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SOME INTEGRAL FORMULAS FOR
CLOSED HYPERSURFACES
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Dedicated to the author’s mother for her 70th birthday

Introduction. Let V" be an orientable hypersurface twice differen-
tiably imbedded in a Euclidean space E*+! of n+1 = 3 dimensions, and
let x4, ..., %, be the n principal curvatures at a point P of V*. The
r-th mean curvature M, of V™ at the point P is defined to be the r-th

elementary symmetric function of »,,..., », divided by the number of
terms, that is,
(0.1) (:)M,.:Z%l...%r, r=1,...,n.

It is convenient to define My = 1. Let p = p(P) denote the oriented
distance from a fixed point O in E™+! to the tangent hyperplane of V*
at P, and let d4 be the area element of V™ at P. The purpose of this
paper is first to show that for an orientable hypersurface V» with a
closed boundary V7! of dimension n—1 the integrals

S (M, p+M)d4, r=0,..,n—1,
vn

can be expressed as integrals over the boundary V»-!. These relations,
which have been obtained by W. Scherrer [5] for n = 2, are then used
to prove the following three theorems concerning closed hypersurfaces.

THEOREM 1. Let V* be a closed orientable hypersurface twice differen-
tiably imbedded in a Euclidean space E"*! of n+1 = 3 dimensions, then

(0.2) SM,+1pdA+SM,dA=o, r=0,...,n—1.
I7n Vn

For convex hypersurfaces, these formulas have been obtained by
H. Minkowski for n = 2 and by T. Kubota for a general n (for references
see [1, p. 64]).
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THEOREM 2. Let V™ satisfy the same conditions as in Theorem 1. Sup-
pose that there exist a point O in E"! and an integer s, 1 <s <n—1,
such that M,> 0 and either p < — M \[M, or p= — M, [M, at all
points of V. Then V™ is a hypersphere.

In the case where the hypersurface V" is convex, s = 1, and the equality
holds in the last condition, this theorem has been obtained by K.-P.
Grotemeyer [2] for n = 2 and by W. Siiss [6] for a general n. Grote-
meyer and Siiss have also shown that a convex hypersurface satisfying
a condition of the form (—p)® = 1/M, is a hypersphere. It may be
mentioned that this result can also be obtained for a more general class
of hypersurfaces by using Theorem 1 and the method of Siiss.

THEOREM 3. Let V" satisfy the same conditions as in Theorem 1. Sup-
pose that there exist a point O in E™il and an integer s, 1 < s < n, such
that at all points of V™ the function p ts of the same sign, M, > 0 for
t=1,...,8, and M, is constant. Then V" is a hypersphere.

In the case n = 2, Theorem 3 reduces to the known results that a closed
surface with constant Gaussian curvature is a sphere, and that a closed
surface with constant mean curvature is necessarily a sphere if there
exists a point which is on the same side of all tangent planes of the surface.
For convex hypersurfaces of arbitrary dimensions the theorem is due to
W. Siiss (for references see [1, p. 118]). The proof of Theorem 3 is similar
to that of Siiss.

The author wishes to acknowledge his indebtedness to Professor Werner
Fenchel for his valuable suggestions in regard to some simplifications
and generalizations contained in this paper.

1. Preliminaries. In a Euclidean space E"*! of dimension n+1 =3
let us consider a fixed orthogonal frame O%),...9),,, with a point O
as the origin. With respect to this orthogonal frame we define the vector
product of n vectors 4,, ..., 4, in E**+! to be the vector 4, ,,, denoted
by A;x...xA4,, satisfying the following conditions:

(a) the vector 4, ., is normal to the n-dimensional space determined
by the vectors A4,,..., 4,,

(b) the magnitude of the vector 4, ., is equal to the volume of the
parallelepiped whose edges are the vectors 4,,..., 4,

(c) the two frames O04,...4,4,., and 0%,...9,., have the same
orientation.

Let ¢ be a permutation on the n numbers 1,...,n, then

(1.1) A,pX oo XAy = (8gno) 4, X ... X4,



288 CHUAN-CHIH HSIUNG

where sgno is 41 or —1 according as the permutation ¢ is even or odd.

Let 44, ..., %,,; be the unit vectors from the origin O in the directions
of the vectors 9;,..., 9,4, and let 47, j =1,...,n41, be the com-
ponents of the vector A,x=1,...,n, with respect to the frame
O%Y;-..9Yns1, then the scalar product of any two vectors 4, and 4,
and the vector product of » vectors 4,,..., 4, are, respectively,
(1.2) A, A, =3 A" AL,
i

P PO

Al 42,47
(1.3) A xAyx ... x4, = (—1)*

AL A2, 4Nt
If A7 are differentiable functions of » variables zl,..., 2", then by
equation (1.3) and the differentiation of determinants

(1.4) %(Alx ..ox4,) —_—Z(Alx e xAﬁ_lx%foﬂHx e xAn).
2 f=1 or
Now we consider a hypersurface V* twice differentiably imbedded in
B+t Let (y', ..., y"") be the coordinates of a point P in E**! with
respect to the orthogonal frame O%),...9),.;. Then V” can be given by
the parametric equations

(1.5) Y= fi@t,...,2"), it=1,...,nF+1,

or the vector equation

(1.6) Y =F(,...,2"),

where y* and f? are respectively the components of the two vectors
Y and F, the parameters zl,..., 2" take values in a simply connected
domain D of the n-dimensional real number space, fi(x',...,x") are

of the second class and the Jacobian matrix ||0y?/0x? is of rank n at all
points of D. (See, for instance, also for the remainder of this section,
[7, Chap. IX].) For quantities of the V", tensor notation with Greek
indices will be used. In particular, the summation convention is adopted
for these indices. If we denote the vector 0Y/cxz* by Y, for o« = 1,..., n,
then the first fundamental form of V" at a point P is

(1.7) ds* =g, ,dx"da’,  g,,=7Y,Y,,

where the matrix |lg, | is positive definite and thus, the determinant
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(1.8) 9= 195l > 0.

Let N be the unit normal vector at a point P of V' and N, the vector
ON|[0x*, then

(1.9) N,=—b,¢"7Y,,
where
(1.10) b,y =10bs, = — N, Y,

are the coefficients of the second fundamental form of 7" and ¢*” denotes
the cofactor of g,, in g divided by g so that

(1.11) 97 g5, = 07,

0; being the Kronecker deltas. The » principal curvatures x,,..., %,
of V* at P are the roots of the determinant equation

(1.12) bos — %gosl = 0.
From equations (0.1) and (1.12) follow immediately

(L13) M, =Yg, wdy=b,g,  wMy, =g, By,
where
(114 b= Iyl

and B*? is the cofactor of b,, in b.
The area element of V» at P is given by

(1.15) dA = ¢g'?dat. .. dx" .

Now we choose the direction of the unit normal vector N in such a way
that the two frames PY,...Y, N and O9%),...9,., have the same
orientation. Then from equations (1.3) and (1.15) it follows that

(1.16) gPN =Y, x...xY,,
(1.17) Yy, .0, Yy, N| = g'% .

2. Proof of the formula (0.2) for » = 0. At first, we observe that
the vector Y, X ... XY _XNXY, X...xY, is perpendicular to the
normal vector N and can therefore be written in the form

(2.1) Y X o . XY  XNXY, yX...xY, =a"¥,.

Taking the scalar products of the both sides of equations (2.1) with the
vector Y, and making use of equations (1.1), (1.3), (1.7), (1.16), we
obtain

(2.2) a“ﬂgﬂy= —g'P? o, x,y=1,...,n.
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Solving equations (2.2) for a*f for each fixed » and substituting the
results in equations (2.1), we are led to

(2.3) YiX. . . XY,  XNXY  X.. XY, = —¢g"g?Y,.

Making use of equations (1.4), (1.9), (1.13) and (1.16), it is easily seen
that

(2.4) N

Thus, from equations (2.3) and (2.4),

0 )
(@97 Y,) .

(2.5) ng'* M\N = —
cx
Taking the scalar products of the both sides of equation (2.5) with the
vector Y, we obtain in consequence of the relations (1.7) and (1.11)

D a 9 )
(2.6) nM;pg' = P @2 9P n,) — ng'*,

where we have put
(2.7) p=1Y-N, n,=Y-Y,.

Now let us consider a hypersurface V* having a closed boundary
V-1 and twice differentiably imbedded in a Euclidean space K"+ of
n-+1=3 dimensions. Integrating equation (2.6) with respect to xt, ... 2"
over this hypersurface V" and applying the general Green’s theorem
(cf., for instance, [4, pp. 75-76]) to the first term on the right side of
equation (2.6), we then obtain

ngpdA LA =t S S0y g gty dat et dat L da
D a=1

1 %44 yn—1

In particular, when V™ is closed and orientable the integral on the right
side of equation (2.8) drops out and hence the formula (0.2) for r = 0
follows.

3. Proof of the formula (0.2) for a general ». In this section we
shall use the formula (2.8) to derive an analogous formula for a general r.
To this end, in Em+! we first consider a hypersurface V" parallel to a
hypersurface V» with a closed boundary V»-1 so that V" and V» have
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the same normals. It is evident that the vector equation of V” can be
written in the form

(3.1) Y=Y —1tN,

where t is a real parameter. From equations (3.1), N-N =1 and
N-Y,_ = 0, it follows immediately that ¢t/cx* = 0 and therefore that ¢ is
constant. Making use of equations (1.7), (1.9), (1.10) and their analogous
ones for ¥ we obtain the coefficients of the first and the second fun-
damental forms of V»:

(32) g”‘ﬂ = g“ﬂ+ 2b0‘ﬁt + baebﬁaggat2 = (gae—%' bagt) (6g+bﬂo‘ggdt) )
(3.3) gaﬂ = brxﬁ+ baebﬁaggot - bae(égﬁ'{‘bﬁa 9°°t) ,

from which it follows easily by an elementary calculation that

(3.4) b=1b4a,
(3.5) g=yg42,
(3'6) ]Ezaﬁ - ga[}l = |(R~_t)baﬂ - go‘ﬁl A ’

where § and b are defined by equations similar to (1.8), (1.14), and

(3‘7) A= |6§ + bagggﬂti )
(3.8) Ri=1%, i=1,...,n,
#; being the principal curvatures of 7». In consequence of equations

.4), (3.5), (3.6) and (1.12), (1.13), (1.15) together with their analogues

(
for 7», we have

(3.9) M,dA = M,dA ,
(3.10) R, =R, +t,

where d4 is the area element of V" and R; = 1/x;. Moreover, let g**
be the cofactor of g, , in g divided by g, then from equations (2.7), (3.1),
(3.2) and (3.7) we obtain

(3.11) Ty = M+ g7, = 1, 9+ 146"
(3.12) G7P i, =0,

where 7, = Y-Y, and
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g1+t Jrat+tb1s < J1n b1y,
ga—l,l_,_tba—l,l ga—1,2+tbo¢——1,2 ce ga—l,n+tbm—l,n
(3.13) &= m 72 cee Ty,
Jur1,1 00111 gzx+1,2+tba+l,2 s JorrnTt0i1 0
gn1+tbn1 gn2+tbn2 ce. gnn+tbnn
Now let
n—1 -1
(3.14) o — Y (”’ ) ot
r=0 r

then it is obvious that
(3.15) 05 =g9fn, 05 ,=B"y,

By means of equations (0.1) and (3.8), equation (2.8) for V" can be
written as

(3.16) S 5(XR,R,...R, ), dA—[-ngl_i’lE...En_M A

n

4 v

= S 2 )L gty dat L dae Tt dat L da,

711*1 a=1

where p = Y+N = p—t and V»-1 is the boundary of ¥». Substitution
of equations (3.5), (3.9), (3.10), (3.12) and (3.14) in equation (3.16)
yields immediately

(3.17) S (p~t)§'l(n——i)(ZRl...Ri) it M, dA

L
yn

S 3 (ZR,...R) i M, dA
P =0
nonl n—1
= S 2 " —1)*1 ( . ) g O dat .. da* T da L da
a=1 =0

yn—1

which is an identity in . Hence, by equating the coefficients of " on
the both sides of equation (3.17) and using (0.1), we arrive at the gene-
ralization of the formula (2.8) mentioned in the introduction:
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(3.18) SMMp a4 + KM, A
P’n '[;7’/

n
— p1 S  (— 1) g2 erdat . L de dat L L da”,
pnta a=1

from which follow immediately the formulas (0.2) when V* is closed and
orientable.

4. Proofs of Theorems 2 and 3. In order to prove Theorem 2 we
first observe that because of M > 0 the assumptions p < — M,/ M,
and p = — M, /M, are respectively equivalent to M p-+ M, , <0
and M, ,p+ M, , =0. From (0.2) for r = s—1 we have

\@r,p+ 21, yaa o,

vn A
Hence, either assumption implies p = — M, /M, Substituting this
n (0.2) for » = s, we obtain
(4.1) N2 — a0, ymr,a4 =0,
Vn

Since (?) M, is the ¢-th elementary symmetric function of the real

numbers x,, ..., %,, we have the inequalities

(4.2) M2—M, M, , =0, ¢=1,...,n—1,

and equality in (4.2) for any value of ¢ implies »; = ... = %, (cf. [3,
pp. 52, 104]). From (4.1) it follows therefore that »; = ... = %, at

all points of V?. It is well known that this implies that V' is a hyper-
sphere, and hence Theorem 2 is proved.
If M, ;> 0 and M, > 0, the inequality (4.2) may be written as

(4.3) MMy = M| M.

Let the assumptions of Theorem 3 be satisfied for some s < n. Then
the inequality (4.3) holds for ¢+ =1,...,s. In particular, we have
MI/MO = ‘ZLIs+1/Ms or

(4.4) MM, =M,,,,

and the equality implies %; = ... = %,. Since M, > 0 and it is as-

sumed that p has the same sign at all points of V», we must have p < 0
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because of the formula (0.2) for » = 0. Multiplying the both sides of
the inequality (4.4) by p, integrating over V", and applying the formula
(0.2) for r = 0 and r = s, we obtain

—MSSdA =Ms§M1pdA <\, pad = —MsgdA,

vn vn yn vn
since M, is constant. Consequently, equality must hold in (4.4) at all
points of V», and hence Theorem 3 for s < n follows.
In the remaining case of Theorem 3, where s = n, the assumptions
imply
(4.5) M,>0, i=1_...,n.

It is known that from the inequalities (4.2) and (4.5) it follows that
(4.6) M,=zM2>=...=zM, Yo-D= )L,

and equality at any stage in (4.6) implies %, = ... = %, (cf. [3, p. 52]).
Now put M, = c”, where ¢ is a positive constant. Then we obtain on one
hand, by means of the formula (0.2) for » = n—1 and the inequalities
(4.6),
\a,paa— —\a1, a4 = —o1{aa,

v yn vn

and on the other hand, by means of p < 0, the inequalities (4.6) and
the formula (0.2) for r = 0,

gandA = cn—lgMnllnpdA = cn~l§ MlpdA —_ C"“‘lgdA .
V'" [;n I;" f/n
Thus M, V" = M, and again we have x; = ... = x, = ¢ at all points
of ¥~
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