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ON THE MODULUS OF CONTINUITY OF MAPPINGS
BETWEEN EUCLIDEAN SPACES

DIEUDONNÉ AGBOR∗ and JAN BOMAN

Abstract
Let f be a function from Rp to Rq and let� be a finite set of pairs (θ, η) ∈ Rp × Rq . Assume that
the real-valued function 〈η, f (x)〉 is Lipschitz continuous in the direction θ for every (θ, η) ∈ �.
Necessary and sufficient conditions on � are given for this assumption to imply each of the
following: (1) that f is Lipschitz continuous, and (2) that f is continuous with modulus of
continuity ≤ Cε|log ε|.

1. Introduction

Let us say that a function f from Rp to R is continuous in the direction θ ∈
Rp\{0} if the function R � t �→ f (x+tθ) is continuous uniformly with respect
to x on compact sets. It is obvious that f must be continuous if it satisfies p
conditions of this kind for a set of θ -vectors that spans Rp. However, to be able
to conclude that two real-valued functions on R2 are continuous we do not need
four conditions, but three conditions suffice. In fact, if f is continous in the
direction (1, 0), g is continous in the direction (0, 1), and f + g is continuous
in the direction (1, 1), then f and g must be continuous. This makes it natural
to pose the following more general question.

Let � be a finite set of pairs (θ, η) ∈ Rp × Rq and let f be a function from
Rp to Rq . Denote the inner product in Rq by 〈·, ·〉. Assume that the real-valued
function x �→ 〈η, f 〉(x) is continuous in the direction θ for every (θ, η) ∈ �.
Under what condition on � does it follow that f is continuous? The answer
is given by Theorem 1.1. More precisely, if � satisfies the condition (Ã) and
the function x �→ 〈η, f 〉(x) is continuous in the direction θ with modulus
of continuity ≤ σ(t) for every (θ, η) ∈ �, then f must have modulus of
continuity ≤ Ct

∫ 1
t
s−2σ(s)ds. In particular, if � satisfies the condition (Ã)

and the function x �→ 〈η, f 〉(x) is Lipschitz continuous in the direction θ for
every (θ, η) ∈ �, then f must have modulus of continuity ≤ Ct log(1/t).
The minimum number of elements of � for (Ã) to hold is p + q − 1. This
makes it natural to ask also under which condition on� we can conclude that
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the modulus of continuity of f must be ≤ Cσ(t). The answer to this question
is also given by Theorem 1.1. The stronger conclusion requires at least pq
elements of �.

Those results were presented in [1] together with examples showing that
the statements are sharp. Later it was shown in [2] that the results in [1] could
be deduced from an extension to vector-valued functions of the theory of
generalized moduli of continuity developed in [5], [4], and [3]. The purpose
of this note is to give a considerably simpler proof of Theorem 1.1 than the
ones given in [1] and [2]. We also give a complete proof of a more general
statement that was announced without proof in [1].

Denote by� the class of continuous, increasing, and subadditive functions
from {t ∈ R; t > 0} into itself, tending to zero at the origin. If σ ∈ � we
denote by K(σ) the set of (real-valued or vector-valued) functions f on Rp

that are continuous with modulus of continuity ≤ Cσ(t) on compact sets, that
is, for every compact set K there exists a constant C such that

|f (x + y)− f (x)| ≤ Cσ(|y|), x, x + y ∈ K.
If θ ∈ Rp \ {0} we denote by K(θ, σ ) the set of functions that have modulus
of continuity ≤ Cσ(t) in the direction θ , that is,

|f (x + tθ)− f (x)| ≤ Cσ(|t |), x, x + tθ ∈ K, t ∈ R.

The set � of pairs (θ, η) ∈ Rp × Rq is said to satisfy condition (A) if the
set of tensor products θ ⊗ η for (θ, η) ∈ � spans Rp ⊗ Rq . This is the same as
saying that the set of p × q matrices (θiηj ) spans the pq-dimensional vector
space M(p, q) of all p × q matrices.

If we associate thep×q matrix (aij )with the linear form (αij ) �→ ∑
αijaij

on M(p, q), then the dual space of M(p, q) will be identified with another
copy of M(p, q). The set � is said to satisfy the condition (Ã) if there is no
rank one element of M(p, q) that is orthogonal to all the matrices (θiηj ) for
(θ, η) ∈ �. Note that the condition (A) can be expressed by saying that there
is no non-vanishing element of M(p, q) that is orthogonal to all the matrices
(θiηj ) for (θ, η) ∈ �. In other words, � satisfies (Ã) if

u ∈ Rp, v ∈ Rq and 〈u, θ〉〈v, η〉 = 0 for all (θ, η) ∈ �(1.1)

implies |u||v| = 0.(1.2)

We also introduce two hull operationsP and P̃ on subsets of Rp×Rq as follows.
P(�) is defined as the set of pairs (θ0, η0) ∈ Rp × Rq such that θ0 ⊗ η0 is in
the linear hull of the set of all θ ⊗ η such that (θ, η) ∈ �. P̃ (�) is the set of
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(θ0, η0) such that

u ∈ Rp, v ∈ Rq and 〈u, θ〉〈v, η〉 = 0 for all (θ, η) ∈ �
implies 〈u, θ0〉〈v, η0〉 = 0.

We observe that condition (A) is equivalent to P(�) = Rp × Rq and condition
(Ã) is equivalent to P̃ (�) = Rp × Rq .

If σ ∈ � we define σ̃ by

σ̃ (t) = t

(
σ(1)+

∫ 1

min(t,1)
s−2σ(s)ds

)
, t ≥ 0.

If σ and τ are in � the expression σ ≺ τ will mean that σ(t) ≤ Cτ(t) for
0 < t < 1 and someC. If σ ∈ �, then σ̃ ∈ � and σ ≺ σ̃ . In fact, σ(t) ≤ σ̃ (t)

for t < 1, and the identity t σ̃ ′(t) = σ̃ (t) − σ(t), valid for t < 1, therefore
implies σ̃ ′(t) ≥ 0 for t < 1.

Theorem 1.1. Let f be a locally bounded function from Rp to Rq and let
σ ∈ �. Let � be a finite subset of Rp × Rq satisfying (Ã) and assume that

(1.3) 〈η, f 〉 ∈ K(θ, σ ) for every (θ, η) ∈ �.
Then f ∈ K(̃σ). Moreover, if� satisfies (A) and (1.3) holds, then f ∈ K(σ).
Conversely, if (1.3) implies f ∈ K(τ), then at least one of the following
statements is true

� satisfies (A) and σ ≺ τ ,

� satisfies (Ã) and σ̃ ≺ τ .

More generally, (1.3) implies 〈η0, f 〉 ∈ K(θ0, τ ) if and only if at least one of
the following statements is true

(θ0, η0) ∈ P(�) and σ ≺ τ ,

(θ0, η0) ∈ P̃ (�) and σ̃ ≺ τ .

Let M(Rp) denote the space of measures on Rp with finite total mass, and
let M̂(Rp) be the set of Fourier transforms of elements ofM(Rp). The Fourier
transform of μ ∈ M(Rp) is defined by μ̂(ξ) = 〈μ, e−ix·ξ 〉 = ∫

e−ix·ξ dμ(x).
Moreover we shall denote byNθ(Rp) the set of measuresμ ∈ M(Rp) for which

μ̂(ξ)

〈θ, ξ〉 ∈ M̂(Rp).

In [1] a similar role was played by the setMθ(Rp) of measures μ ∈ M(Rp) for
which the Fourier transform vanishes on the hyperplane perpendicular to θ . It
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is clear thatNθ(Rp) ⊂ Mθ(Rp), but the opposite inclusion is easily seen not to
be true. (Take for instance h(x) = π−1/(1 + x2) − ψ(x), where ψ ∈ L1(R)
is even, compactly supported, and has integral equal to 1; then ĥ(0) = 0
and ĥ(ξ) = e−|ξ | − ψ̂(ξ) = −|ξ | + O (|ξ |2) as |ξ | → 0, hence ĥ(ξ)/ξ
is discontinuous at the origin and therefore cannot be in M̂(R).) However,
if μ ∈ M(Rp) has compact support and μ̂(ξ) vanishes on the hyperplane
〈θ, ξ〉 = 0, then μ ∈ Nθ(Rp) (c.f. Lemma 2.2). The fact that the measures
constructed in Theorems 3 and 5 in [1] had compact support was the reason
that the set Nθ(Rp) was not needed in [1].

As in [1] we shall deduce Theorem 1.1 from two theorems on the represent-
ation of vector-valued measures as finite sums of measures of the form η⊗ νθ
where νθ ∈ Nθ(Rp) and (θ, η) ∈ �; see Section 2. The novelties with our ap-
proach here relative to [1] are as follows. In the proof of Theorem 2.4 below the
measure μ0 is written as a sum, μ0 = ν0 + ν1, of a measure ν0 whose Fourier
transform has compact support and a measure ν1 whose Fourier transform van-
ishes in a neighborhood of the origin, and it is observed that the representation
(2.1) is very easy to prove for ν0 and that (2.1) is an immediate consequence
of Theorem 2.1 for ν1. The measures μk constructed in this way will not be
compactly supported like those constructed in the proof of Theorem 3 in [1],
but this is not needed for the proof of Theorem 1.1. Moreover, Theorem 2.1
is somewhat weaker than Theorem 5 in [1] in that μ̂0 is assumed to vanish in
some neighborhood of the origin, but the proof is much simpler, the main new
idea being the use of the special partition of unity (2.6). Finally, the measure
μ in Lemma 3.3 with Fourier transform equal to 1 outside some compact set
has replaced the iterated convolutions occurring in Theorem 5 of [1] (typically
q-th order difference measures), and therefore Marchaud’s inequality has been
replaced by the easier and perhaps more fundamental Lemma 3.3 below.

The authors are indebted to Jan-Olov Strömberg for the proof of Lemma 3.1,
which replaced an earlier, less elementary proof using results from [3].

2. The submodule J(�)

Denote by M(Rp)q the set of q-tuples of measures in M(Rp). It is the tensor
product over R of the vector spaces Rq and M(Rp). The tensor product η ⊗ μ

can be defined as the q-tuple (η1μ, . . . , ηqμ) ∈ M(Rp)q , and from now on it
will simply be denoted ημ.

SinceM(Rp) is a ring under convolution, it is clear thatM(Rp)q is a module
over the ring M(Rp). We shall denote by J (�) the set of element of M(Rp)q

of the form

(2.1)
m∑
k=1

ηkμk,
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where μk ∈ Nθk (Rp) and (θk, ηk) ∈ �. Since Nθk (Rp) is an ideal in M(Rp) it
is clear that J (�) is a submodule ofM(Rp)q . The set of Fourier transforms of
elements of J (�) will be denoted Ĵ (�).

Theorem 2.1. Assume that (θ0, η0) ∈ P̃ (�) and that μ0 ∈ M(Rp) satisfies
μ̂0(ξ) = 0 when |〈θ0, ξ〉| < ε for some ε > 0. Then η0μ0 ∈ J (�). Moreover,
if � satisfies (Ã) and μ̂0(ξ) = 0 in some neighborhood of the origin, then
η0μ0 ∈ J (�) for each η0 ∈ Rq .

It is easy to see that the first statement of Theorem 2.1 implies the second. In
fact, if μ̂0(ξ) = 0 in a neighborhood of the origin then we can find ε > 0 and
μj , j = 1, . . . , p, such that μ̂j (ξ) = 0 for |ξj | < ε and μ0 = ∑

μj . Applying
the first statement of Theorem 2.1 to (θ0, η0) where η0 is arbitrary and θ0 is
the j :th basis vector in Rp we obtain η0μj ∈ J (�), hence η0μ0 ∈ J (�).

The following simple lemma will be needed below.

Lemma 2.2. Letμ ∈ M(R)and assume that μ̂(ξ) = 0 in some neighborhood
of the origin. Then μ̂(ξ)/ξ is in M̂(R). More generally, assume that μ̂(ξ) is
twice continuously differentiable in some neighborhood of the origin and that
μ̂(0) = 0. Then μ̂(ξ)/ξ is in M̂(R).

Proof. Let δ > 0 be so small that supp μ̂ ⊂ {|ξ | > δ} and choose χ ∈
C∞(R) such that χ(ξ) = 0 in for |ξ | < δ/2 and χ(ξ) = 1 for |ξ | > δ. Then
μ̂(ξ) = χ(ξ)μ̂(ξ), so it is enough to prove that χ(ξ)/ξ is in M̂(R). Since
χ(ξ)/ξ is in L2(R) there exists h ∈ L2(R) ⊂ L1

loc(R) so that ĥ(ξ) = χ(ξ)/ξ .
And to see that h ∈ L1(R) ⊂ M(R) it is enough to observe that the second
derivative of χ(ξ)/ξ is in L1(R), hence x2h(x) is bounded. This proves the
first statement. To prove the second statement we note that (1 − χ(ξ))μ̂(ξ)

is twice continuously differentiable, compactly supported, and vanishes at
ξ = 0, hence (1 − χ(ξ))μ̂(ξ)/ξ is continuously differentiable and compactly
supported, and it is well known that such a function is in L̂1(R) ⊂ M̂(R).

The next lemma gives reformulations of the conditions (Ã) and (θ0, η0) ∈
P̃ (�). Let L denote linear hull.

Lemma 2.3. Let (θk, ηk), k = 1, 2, . . . m, be the elements of �. Denote
an arbitrary subset of {1, 2, . . . , m} by E and its complement by E′. Then
(θ0, η0) ∈ P̃ (�) if and only if

(2.2)
for each E at least one of the following statements is true:

θ0 ∈ L ({θk; k ∈ E}), η0 ∈ L ({ηk; k ∈ E′}).

In particular� satisfies (Ã) if and only if (2.2) is true for all (θ0, η0) ∈ Rp×Rq ,
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which is equivalent to

(2.3)
for each E at least one of the following statements is true:

L ({θk; k ∈ E}) = Rp, L ({ηk; k ∈ E′}) = Rq .

Proof. If (2.2) is false, then there exist u ∈ Rp and v ∈ Rq such that
〈u, θk〉 = 0 for all k ∈ E, 〈v, ηk〉 = 0 for all k ∈ E′, and 〈u, θ0〉 �= 0, 〈v, η0〉 �=
0. But this means that 〈u, θk〉〈v, ηk〉 = 0 for all k and 〈u, θ0〉〈v, η0〉 �= 0, in
other words, (θ0, η0) /∈ P̃ (�). Conversely, if (θ0, η0) /∈ P̃ (�), then there
exists (u, v) so that 〈u, θ〉〈v, η〉 = 0 for all (θ, η) ∈ � but 〈u, θ0〉〈v, η0〉 �= 0.
Choosing E as the set of k for which 〈u, θk〉 = 0 we have 〈v, ηk〉 = 0 for all
k ∈ E′, which shows that (2.2) is false and completes the proof of the first
statement. The second statement is proved similarly.

It follows immediately from Lemma 2.3 that�must have at least p+q−1
elements, if (Ã) holds.

Since we shall need certain standard cut-off functions many times, we define
them here once and for all in order to avoid repetitions. We shall denote by ψ
and χ two functions in C∞(R) such that

(2.4)

ψ(t) = 1 for |t | < 1/2,

ψ(t) = 0 for |t | > 1,

and χ(t) = 1 − ψ(t).

Proof of Theorem 2.1. Although it would be sufficient to prove the first
statement, we begin by proving the second statement in order to simplify the
exposition. We first claim that it is enough to prove that we can find measures
νk ∈ Nθk (Rp) such that

(2.5) η0 =
m∑
k=1

ηkν̂k(ξ), |ξ | > B,

for some sufficiently largeB. To see this note first that μ̂0(ξ) = χ(|ξ |/ε)μ̂0(ξ)

if ε is small enough, hence it is enough to prove that η0χ(|ξ |/ε) is in Ĵ (�).
SinceNθ(Rp) is obviously invariant under the variable transformation ξ �→ Aξ

for everyA > 0 and every θ , the same must be true for Ĵ (�). But (2.5) implies
that η0χ(|ξ |/2B) is in Ĵ (�), hence η0χ(|ξ |/ε) is in Ĵ (�), and the claim is
proved.

It is easy to establish (2.5) locally in conic subsets of Rp as follows. Assume
that (Ã) holds and let ξ 0 be an arbitrary element of Rp \ {0}. Let E be the set
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of k for which 〈θk, ξ 0〉 �= 0. It follows from Lemma 2.3 that the set of ηk for
which k /∈ E must span Rq . Hence we can find constants bk such that

η0 =
∑
k /∈E

bkη
k.

Let χ(t) ∈ C∞(R) be the function defined by (2.4) and set

h(ξ) =
∏
k∈E

χ(〈θk, ξ〉).

By Lemma 2.2 we have h ∈ N̂θk (Rp) for each k ∈ E. By the choice of E
we have h(λξ 0) = 1 if λ > 0 is sufficently large, and by continuity the same
is true for ξ in some neighborhood of ξ 0. Taking ν̂k(ξ) = bkh(ξ) we have
obtained (2.5) in a conic neighborhood of ξ 0. We can cover Rp \ {0} by a finite
number of open conic sets Vi and for each Vi construct νik such that (2.5) holds
in Vi ∩ {ξ ; |ξ | > B} for some B. It is now natural to try to piece together
those measures νik by choosing a partition of unity φi(ξ) on the unit sphere
Sp−1 ⊂ Rp with suppφi ⊂ Vi ∩ Sp−1 and choose νk by

ν̂k(ξ) =
∑
i

φi(ξ/|ξ |)̂νik(ξ).

The problem is that the functions φ(ξ/|ξ |), homogeneous of degree zero, are
in general not in M̂(Rp). Therefore we need a different partition of unity in
Rp, especially adapted to this problem.

Let ψ and χ be the functions defined by (2.4). If (θk, ηk), k = 1, . . . , m,
are the elements of � we set ψk(ξ) = ψ(〈θk, ξ〉), χk(ξ) = χ(〈θk, ξ〉), and
write

1 =
m∏
k=1

(ψk(ξ)+ χk(ξ)).

Expanding the product we obtain a sum of 2m terms,

(2.6) 1 =
∑
E

φE(ξ),

where

(2.7) φE(ξ) =
∏
k∈E

ψk(ξ)
∏
k∈E′

χk(ξ),

and the sum in (2.6) is taken over all subsets E of {1, 2, . . . , m}. We have to
show that η0φE(ξ) is in Ĵ (�) for each E.



154 dieudonné agbor and jan boman

If the set of θk with k ∈ E spans Rp, then the support of
∏
k∈E ψk(ξ), and

hence the support of φE , is compact, so we can disregard those terms. Thus
consider an arbitrary term φE where the set of θk with k ∈ E does not span
Rp. By Lemma 2.3 the set of ηk for k ∈ E′ must then span Rq . Choosing bk so
that η0 = ∑

k∈E′ bkη
k and multiplying with φE(ξ) we obtain

η0φE(ξ) =
∑
k∈E′

bkη
kφE(ξ).

We claim that φE(ξ) is in N̂θk (Rp) for each k ∈ E′. But this is clear because
φE(ξ)/〈θk, ξ〉 is a product of ψj(ξ) for j ∈ E and χj (ξ) for j ∈ E′, j �= k,
and the factor

χ(〈θk, ξ〉)/〈θk, ξ〉,
which is in M̂(Rp) by Lemma 2.2. In this way we also see that φE(ξ) = 0
for |〈θk, ξ〉| < 1/2. This completes the proof of the second statement of
Theorem 2.1.

To prove the first statement we observe first by reasoning as above that it
is enough to prove that η0χ(〈θ0, ξ〉/B) is in Ĵ (�) for sufficiently large B.
Consider η0φE(ξ)χ(〈θ0, ξ〉/B) for an arbitrary E. If η0 ∈ L ({ηk; k ∈ E′})
we can choose numbers bk such that η0 = ∑

k∈E′ bkη
k . Since φE(ξ) contains

the factor χ(〈θk, ξ〉) for every k ∈ E′, we can write

(2.8) η0φE(ξ)χ(〈θ0, ξ〉/B) =
∑
k∈E′

bkη
kφE(ξ)χ(〈θ0, ξ〉/B),

and observe that φE(ξ) is in N̂θk (Rp) for every k ∈ E′, so the expression (2.8)
is in Ĵ (�) in this case. If η0 /∈ L ({ηk; k ∈ E′}), then by Lemma 2.3 we must
have θ0 ∈ L ({θk; k ∈ E}). But in that case the function φE(ξ)χ(〈θ0, ξ〉/B)
must vanish if B is large enough, because the support of φE is contained in
|〈θ0, ξ〉| ≤ A for some A. In fact suppφE ⊂ {ξ ; |〈θk, ξ〉| ≤ 1} for every
k ∈ E, and if θ0 = ∑

k∈E akθk we have |〈θ0, ξ〉| ≤ ∑ |ak|〈θk, ξ〉| ≤ ∑ |ak|
for every ξ ∈ suppφE , which proves the claim and finishes the proof of the
theorem.

We now turn to the consequences of the stronger hypothesis (A).

Theorem 2.4. Assume that � satisfies (A) and let μ0 ∈ Nθ0(Rp) for some
θ0 ∈ Rp \ {0}. Then η0μ0 ∈ J (�). More generally, if μ0 ∈ Nθ0(Rp) and
(θ0, η0) ∈ P(�), then η0μ0 ∈ J (�).

Proof. We begin by proving the first statement. Take a smooth function
φ(ξ) supported in |ξ | < 2 and equal to 1 in |ξ | ≤ 1 and decomposeμ0 asμ0 =
ν0+ν1 by taking ν̂0(ξ) = φ(ξ)μ̂0(ξ) and ν1 = μ0−ν0. The fact that ν1 ∈ J (�)



on the modulus of continuity of mappings 155

follows from Theorem 2.1 since ν̂1(ξ) = 0 in a neighborhood of the origin.
It remains to consider ν0. Now, since � satisfies (A), there exist constants ck
and (θk, ηk) ∈ �, k = 1, . . . , m, such that η0 ⊗ θ0 = ∑m

k=1 ckη
k ⊗ θk , or

equivalently,

(2.9) η0〈θ0, ξ〉 =
m∑
k=1

ckη
k〈θk, ξ〉, ξ ∈ Rp.

Since μ0 ∈ Nθ0(Rp), we have μ̂0(ξ) = 〈θ0, ξ 〉̂λ(ξ) for some λ ∈ M(Rp),
hence by (2.9)

η0ν̂0(ξ) = η0μ̂0(ξ)φ(ξ) = η0〈θ0, ξ 〉̂λ(ξ)φ(ξ)

=
m∑
k=1

ckη
k〈θk, ξ 〉̂λ(ξ)φ(ξ) =

m∑
k=1

ηkμ̂k(ξ)

with μ̂k(ξ) = ck〈θk, ξ 〉̂λ(ξ)φ(ξ). Since φ has compact support it is clear that
μk ∈ M(Rp) and that μk ∈ Nθk (Rp), which completes the proof of the first
statement.

To prove the second statement assume that (θ0, η0) ∈ P(�) and that μ0 ∈
Nθ0(Rp). Decomposing μ0 by μ0 = ν0 +ν1, where ν̂0(ξ) = μ̂0ψ(〈θ0, ξ〉) and
ψ ∈ C∞(R) is defined by (2.4), we see by the first part of Theorem 2.1 that
η0ν1 ∈ J (�), so it is sufficient to study ν0. And since ν̂0(ξ) is divisible by
〈θ0, ξ〉ψ(〈θ0, ξ〉), it is enough to prove that 〈θ0, ξ〉ψ(〈θ0, ξ〉) is in Ĵ (�).

By the assumption we have (2.9) and multiplying this equation byψ(〈θ0, ξ〉)
we obtain

η0〈θ0, ξ〉ψ(〈θ0, ξ〉) =
∑
k

ckη
k〈θk, ξ〉ψ(〈θ0, ξ〉).(2.10)

The difficulty is that the functions 〈θk, ξ〉ψ(〈θ0, ξ〉) are not in M̂(Rp) because
they are in general not even bounded. Choose measures ρk by

ρ̂k(ξ) = ck〈θk, ξ〉ψ(〈θk, ξ〉)ψ(〈θ0, ξ〉).
Clearly ρk ∈ Nθk (Rp). If we insert 1 = ψ(〈θk, ξ〉)+χ(〈θk, ξ〉) in the kth term
in (2.10), we obtain

η0〈θ0, ξ〉ψ(〈θ0, ξ〉) =
∑
k

ηkρ̂k(ξ)+ F(ξ),(2.11)

where

F(ξ) = ψ(〈θ0, ξ〉)
∑
k

ckη
k〈θk, ξ〉χ(〈θk, ξ〉).(2.12)

It remains to show that F(ξ) is in Ĵ (�).



156 dieudonné agbor and jan boman

From (2.11) we see that each component of the (vector-valued) function
F(ξ) is in M̂(Rp) (although the individual terms in (2.12) are not). Thus, if
we take a subset {ηk; k ∈ E0} of the set of all the ηk that forms a basis for the
vector space spanned by all the ηk , then we can write

F(ξ) =
∑
j∈E0

bj (ξ)η
j ,

where bj (ξ) are uniquely determined functions that belong to M̂(Rp). Indeed,
each bj (ξ)must be a linear combination of the components of F(ξ). Note that
the functions bj (ξ) depend on our choice of basis. Our problem is that we want
each bj (ξ) to vanish on 〈θj , ξ〉 = 0. To achieve this we have to split F(ξ) into
a number of terms by means of a partition of unity, just as we did before, and
choose different bases for the different terms.

It will be convenient to use the partition of unity 1 = ∑
E φE(2ξ). The

reason for the factor 2 is that ψ(2t)χ(t) = 0, so that

(2.13) ψ(2〈θk, ξ〉)χ(〈θk, ξ〉) = 0 for all k.

It will be enough to prove that F(ξ)φE(2ξ) is in Ĵ (�) for an arbitrary E.
Fix E and consider F(ξ)φE(2ξ). Because of (2.13) all terms in (2.12) with

k ∈ E will drop out. We therefore choose E0 consisting only of vectors ηj

with j ∈ E′, and write

F(ξ)φE(2ξ) =
∑
j∈E0

bj (ξ)η
j

with E0 ⊂ E′. But φE(ξ) is defined so that it contains every χ(〈θj , ξ〉) with
j ∈ E′ as factor, hence in particular all χ(〈θj , ξ〉) with j ∈ E0. As we saw
above, each bj (ξ) is a linear combination of the components of the function
F(ξ). Hence each bj (ξ) belongs to N̂θj (Rp), and the proof is complete.

3. Proof of Theorem 1.1

If μ ∈ M(Rp) and t > 0 we define the measure μt by μ̂t (ξ) = μ̂(tξ). For
a function k ∈ L1(Rp) ⊂ M(Rp) this means that kt (x) = t−pk(x/t). In de-
ducing Theorem 1.1 from Theorem 2.1 and Theorem 2.4 we shall need to
estimate the supremum norm of convolutions μt ∗ f in terms of the modu-
lus of continuity ω(f, t) and vice versa. This makes it natural to introduce
the so-called generalized modulus of continuity ωμ(f, t) of a continuous and
compactly supported function f with respect to a measure μ as follows:

ωμ(f, t) = sup{|μs ∗ f (x)|; x ∈ Rp, |s| < t}
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Estimates of the kind we need were called comparison theorems for generalized
moduli of continuity in [3] and [4] and were studied in great detail there.

If μ = ν ∗ ρ, then it is obvious that

ωμ(f, t) ≤ Cων(f, t)

with C = ‖ρ‖M . The set of continuous and compactly supported functions on
Rp will be denoted by Cc(Rp).

Lemma 3.1. Assume that the measure μ ∈ M(R) satisfies the condition

(3.1) |x|μ ∈ M(R),
and that μ has mean zero, that is μ̂(0) = 〈μ, 1〉 = 0. Then

ωμ(f, t) ≤ Cω(f, t), f ∈ Cc(R),
with C = ∫

(1 + |x|) |dμ(x)|.
Proof. Since 〈μ, 1〉 = 0 we can write

μt ∗ f (x) =
∫
f (x − y) dμt(y) =

∫
f (x − ty) dμ(y)

=
∫
(f (x − ty)− f (x)) dμ(y).

Set ω(f, t) = σ(t). Since σ(t) is subadditive and increasing it follows that

|μt ∗ f (x)| ≤
∫

R
σ(|yt |)|dμ(y)| ≤

∫
R
(1 + |y|)σ (t)|dμ(y)| ≤ Cσ(t),

which proves the assertion.

Lemma 3.2. Let θ ∈ Rp \ {0} and assume f ∈ Cc(Rp) ∩ K(θ, σ ) and
μ ∈ Nθ(Rp). Then

ωμ(f, t) ≤ Cσ(t).

Proof. After a rotation of the coordinate system we may assume that θ =
(1, 0, . . . , 0). The assumption μ ∈ Nθ(Rp) then means that μ̂(ξ)/ξ1 is in
M̂(Rp). Take ψ as in (2.4) and decompose μ by writing μ = μ0 + μ1 where
μ̂0(ξ) = μ̂(ξ)ψ(ξ1). Denote the difference measure δ(1,0,...,0)− δ(0,...,0) by�1.
Then

μ̂0(ξ)

�̂1(ξ)
= μ̂(ξ)

ξ1
· ψ(ξ1)

(e−iξ1 − 1)/ξ1
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is in M̂(Rp), since the last factor is a smooth compactly supported function of
ξ1. Thus μ0 = �1 ∗ τ for some τ ∈ M(Rp), hence

ωμ0(f, t) ≤ Cω�1(f, t) ≤ C1σ(t)

with C = ‖τ‖M . It remains to estimate ωμ1(f, t). Since μ̂1(ξ) = 0 for |ξ1| <
1/2 we can write μ̂1(ξ) = χ(2ξ1)μ̂1(ξ), where χ is the function defined by
(2.4), hence we haveωμ1(f, t) ≤ ωρ(f, t)‖μ1‖M , if ρ is the measure inM(Rp)
defined by ρ̂(ξ) = χ(2ξ1). It is therefore enough to estimate ωρ(f, t) in terms
of ω�1(f, t). This is essentially a one-variable problem, since ρ and �1 are
measures supported on the x1-axis. Considering ρ as a measure in M(R) it
is in fact equal to the Dirac measure plus a Schwartz function, so it certainly
satisfies the condition (3.1). The estimate ωρ(f, t) ≤ Cω�1(f, t) therefore
follows from Lemma 3.1. The proof is complete.

The next lemma is a converse estimate for a very special class of measures
μ. The case that we shall need is when μ̂(ξ) = 0 in some neighborhood of the
origin, and this case immediately implies the more general statement of the
lemma.

Lemma 3.3. Let μ ∈ M(R) be a measure such that μ̂(ξ) = 1 outside some
compact set. Then

(3.2) ω(f, t) ≤ C

(
ωμ(f, t)+ t

∫ ∞

t

s−2ωμ(f, s)ds

)
,

f ∈ Cc(R), t > 0, hence ω(f, t) ≤ Cω̃μ(f, s).

Proof. If μ̂(0) �= 0, then ωμ(f, t) in general does not tend to zero as
t → 0, so the statement is empty in this case. If μ̂(ξ) vanishes at the origin
of order at most 1 in the sense that ξ/μ̂(ξ) is locally in L̂1(R) near the origin,
then the stronger conclusion ω(f, t) ≤ Cωμ(f, Ct) holds [3, Corollary 2.3].
The interesting case is therefore when μ̂(ξ) vanishes at the origin of higher
order than 1. The statement of the lemma is a special case of Corollary 2.4 in
[3], but the case considered here is much simpler because of the assumption
that μ̂(ξ) = 1 for large |ξ |. We therefore give the short proof here.

By scaling we see that we may assume that μ̂(ξ) = 1 for |ξ | > 1/4. Let
ψ be the function defined by (2.4). Decompose the difference measure � by
writing� = ν0 + ν1 with ν̂0(ξ) = ψ(ξ)�̂(ξ). Then ν̂1 = ν̂1μ̂, so it is enough
to estimateων0(f, t). Since �̂(ξ) = e−iξ−1 we can write ν̂0(ξ) = ψ(ξ)ξh(ξ),
where h(ξ) has compact support and is equal to (e−iξ − 1)/ξ on the support
of ψ , hence h ∈ L1(R). Therefore it is enough to estimate ωρ(f, t) where
ρ̂(ξ) = ξψ(ξ). Set φ(ξ) = ψ(ξ) − ψ(2ξ). Then ψ(ξ) = ∑∞

k=0 φ(2
kξ) for
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ξ �= 0, and hence

(3.3) ξψ(ξ) =
∞∑
k=0

ξφ(2kξ) =
∞∑
k=0

2−k2kξφ(2kξ) =
∞∑
k=0

2−kφ1(2
kξ),

where φ1(ξ) = ξφ(ξ). Since μ̂(ξ) = 1 on the support of φ1, we have φ1(ξ) =
μ̂(ξ)φ1(ξ) and hence ωλ(f, t) ≤ Cωμ(f, t) if λ ∈ L1(R) is the function
defined by λ̂(ξ) = φ1(ξ). The only non-trivial step is to estimate ωρ(f, t)
in terms of ωλ(f, s). To do this we replace ξ by tξ in (3.3) and take inverse
Fourier transforms to obtain ρt = ∑

2−kλt2k , and hence

ωρ(f, t) ≤
∞∑
k=0

2−kωλ(f, 2kt).

It is an elementary fact that this implies

ωρ(f, t) ≤ t

∫ ∞

t

s−2ωλ(f, s)ds.

In fact for any non-negative increasing function ϕ we have

t

∫ t2k+1

t2k
s−2ϕ(s)ds ≥ tϕ(t2k)

∫ t2k+1

t2k
s−2ds = 2−k−1ϕ(t2k).

Recalling that ων0(f, t) ≤ Cωρ(f, t) and that ωλ(f, t) ≤ Cωμ(f, t) we can
now conclude (3.2).

Proof of Theorem 1.1. Using a partition of unity it is easy to see that it is
sufficient to consider the case when f has compact support. We first prove the
assertions under the additional assumption that f is continuous. Assume now
that (θ0, η0) ∈ P(�) and that 〈ηk, f 〉 ∈ K(θk, σ ) for every (θk, ηk) ∈ �. We
have to prove that 〈η0, f 〉 ∈ K(θ0, σ ). Choose μ0 = δθ0 − δ(0,...,0). It is easy
to see that μ0 ∈ Nθ0(Rp), because the measure ν ∈ M(R) defined by δ0 − δ1

has the property that ν̂(λ)/λ is in M̂(R) by Lemma 2.2. We can therefore apply
Theorem 2.4 and obtain measures μk ∈ Nθk (Rp) such that

(3.4) η0μ0 =
∑
k

ηkμk

holds with μk ∈ Nθk (Rp). Applying Lemma 3.2 to the function R � t �→
〈ηk, f 〉(x + tθk) we can infer from the assumption 〈ηk, f 〉 ∈ K(θk, σ ) that
ωμk (〈ηk, f 〉, t) ≤ Cσ(t) for every k. The identity (3.4) now shows that
ωμ0(〈η0, f 〉, t) ≤ Cσ(t) with a new constant C, which proves the assertion.
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Assume next that (θ0, η0) ∈ P̃ (�). Define μ0 by μ̂0(ξ) = χ(〈θ0, ξ〉).
By Theorem 2.1 we can find μk ∈ Nθk (Rp) such that (3.4) holds. Reasoning
as in the previous paragraph we can conclude that ωμ0(〈η0, f 〉, t) ≤ Cσ(t).
Finally, by Lemma 3.3 we can infer from here that 〈η0, f 〉 ∈ K(θ0, σ̃ ), which
completes the proof for the case when f is assumed to be continuous.

To prove those statements without the à priori assumption that f is con-
tinuous it is sufficient to apply (3.4) to a sequence of regularizations of f and
use standard arguments.

The converse statement is easy to prove using ideas from [1] as follows.
It is obvious that (1.3) cannot imply 〈η0, f 〉 ∈ K(θ0, τ ) unless σ ≺ τ . If
(θ0, η0) /∈ P̃ (�) we take u ∈ Rp, v ∈ Rq such that 〈u, θ〉〈v, η〉 = 0 for all
(θ, η) ∈ �, 〈u, θ0〉〈v, η0〉 �= 0, and choose f (x) = vh(〈u, x〉), where h is a
discontinuous function of one variable. Then t �→ 〈η, f (x + tθ)〉 is constant
for every (θ, η) ∈ � but t �→ 〈η0, f (x + tθ0)〉 is not continuous, so (1.3)
does not imply 〈η0, f 〉 ∈ K(θ0, τ ) for any τ . In the case (θ0, η0) ∈ P̃ (�)

but (θ0, η0) /∈ P(�) we consider only σ(t) = t ; for general σ one can
reason as in [1], p. 21. Assume (θ0, η0) /∈ P(�) and choose a linear operator
B : Rp → Rq such that 〈η, Bθ〉 = 0 for all (θ, η) ∈ � but 〈η0, Bθ0〉 �= 0.
Let f (x) = Bx log |x|. Then it is easy to see that t �→ 〈η0, f (x + tθ0)〉 has
bounded derivative, hence 〈η, f 〉 is in K(θ, σ ), for every (θ, η) ∈ �, but
〈η0, f 〉 is in K(θ0, τ ) only if σ̃ (t) ∼ t | log t | ≺ τ .
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