Open Access Open Access  Restricted Access Subscription Access

The Cone of Functionals on the Cuntz Semigroup

Leonel Robert


The functionals on an ordered semigroup $S$ in the category $\mathbf{Cu}$ - a category to which the Cuntz semigroup of a C*-algebra naturally belongs - are investigated. After appending a new axiom to the category $\mathbf{Cu}$, it is shown that the "realification" $S_{\mathsf{R}}$ of $S$ has the same functionals as $S$ and, moreover, is recovered functorially from the cone of functionals of $S$. Furthermore, if $S$ has a weak Riesz decomposition property, then $S_{\mathsf{R}}$ has refinement and interpolation properties which imply that the cone of functionals on $S$ is a complete distributive lattice. These results apply to the Cuntz semigroup of a C*-algebra. At the level of C*-algebras, the operation of realification is matched by tensoring with a certain stably projectionless C*-algebra.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library