Open Access Open Access  Restricted Access Subscription Access

A Complex of Modules and Its Applications to Local Cohomology and Extension Functors

Kamal Bahmanpour


Let $(R,m)$ be a commutative Noetherian complete local ring and let $M$ be a non-zero Cohen-Macaulay $R$-module of dimension $n$. It is shown that,

  1. if $\operatorname{projdim}_R(M)<\infty$, then $\operatorname{injdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, and
  2. if $\operatorname{injdim}_R(M)<\infty$, then $\operatorname{projdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$,
where $D(-):= \operatorname{Hom}_{R}(-,E)$ denotes the Matlis dual functor and $E := E_R(R/\mathfrak{m})$ is the injective hull of the residue field $R/\mathfrak{m}$.

Also, it is shown that if $(R,\mathfrak{m})$ is a Noetherian complete local ring, $M$ is a non-zero finitely generated $R$-module and $x_1,\ldots,x_k$, $(k\geq 1)$, is an $M$-regular sequence, then \[ D(H^k_{(x_1,\ldots,x_k)}(D(H^k_{(x_1,\ldots,x_k)}(M))))\simeq M. \] In particular, $\operatorname{Ann} H^k_{(x_1,\ldots,x_k)}(M)=\operatorname{Ann} M$. Moreover, it is shown that if $R$ is a Noetherian ring, $M$ is a finitely generated $R$-module and $x_1,\ldots,x_k$ is an $M$-regular sequence, then \[ \operatorname{Ext}^{k+1}_R(R/(x_1,\ldots,x_k),M)=0. \]

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library