Open Access Open Access  Restricted Access Subscription Access

The Combinatorics of Hyperbolized Manifolds

Allan L. Edmonds, Steven Klee

Abstract


A topological version of a longstanding conjecture of H. Hopf, originally proposed by W. Thurston, states that the sign of the Euler characteristic of a closed aspherical manifold of dimension $d=2m$ depends only on the parity of $m$. Gromov defined several hyperbolization functors which produce an aspherical manifold from a given simplicial or cubical manifold. We investigate the combinatorics of several of these hyperbolizations and verify the Euler Characteristic Sign Conjecture for each of them. In addition, we explore further combinatorial properties of these hyperbolizations as they relate to several well-studied generating functions.

Full Text:

PDF


DOI: http://dx.doi.org/10.7146/math.scand.a-22236

Refbacks

  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.
OK


ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library