NOTE ON COFIBRATIONS

ARNE STRØM

In the first section of this note it is proved that cofibrations are homeomorphisms, and a characterization of closed cofibrations is given. The second section contains the proof of a homotopy lifting-extension theorem generalizing a result on relative CW-complexes.

All functions considered will be continuous.

1.

DEFINITION. A (Hurewicz) fibration is a map $p: E \to B$ with the property that for any map $f: X \to E$ and any homotopy $F: X \times I \to B$ such that F(x,0) = pf(x) for all $x \in X$, there exists a homotopy $\overline{F}: X \times I \to E$ such that $p\overline{F} = F$ and $\overline{F}(x,0) = f(x)$ for all $x \in X$.

A cofibration is a map $j:A \to X$ such that for any map $f:X \to Y$ and any homotopy $\overline{F}:A \times I \to Y$ such that $\overline{F}(a,0)=fj(a)$ for all $a \in A$, there exists a homotopy $F:X \times I \to Y$ such that $F(j \times 1_I) = \overline{F}$ and F(x,0) = f(x) for all $x \in X$.

If A is a subspace of a space X such that the inclusion map $A \subseteq X$ is a cofibration, the pair (X,A) is called a *cofibered pair* or is said to possess the *absolute homotopy extension property* (AHEP). A necessary condition for (X,A) to be a cofibered pair is the existence of a retraction

$$r: X \times I \rightarrow (X \times 0) \cup (A \times I)$$
.

If A is closed, this condition is also sufficient.

The following theorem shows that the only cofibrations are cofibered pairs.

THEOREM 1. If $j:A \to X$ is a cofibration, then j is a homeomorphism $A \approx j(A)$.

PROOF. Let $j:A \to X$ be a cofibration and consider the mapping cylinder Z of j, that is, the quotient space of the topological sum $(X \times 0)\mathbf{v}(A \times I)$ obtained by identifying $(a,0) \in A \times I$ with $(j(a),0) \in X \times 0$

for each $a \in A$. Denote by q the quotient map $(X \times 0) \vee (A \times I) \to Z$. There is a continuous map $i: Z \to X \times I$ defined by

$$iq(x,0) = (x,0), x \in X,$$

 $iq(a,t) = (j(a),t), a \in A, t \in I.$

Define maps $f: X \to Z$ and $\overline{F}: A \times I \to Z$ by

$$f(x) = q(x,0), \quad \overline{F}(a,t) = q(a,t).$$

Because j is a cofibration there exists a map $F: X \times I \to Z$ such that F(j(a),t) = q(a,t) and F(x,0) = q(x,0) for all $a \in A$, $t \in I$, and $x \in X$. Then $Fi = 1_Z$, and i is, therefore, a homeomorphism of Z onto $i(Z) = (X \times 0) \cup (j(A) \times I)$. Also, $q \mid A \times 1$ is a homeomorphism of $A \times 1$ onto $q(A \times 1)$, and consequently $iq \mid A \times 1$ is a homeomorphism of $A \times 1$ onto $iq(A \times 1) = j(A) \times 1$.

Next we shall prove a theorem which generalizes 3.1 of [1].

THEOREM 2. Let A be a closed subspace of a topological space X. Then (X,A) is a cofibered pair if and only if there exist

- (i) a neighborhood U of A which is deformable in X to A rel A (that is, there exists a homotopy $H: U \times I \to X$ such that H(x,0) = x, H(a,t) = a, and $H(x,1) \in A$ for all $x \in U$, $a \in A$, $t \in I$), and
- (ii) a continuous function $\varphi: X \to I$ such that $A = \varphi^{-1}(0)$ and $\varphi(x) = 1$ for all $x \in X U$.

PROOF. Suppose that (X,A) is a cofibered pair. Then there exists a retraction

$$r: X \times I \rightarrow (X \times 0) \cup (A \times I)$$
,

and U, H and φ may be chosen as follows:

$$\begin{array}{l} U \, = \, \big\{ x \in X \, \, \big| \, \, pr_1 r(x,1) \in A \big\} \, , \\ H \, = \, pr_1 r \, \big| \, U \times I \, \, , \\ \varphi(x) \, = \, \sup_{t \in I} |t - pr_2 r(x,t)| \, \, , \end{array}$$

 pr_1 and pr_2 denoting projections on X and I, respectively.

Conversely, suppose that U, H and φ are given and satisfy the conditions of the theorem. Since A is closed it suffices to prove the existence of a retraction

$$r: X \times I \rightarrow (X \times 0) \cup (A \times I)$$
.

The required retraction may be constructed as follows.

(i) If
$$\varphi(x) = 1$$
, let $r(x,t) = (x,0)$.

(ii) If
$$\frac{1}{2} \le \varphi(x) < 1$$
, let $r(x,t) = (H(x, 2(1-\varphi(x))t), 0)$.

(iii) If
$$0 < \varphi(x) \le \frac{1}{2}$$
 and $0 \le t \le 2\varphi(x)$, let
$$r(x,t) = \left(H(x,t/(2\varphi(x))), 0\right).$$

(iv) If
$$0 < \varphi(x) \le \frac{1}{2}$$
 and $2\varphi(x) \le t \le 1$, let
$$r(x,t) = (H(x,1), t - 2\varphi(x)).$$

(v) If
$$\varphi(x) = 0$$
, let $r(x,t) = (x,t)$.

(This construction is that of [2].) The proof of continuity is straightforward and will be omitted.

2.

It was remarked in Section 1 that if (X,A) is a cofibered pair, then $(X\times 0)\cup (A\times I)$ is a retract of $X\times I$. In fact, we have the following stronger result.

LEMMA. If (X,A) is a cofibered pair, then $(X \times 0) \cup (A \times I)$ is a strong deformation retract of $X \times I$.

PROOF. Let $i:(X\times 0)\cup (A\times I)\subset X\times I$ be the inclusion map, and let

$$r: X \times I \rightarrow (X \times 0) \cup (A \times I)$$

be a retraction. A homotopy

$$D: ir \simeq 1_{X \times I} \operatorname{rel}(X \times 0) \cup (A \times I)$$

is given by

$$D(x,t,t') \, = \, \left(p r_1 r \big(x, (1-t')t \big), \, (1-t') \, p r_2 r(x,t) + t' \, t \right) \, .$$

Theorem 3. Suppose that $p: E \to B$ is a fibration, that A is a strong deformation retract of X, and that there exists a map $\varphi: X \to I$ such that $A = \varphi^{-1}(0)$. Then any commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{f''} & E \\
\downarrow & \cap & & \downarrow p \\
X & \xrightarrow{f'} & B
\end{array}$$

may be filled in with a map $f: X \to E$ such that pf = f' and fi = f''. f is unique up to homotopy rel A.

PROOF. By hypothesis there exists a retraction $r: X \to A$ and a homotopy

$$D: ir \simeq 1_X \operatorname{rel} A$$
.

If $f: X \to E$ is such that fi = f'', then $f \simeq fir = f''r$ rel A, which proves the last assertion of the theorem. Define $\overline{D}: X \times I \to X$ by

$$\overline{D}(x,t) = \begin{cases} D(x,t/(\varphi(x))), & t < \varphi(x), \\ D(x,1), & t \ge \varphi(x). \end{cases}$$

D is easily shown to be continuous. Because p is a fibration there exists a homotopy $\overline{F}: X \times I \to E$ such that $p\overline{F} = f'\overline{D}$ and $\overline{F}(x,0) = f''r(x)$ for each $x \in X$. f is given by $f(x) = \overline{F}(x,\varphi(x))$.

We are now in a position to prove

THEOREM 4. Suppose that $p: E \to B$ is a fibration, that (X,A) is a cofibered pair, and that A is closed. Then any commutative diagram

$$(X \times 0) \cup (A \times I) \xrightarrow{f} E$$

$$\uparrow p$$

$$X \times I \xrightarrow{F} B$$

may be filled in with a homotopy $\overline{F}: X \times I \to E$ such that $p\overline{F} = F$ and $\overline{F} \mid (X \times 0) \cup (A \times I) = f$.

PROOF. According to the Lemma $(X \times 0) \cup (A \times I)$ is a strong deformation retract of $X \times I$, and by Theorem 2 there exists a function $\psi \colon X \to I$ such that $A = \psi^{-1}(0)$. Define $\varphi \colon X \times I \to I$ by $\varphi(x,t) = t\psi(x)$. Then $(X \times 0) \cup (A \times I) = \varphi^{-1}(0)$, and the theorem follows from Theorem 3.

The condition that A be closed is not very restrictive. For instance, A will always be closed if X is Hausdorff. Not all cofibrations are closed, however. The most trivial example of a non-closed cofibration is the pair (X,a) where X is the two-point space $\{a,b\}$ with the trivial topology.

REFERENCES

- C. H. Dowker, Homotopy extension theorems, Proc. London Math. Soc. (3) 6 (1956), 100-116.
- G. S. Young, A condition for the absolute homotopy extension property, Amer. Math. Monthly 71 (1964), 896-897.

UNIVERSITY OF OSLO, NORWAY