Extremal $\omega$-plurisubharmonic functions as envelopes of disc functionals: generalization and applications to the local theory

Benedikt Steinar Magnússon


We generalize the Poletsky disc envelope formula for the function $\sup \{u\in \mathcal{PSH}(X,\omega); u\leq \phi\}$ on any complex manifold $X$ to the case where the real $(1,1)$-current $\omega=\omega_1-\omega_2$ is the difference of two positive closed $(1,1)$-currents and $\varphi$ is the difference of an $\omega_1$-upper semicontinuous function and a plurisubharmonic function.

Full Text:


DOI: http://dx.doi.org/10.7146/math.scand.a-15228


  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library