce
our desired form. If the special bi-germ occurs in a binary concatenation, then
we use Theorem 5.5 to replace it with two monic concatenations.

Part (ii) follows from (i) as clearly quasihomogeneity is preserved under the
augmentation and concatenation operations and the mono-germs and bi-germ
are both obviously quasihomogeneous.

Part (iii) follows from Theorem 2.2(i), Proposition 4.2(i), and Theorem 4.7.

Remarks 6.5. (i) This formulation reveals more about the structure of cor-
ank 1 Ae-codimension 1 singularities with p = n+1 than in [2]. For example,
it is not obvious from there that the bi-germ need only be used in creating maps
without singular branches, nor that the order of monic and binary concatena-
tions is unimportant.

(ii) Using this theorem it can be seen that one can encode the information
needed to construct a codimension 1 multi-germ in a finite set of non-negative
integers: the number of augmentations, the number of monic concatenations,
the number of binary concatenations, the number of bi-germs and the multi-
plicities of the mono-germs.
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(iii) It follows from the theorem that for complex corank 1 Ae-codimension
1 multi-germs with n < p we have a situation similar to the stable case: Ae-
codimension one maps that are K -equivalent are A -equivalent. As noted in
the introduction this does not hold in the real case.

(iv) It would be nice to conjecture that the real corank 1 Ae-codimension 1
map-germs have a form similar to that in the theorem. However, for real maps
the A -equivalence class of BF,G(f, g) depends on the unfoldings used, see
Example 3.10 of [2]. The precise dependence is not entirely clear at the time
of writing, and I hope to return to this problem in a subsequent paper.

From the classification it is possible to calculate the number of Ae-codimen-
sion 1 multi-germs for each pair of dimensions (n, p). It would be interesting
to give a formula for this number.

In one of the founding papers of modern Singularity Theory, [15], Whitney
classified the stable singularities from n-space to 2n-space. We can do the same
for Ae-codimension 1 maps in the complex case.

Corollary 6.6. Suppose that f : (Cn, S) → (C2n, 0), n > 0, is an Ae-
codimension 1 map-germ. Then f is A -equivalent to one of the following
distinct maps:

(i) C(g), if n = 1,

(ii) A(g), n ≥ 1,

(iii) (x1, . . . , xn−1, y) �→ (x1, . . . , xn−1, y
2, y3, x1y, . . . xn−1y), n ≥ 1,

where g is the special bi-germ produced by two n − 1-planes intersecting in
(2n− 1)-space.

Proof. A miniversal unfolding of f is a stable map fromm-space to (2m−
1)-space and so is corank 1. By Whitney’s well known classification (also in
[15]) we have two m-planes intersecting transversely, a generalised Whitney
umbrella, and if m = 2 we have three planes intersecting transversely in 3-
space. As corank and multiplicity are preserved by unfolding we can deduce
the required codimension 1 germs from the theorem.
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