Open Access Open Access  Restricted Access Subscription Access

A Stein Criterion Via Divisors for Domains Over Stein Manifolds

Daniel Breaz, Viorel Vâjâitu


It is shown that a domain $X$ over a Stein manifold is Stein if the following two conditions are fulfilled: a) the cohomology group $H^i(X,\mathscr{O})$ vanishes for $i \geq 2$ and b) every topologically trivial holomorphic line bundle over $X$ admits a non-trivial meromorphic section. As a consequence we recover, with a different proof, a known result due to Siu stating that a domain $X$ over a Stein manifold $Y$ is Stein provided that $H^i(X,\mathscr{O})=0$ for $i \geq 1$.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library