Open Access Open Access  Restricted Access Subscription Access

Sharp Weighted Bounds for Fractional Integral Operators in a Space of Homogeneous Type

Anna Kairema


We consider a version of M. Riesz fractional integral operator on a space of homogeneous type and show an analogue of the well-known Hardy-Littlewood-Sobolev theorem in this context. In our main result, we investigate the dependence of the operator norm on weighted spaces on the weight constant, and find the relationship between these two quantities. It it shown that the estimate obtained is sharp in any given space of homogeneous type with infinitely many points. Our result generalizes the recent Euclidean result by Lacey, Moen, Pérez and Torres [21].

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library