On weighted Bochner-Martinelli residue currents

Elizabeth Wulcan


We study the weighted Bochner-Martinelli residue current $R^p(f)$ associated with a sequence $f=(f_1,\dots,f_m)$ of holomorphic germs at $0\in{\mathsf C}^n$, whose common zero set equals the origin, and $p=(p_1,\ldots, p_m)\in\mathsf{N}^m$. Our main results are a description of $R^p(f)$ in terms of the Rees valuations of the ideal generated by $(f_1^{p_1},\ldots, f_m^{p_m})$ and an explicit description of $R^p(f)$ when $f$ is monomial. For a monomial sequence $f$ we show that $R^p(f)$ is independent of $p$ if and only if $f$ is a regular sequence.

Full Text:


DOI: http://dx.doi.org/10.7146/math.scand.a-15193


  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library