Open Access Open Access  Restricted Access Subscription Access

Cuntz-Krieger Algebras Associated with Hilbert $C^*$-Quad Modules of Commuting Matrices

Kengo Matsumoto


Let $\mathscr{O}_{\mathscr{H}^{A,B}_{\kappa}}$ be the $C^*$-algebra associated with the Hilbert $C^*$-quad module arising from commuting matrices $A,B$ with entries in $\{0,1\}$. We will show that if the associated tiling space $X_{A,B}^\kappa$ is transitive, the $C^*$-algebra $\mathscr{O}_{\mathscr{H}^{A,B}_{\kappa}}$ is simple and purely infinite. In particular, for two positive integers $N,M$, the $K$-groups of the simple purely infinite $C^*$-algebra $\mathscr{O}_{\mathscr{H}^{[N],[M]}_{\kappa}}$ are computed by using the Euclidean algorithm.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library