Open Access Open Access  Restricted Access Subscription Access

On $\alpha$-Short Modules

M. Davoudian, O. A. S. Karamzadeh, N. Shirali


We introduce and study the concept of $\alpha$-short modules (a $0$-short module is just a short module, i.e., for each submodule $N$ of a module $M$, either $N$ or $\frac{M}{N}$ is Noetherian). Using this concept we extend some of the basic results of short modules to $\alpha$-short modules. In particular, we show that if $M$ is an $\alpha$-short module, where $\alpha$ is a countable ordinal, then every submodule of $M$ is countably generated. We observe that if $M$ is an $\alpha$-short module then the Noetherian dimension of $M$ is either $\alpha$ or $\alpha+1$. In particular, if $R$ is a semiprime ring, then $R$ is $\alpha$-short as an $R$-module if and only if its Noetherian dimension is $\alpha$.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library