Continuous homomorphisms and rings of injective dimension one

Shou-Te Chang, I-Chiau Huang


Let $S$ be an $R$-algebra and $\mathfrak a$ be an ideal of $S$. We define the continuous hom functor from $R$-mod to $S$-mod with respect to the $\mathfrak a$-adic topology on $S$. We show that the continuous hom functor preserves injective modules iff the ideal-adic property and ideal-continuity property are satisfied for $S$ and $\mathfrak a$. Furthermore, if $S$ is $\mathfrak a$-finite over $R$, we show that the continuous hom functor also preserves essential extensions. Hence, the continuous hom functor can be used to construct injective modules and injective hulls over $S$ using what we know about $R$. Using the continuous hom functor we can characterize rings of injective dimension one using symmetry for a special class of formal power series subrings. In the Noetherian case, this enables us to construct one-dimensional local Gorenstein domains. In the non-Noetherian case, we can apply the continuous hom functor to a generalized form of the $D+M$ construction. We may construct a class of domains of injective dimension one and a series of almost maximal valuation rings of any complete DVR.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library