Open Access Open Access  Restricted Access Subscription Access

Newtonian Spaces Based on Quasi-Banach Function Lattices

Lukáš Malý


In this paper, first-order Sobolev-type spaces on abstract metric measure spaces are defined using the notion of (weak) upper gradients, where the summability of a function and its upper gradient is measured by the "norm" of a quasi-Banach function lattice. This approach gives rise to so-called Newtonian spaces. Tools such as moduli of curve families and Sobolev capacity are developed, which allows us to study basic properties of these spaces. The absolute continuity of Newtonian functions along curves and the completeness of Newtonian spaces in this general setting are established.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library