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ON THE MODULUS OF CONTINUITY OF MAPPINGS
BETWEEN EUCLIDEAN SPACES

DIEUDONNE AGBOR* and JAN BOMAN

Abstract

Let f be a function from R? to R? and let A be a finite set of pairs (6, n) € R? x R?. Assume that
the real-valued function (n, f(x)) is Lipschitz continuous in the direction 6 for every (0, n) € A.
Necessary and sufficient conditions on A are given for this assumption to imply each of the
following: (1) that f is Lipschitz continuous, and (2) that f is continuous with modulus of
continuity < Ce|loge|.

1. Introduction

Let us say that a function f from R” to R is continuous in the direction 6 €
R7”\ {0} if the functionR > ¢ +— f(x+10) is continuous uniformly with respect
to x on compact sets. It is obvious that f must be continuous if it satisfies p
conditions of this kind for a set of 8-vectors that spans R”. However, to be able
to conclude that two real-valued functions on R? are continuous we do not need
four conditions, but three conditions suffice. In fact, if f is continous in the
direction (1, 0), g is continous in the direction (0, 1), and f + g is continuous
in the direction (1, 1), then f and g must be continuous. This makes it natural
to pose the following more general question.

Let A be a finite set of pairs (6, ) € R” x R? and let f be a function from
R? to R?. Denote the inner product in R? by (-, -). Assume that the real-valued
function x — (n, f)(x) is continuous in the direction 6 for every (6, n) € A.
Under what condition on A does it follow that f is continuous? The answer
is given by Theorem 1.1. More precisely, if A satisfies the condition (A) and
the function x +— (1, f)(x) is continuous in the direction 6§ with modulus
of continuity < o (¢) for every (6,7n) € A, then f must have modulus of
continuity < Ct ftl 5720 (s)ds. In particular, if A satisfies the condition (Z)
and the function x — (7, f)(x) is Lipschitz continuous in the direction 8 for
every (6,n) € A, then f must have modulus of continuity < Crlog(1/1).
The minimum number of elements of A for (A) to hold is p + g — 1. This
makes it natural to ask also under which condition on A we can conclude that
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the modulus of continuity of f must be < Co (¢). The answer to this question
is also given by Theorem 1.1. The stronger conclusion requires at least pg
elements of A.

Those results were presented in [1] together with examples showing that
the statements are sharp. Later it was shown in [2] that the results in [1] could
be deduced from an extension to vector-valued functions of the theory of
generalized moduli of continuity developed in [5], [4], and [3]. The purpose
of this note is to give a considerably simpler proof of Theorem 1.1 than the
ones given in [1] and [2]. We also give a complete proof of a more general
statement that was announced without proof in [1].

Denote by X the class of continuous, increasing, and subadditive functions
from {t € R;¢t > 0} into itself, tending to zero at the origin. If 0 € ¥ we
denote by K (o) the set of (real-valued or vector-valued) functions f on R?
that are continuous with modulus of continuity < Co (¢) on compact sets, that
is, for every compact set K there exists a constant C such that

lf(x+y) = f)l = Ca(lyD, x,x+yek.

If 6 € R? \ {0} we denote by K (6, o) the set of functions that have modulus
of continuity < Co (¢) in the direction 6, that is,

|f(x+10) — f(x)] < Coa(lt]), x,x+1t0 €K, teR.

The set A of pairs (8, 1) € R? x R? is said to satisfy condition (A) if the
set of tensor products 8 @ n for (6, n) € A spans R” ® R?. This is the same as
saying that the set of p x g matrices (6;7;) spans the pg-dimensional vector
space M (p, q) of all p x g matrices.

If we associate the p x ¢ matrix (a;;) with the linear form (e;;) — Y ojja;j
on M(p, q), then the dual space of M(p, gq) will be identified with another
copy of M(p, q). The set A is said to satisfy the condition (A) if there is no
rank one element of M (p, g) that is orthogonal to all the matrices (6;n;) for
(6, n) € A. Note that the condition (A) can be expressed by saying that there
is no non-vanishing element of M(p, ¢) that is orthogonal to all the matrices
(6in;) for (8, n) € A.In other words, A satisfies (A) if

(1.1) ueR’, veR?and (u,0)(v,n) =0forall (8,n) € A
(1.2) implies |u||v| = 0.

We also introduce two hull operations P and P onsubsets of R” x RY as follows.
P(A) is defined as the set of pairs (8%, n°) € R” x R? such that 6 ® 1 is in
the linear hull of the set of all 8 ® n such that (8, n) € A. P(A) is the set of
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(0°, n°) such that
ueRP, veR?and (u,0)(v,n) =0forall 8,n) € A
implies (u, 6°) (v, n°) = 0.

We observe that condition (A) is equivalent to P(A) = R? x R? and condition
(A) is equivalent to P(A) = R? x RY.
If o € ¥ we define & by

1
5(1) = t(a(l) +/ sza(s)ds), t>0.
min(z,1)

If o0 and 7 are in X the expression ¢ < 7 will mean that o(t) < Ct(¢) for
0<t<landsomeC.Ifo € X,thenc € L ando < o.Infact, o () < o (t)
for t < 1, and the identity t5'(t) = & (t) — o (¢), valid for t < 1, therefore
implies () > 0 forr < 1.

THEOREM 1.1. Let f be a locally bounded function from R” to R? and let
o € X. Let A be a finite subset of RP x R satisfying (A) and assume that

(1.3) (n, f) e K@,o0) forevery (0,1n) € A.

Then f € K (7). Moreover; if A satisfies (A) and (1.3) holds, then f € K (o).
Conversely, if (1.3) implies f € K(t), then at least one of the following

statements is true .
A satisfies (A) and o < T,

A satisfies (A)and5 < .
More generally, (1.3) implies (n°, f) € K(8°, t) if and only if at least one of
the following statements is true

©° n°) e P(A)ando < t,

©°, 1% € P(A) and 5 < .

Let M(R”) denote the space of measures on R” with finite total mass, and
let M (R?) be the set of Fourier transforms of elements of M (R?). The Fourier
transform of u € M(R”) is defined by [1(§) = (u, e™™*) = [e ™ ¥du(x).
Moreover we shall denote by Ny (R?) the set of measures © € M (R?) for which

w)
(0.8)

In [1] a similar role was played by the set My (R?) of measures u € M (R?) for
which the Fourier transform vanishes on the hyperplane perpendicular to 6. It

€ M(RP).
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is clear that Ny (R?) C My (R?), but the opposite inclusion is easily seen not to
be true. (Take for instance h(x) = 7~'/(1 + x?) — ¥ (x), where VRS L'(R)
is even, compactly supported, and has 1ntegra1 equal to 1; then h(O) =0
and h(€) = e ¥l — (&) = —[g| + O(EP) as |E] — 0, hence )/
is discontinuous at the origin and therefore cannot be in M (R).) However,
if # € M(RP) has compact support and jz(£) vanishes on the hyperplane
(0,&) = 0, then u € Ny(RP) (c.f. Lemma 2.2). The fact that the measures
constructed in Theorems 3 and 5 in [1] had compact support was the reason
that the set Ny (RP) was not needed in [1].

As in [1] we shall deduce Theorem 1.1 from two theorems on the represent-
ation of vector-valued measures as finite sums of measures of the form n ® vy
where vy € Ny(R?) and (6, n) € A; see Section 2. The novelties with our ap-
proach here relative to [1] are as follows. In the proof of Theorem 2.4 below the
measure jq is written as a sum, (o = vy + vq, of a measure vy whose Fourier
transform has compact support and a measure v; whose Fourier transform van-
ishes in a neighborhood of the origin, and it is observed that the representation
(2.1) is very easy to prove for vy and that (2.1) is an immediate consequence
of Theorem 2.1 for v;. The measures w; constructed in this way will not be
compactly supported like those constructed in the proof of Theorem 3 in [1],
but this is not needed for the proof of Theorem 1.1. Moreover, Theorem 2.1
is somewhat weaker than Theorem 5 in [1] in that [Z is assumed to vanish in
some neighborhood of the origin, but the proof is much simpler, the main new
idea being the use of the special partition of unity (2.6). Finally, the measure
@ in Lemma 3.3 with Fourier transform equal to 1 outside some compact set
has replaced the iterated convolutions occurring in Theorem 5 of [1] (typically
g-th order difference measures), and therefore Marchaud’s inequality has been
replaced by the easier and perhaps more fundamental Lemma 3.3 below.

The authors are indebted to Jan-Olov Stromberg for the proof of Lemma 3.1,
which replaced an earlier, less elementary proof using results from [3].

2. The submodule J(A)

Denote by M (R?)? the set of g-tuples of measures in M (R?). It is the tensor
product over R of the vector spaces R? and M (R?). The tensor product n ® ©
can be defined as the g-tuple (n 1, ..., nyun) € M(RP)4, and from now on it
will simply be denoted npu.

Since M (R?) is aring under convolution, it is clear that M (R”)? is a module
over the ring M (R?). We shall denote by J(A) the set of element of M (R?)4
of the form

2.1) > 0t
k=1
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where iy € Ny« (RP) and (6%, n%) € A. Since Ny« (R?) is an ideal in M (R?) it
is clear that J(A) is a submodule o£ M (RP)?. The set of Fourier transforms of
elements of J(A) will be denoted J(A).

THEOREM 2.1. Assume that (6°, n°) € ﬁ(A) and that g € M (R?) satisfies
o) =0 wheQI(GO, £)| < & for some & > 0. Then n° g € J(A). Moreover,
if A satisfies (A) and [1o(§) = 0 in some neighborhood of the origin, then
n°uo € J(A) for each n° € RY.

Itis easy to see that the first statement of Theorem 2.1 implies the second. In
fact, if (&) = 0 in a neighborhood of the origin then we can find ¢ > 0 and
wj, j=1,..., p,suchthat zt;(§) = O for |&;| < e and o = ) p;. Applying
the first statement of Theorem 2.1 to (6°, n°) where ° is arbitrary and 0° is
the j:th basis vector in R” we obtain nouj € J(A), hence n°ug € J(A).

The following simple lemma will be needed below.

LEMMA 2.2. Let u € M (R) and assume that £(§) = 0insome neighborhood
of the origin. Then (§)/& is in M(R). More generally, assume that [1(§) is
twice continuously differentiable in some neighborhood of the origin and that
w(0) = 0. Then 1(£) /¢ is in M(R).

PROOF. Let § > 0 be so small that supp it C {|&| > 8} and choose x €
C*(R) such that x(§) = O in for |§] < §/2 and x(§) = 1 for |§| > §. Then
mE) = x (&), so it is enough to prove that x (§)/& is in M(R). Since
x (£)/€ is in L*(R) there exists h € L*(R) C L] .(R) so that h(§) = x (&)/&.
And to see that # € L'(R) C M(R) it is enough to observe that the second
derivative of x (£)/& is in L'(R), hence x?h(x) is bounded. This proves the
first statement. To prove the second statement we note that (1 — x (§))x(§)
is twice continuously differentiable, compactly supported, and vanishes at
& =0, hence (1 — x(§))1t(£)/£ is continuously differentiable and compactly
supported, and it is well known that such a function is in L'(R) C M (R).

__ The next lemma gives reformulations of the conditions (Z) and (8°, n%) €
P(A). Let .Z denote linear hull.

LEMMA 2.3. Let (0%, n%), k = 1,2, ...m, be the elements of A. Denote
an arbitrary subset of {1,2, ..., m} by E and its complement by E'. Then
©6°, 1% € P(A) if and only if

for each E at least one of the following statements is true:

2.2
2-2) 0° e Z({6% k € E}), e L{n* ke E')).

In particular A satisfies (X) ifand only if (2.2) is true forall (68°, n°) € RP xRY,
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which is equivalent to

for each E at least one of the following statements is true:

(23) k k /
ZL({0%; k € E}) =R?, L({n";k e E'}) =RI.

Proor. If (2.2) is false, then there exist # € R” and v € R? such that
(u, 0%y = Oforallk € E, (v, n*) = Oforallk € E’,and (u, 6°) # 0, (v, n°) #
0. But this means that (u,gk)(v, n*) = 0 for all k and (u, 00~)(v, n°) # 0, in
other words, (6%, n°) ¢ P(A). Conversely, if (8°,7°) ¢ P(A), then there
exists (u, v) so that (u, ) (v, n) = 0 for all (0, ) € A but (u, 6°) (v, n°) # 0.
Choosing E as the set of k for which (u, 6¥) = 0 we have (v, n*) = 0 for all
k € E’, which shows that (2.2) is false and completes the proof of the first
statement. The second statement is proved similarly.

It follows immediately from Lemma 2.3 that A must have atleast p+¢ — 1
elements, if (A) holds.

Since we shall need certain standard cut-off functions many times, we define
them here once and for all in order to avoid repetitions. We shall denote by v
and x two functions in C*°(R) such that

Y(@)=1 for |t| <1/2,
(2.4) Y(t) =0 for [t| > 1,
and  x(0) =1—v),

ProOF OF THEOREM 2.1. Although it would be sufficient to prove the first
statement, we begin by proving the second statement in order to simplify the
exposition. We first claim that it is enough to prove that we can find measures
Vr € Ny« (RP) such that

2.5) ' =Y un®, &> B,
k=1

for some sufficiently large B. To see this note first that iio(§) = x (I€]/&) o (§)
if & is small enough, hence it is enough to prove that n%x (|€|/¢) is in J(A).
Since Ny (R?) is obviously invariant under the variable trAansformation E—> A€
forevery A > 0 and every 6, the same must be true for JA(A). But (2.5) implies
that n°x (|€]/2B) is in J(A), hence n°x (|€]/¢) is in J(A), and the claim is
proved.

Itis easy to establish (2.5) locally in conic subsets of R” as follows. Assume
that (A) holds and let £° be an arbitrary element of R” \ {0}. Let E be the set
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of k for which (6%, £°%) = 0. It follows from Lemma 2.3 that the set of n* for
which k ¢ E must span R?. Hence we can find constants by such that

n’ =Y b,

k¢E

Let x () € C*(R) be the function defined by (2.4) and set

h&) =[] xe" &).

keE

By Lemma 2.2 we have h € ﬁgk(Rp) for each k € E. By the choice of E
we have h(A£%) = 1if A > 0 is sufficently large, and by continuity the same
is true for £ in some neighborhood of £°. Taking V;(£) = byh(£) we have
obtained (2.5) in a conic neighborhood of £°. We can cover R? \ {0} by a finite
number of open conic sets V; and for each V; construct v,i such that (2.5) holds
in V; N {§;|§] > B} for some B. It is now natural to try to piece together
those measures v} by choosing a partition of unity ¢; (&) on the unit sphere
§P=1 c R? with supp¢; C V; N SP~! and choose v by

V(€)= i(E/IENTL(E).

The problem is that the functions ¢ (¢ /|§|), homogeneous of degree zero, are
in general not in M (R?). Therefore we need a different partition of unity in
R?, especially adapted to this problem.

Let ¥ and x be the functions defined by (2.4). If (6%, n*), k =1, ..., m,
are the elements of A we set ¥ (§) = ¥ ((0X, &), xx (&) = x((6%, £)), and
write

L= [ @ + x&)).

k=1

Expanding the product we obtain a sum of 2" terms,

(2.6) 1= or®),
E
where
2.7) ¢e@®) =[[ve® [ x®,
keE keE’
and the sum in (2.6) is taken over all subsets E of {1, 2, ..., m}. We have to

show that n°¢ (€) is in J(A) for each E.
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If the set of #% with k € E spans R”, then the support of [Ticr ¥x(é), and
hence the support of ¢, is compact, so we can disregard those terms. Thus
consider an arbitrary term ¢z where the set of % with k € E does not span
RP. By Lemma 2.3 the set of n* for k € E’ must then span R?. Choosing by so
that n° = Y ker bi n* and multiplying with ¢z (£) we obtain

n"¢rE) =Y bin'pr(&).

keE’

We claim that ¢g (&) is in ﬁgk (RP) for each k € E’. But this is clear because
o (£)/(6%, &) is a product of V(&) for j € E and x;(§) for j € E', j # k,

and the factor . .
x (0%, 8))/(0%, &),

which is in M(RP) by Lemma 2.2. In this way we also see that ¢g(§) = 0
for [(6%,&)| < 1/2. This completes the proof of the second statement of
Theorem 2.1.

To prove the first statement we observe first by reasoning as above that it
is enough to prove that n%x ((8°, £)/B) is in J(A) for sufficiently large B.
Consider n°¢z(£) x ((6°, £)/B) for an arbitrary E. If n° € L({n*; k € E'})
we can choose numbers by such that n° = Y, ce i n*. Since ¢ (£) contains
the factor x (0%, £)) for every k € E’, we can write

28)  n’pe®)x((6°€)/B) =) bin*¢rE)x (6", €)/B),

keE’

and observe that ¢g(§) is in ﬁgk (RP) for every k € E’, so the expression (2.8)
isin J(A) in this case. If 1° ¢ #({n*; k € E'}), then by Lemma 2.3 we must
have 0° € Z({0*; k € E}). But in that case the function ¢z (&) x ((8°, €)/B)
must vanish if B is large enough, because the support of ¢ is contained in
[(9°,&)| < A for some A. In fact supppr C {&; (6%, €)| < 1} for every
k€ E,andif 0° = )", _, a;0" we have [(6°, £)] < 3" |ax|(6%, &) < X laxl
for every & € supp ¢, which proves the claim and finishes the proof of the
theorem.

We now turn to the consequences of the stronger hypothesis (A).

THEOREM 2.4. Assume that A satisfies (A) and let iy € Ngo(RP) for some
0% € R? \ {0}). Then n°uy € J(A). More generally, if j1y € Ngo(RP) and
®°, nO) € P(A), then 770M0 e J(A).

PrOOF. We begin by proving the first statement. Take a smooth function
¢ (&) supportedin |§| < 2 and equal to 11in|&| < 1 and decompose (g as @y =
vo+v; by taking Dy (&) = ¢ (&)12o(§) and vi = po—vp. The factthatv; € J(A)
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follows from Theorem 2.1 since V;(§) = 0 in a neighborhood of the origin.
It remains to consider vy. Now, since A satisfies (A), there exist constants ¢y
and (0%, n*) € A,k =1,...,m, such that 1° ® 6° = 7" | cxn* ® 6%, or
equivalently,

m

2.9) (0%, &) =Y an'(6*,6),  EeR.

k=1

Since j19 € Ngo(RP), we have ip(£) = (6°, é)’):(é) for some . € M(R?),
hence by (2.9)

n"Do(&) = ") &) = 1°(0°, £)2(5) (&)

I
Eﬂs

EVLE)P (&) = Zn’ws)

~
Il

1

with 1 (&) = cx (6%, S)/):(S )¢ (£). Since ¢ has compact support it is clear that
Ur € M(RP) and that u; € Ny« (R?), which completes the proof of the first
statement.

To prove the second statement assume that (8°, n°) € P(A) and that pg €
Ngo(RP). Decomposing (1o by g = vo + v1, where Dy (£) = oy ((0°, £)) and
lﬁ € C™(R) is defined by (2.4), we see by the first part of Theorem 2.1 that
n° v1 € J(A), so it is sufficient to study vy. And since Dy () is d1V1Slble by
(6°, £)9 ((6°, £)), it is enough to prove that (82, &)y ((6°, £)) is in J(A).

By the assumption we have (2.9) and multiplying this equation by v ((9°, &))
we obtain

2100 0% &) w(e°. & )—Zcm (0%, £)y (6. 6)).

The difficulty is that the functions (9%, 5 Y ((0°, £)) are not in M (R?) because
they are in general not even bounded. Choose measures p; by

Pu(§) = (0%, E)Y (6%, £ ((6°, §)).

Clearly px € Ng«(RP). If we insert 1 = v ((0%, &)) + x (9%, &)) in the kth term
in (2.10), we obtain

(2.11) (0%, E)v (0%, €) = > _n*i() + F (&),
k

where

(2.12) FE) =v((6° & )ch (0, €)x (6", €)).

It remains to show that F(£) isin J (A).
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From (2.11) we see that each component of the (vector-valued) function
F(&) is in M (R?) (although the individual terms 1n (2.12) are not). Thus, if
we take a subset {n*; k € Ey} of the set of all the n* that forms a basis for the
vector space spanned by all the n¥, then we can write

F&) =Y bi©n,

J€Ey

where b; (£) are uniquely determined functions that belong to M (R?). Indeed,
each b; (&) must be a linear combination of the components of F'(£). Note that
the functions b; (£§) depend on our choice of basis. Our problem is that we want
each b; (&) to vanish on (67, &) = 0. To achieve this we have to split F(£) into
a number of terms by means of a partition of unity, just as we did before, and
choose different bases for the different terms.

It will be convenient to use the partition of unity 1 = > . ¢£(2§). The
reason for the factor 2 is that ¥ (2¢) x (t) = 0, so that

(2.13) w05, ENx((0F,€) =0  forall k.

It will be enough to prove that F(£)¢g(2£) is in T (A) for an arbitrary E.

Fix E and consider F (§)¢g(2£). Because of (2.13) all terms in (2.12) with
k € E will drop out. We therefore choose E( consisting only of vectors 1/
with j € E’, and write

F(E)¢p28) = Y bjE)n/

J€Eo

with Eg C E'. But ¢ (£) is defined so that it contains every x ((6/, £)) with
j € E' as factor, hence in particular all x ({97, £)) with j € Ey. As we saw
above, each b; (&) is a linear comblnatlon of the components of the function
F(&). Hence each b;(&) belongs to N9, (R?), and the proof is complete.

3. Proof of Theorem 1.1

If w € M(RP) and t > 0 we define the measure u, by j1;(§) = (t€). For
a function k € L'(RP) C M(RP) this means that k,(x) = ¢ Pk(x/t). In de-
ducing Theorem 1.1 from Theorem 2.1 and Theorem 2.4 we shall need to
estimate the supremum norm of convolutions w; * f in terms of the modu-
lus of continuity w(f, t) and vice versa. This makes it natural to introduce
the so-called generalized modulus of continuity @, (f, t) of a continuous and
compactly supported function f with respect to a measure pu as follows:

wu(fi 1) = sup{lps * f(x)|;x € R, |s| < 1}
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Estimates of the kind we need were called comparison theorems for generalized
moduli of continuity in [3] and [4] and were studied in great detail there.
If © = v * p, then it is obvious that

wu(fi1) = Cou(f, 1)

with C = || p|| 5. The set of continuous and compactly supported functions on
R? will be denoted by C.(R?).

LeEMMA 3.1. Assume that the measure (1 € M (R) satisfies the condition
3.1 lx|n € M(R),
and that p has mean zero, that is £(0) = {u, 1) = 0. Then
wu(fit) = Co(f,1),  feCR),

with C = [(1 4 |x]) [du(x)].

ProoF. Since (i, 1) = 0 we can write
e * f(x) =/f(x = y)du(y) sz(x —ty)du(y)
_ / (fGx—1y) = FC) du(y).

Set w(f,t) = o(t). Since o (¢) is subadditive and increasing it follows that

e s f ()] < /G(Iytl)ldﬂ(y)l < /(1 + lyDo@®ldu(y)| < Co(t),
R

R
which proves the assertion.

LEMMA 3.2, Let 0 € RP \ {0} and assume f € C.(R?) N K(0,0) and
i € Ng(RP). Then
w,(f, 1) < Co(t).

PrROOF. After a rotation of the coordinate system we may assume that 6 =
Q, 0,...,0). The assumption € Ny(R?) then means that (§)/&; is in
M (R?). Take i as in (2.4) and decompose p by writing u = o + @ where
o(&) = (&)Y (&1). Denote the difference measure 80,0y — 80.....0) by A.

fhen W) _AE v
AE) & (T =D/E

.....
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isin M (R?), since the last factor is a smooth compactly supported function of
&1. Thus oy = Ay x t for some t € M(R?), hence

wuo (fs 1) = Con (f, 1) = Cro (1)

with C = ||t ||y. It remains to estimate w,,, (£, t). Since 1z, (§) = 0 for |§| <
1/2 we can write £, (§) = x(2&)11(§), where x is the function defined by
(2.4),hence wehave w,,, (f, 1) < w,(f, t)|lp1la,if p is the measure in M (RP)
defined by p(§) = x(2&)). It is therefore enough to estimate w), ( f, ¢) in terms
of wa, (f, t). This is essentially a one-variable problem, since p and A are
measures supported on the x;-axis. Considering p as a measure in M (R) it
is in fact equal to the Dirac measure plus a Schwartz function, so it certainly
satisfies the condition (3.1). The estimate w,(f,#) < Cwa,(f,t) therefore
follows from Lemma 3.1. The proof is complete.

The next lemma is a converse estimate for a very special class of measures
w. The case that we shall need is when 1£(§) = 0 in some neighborhood of the
origin, and this case immediately implies the more general statement of the
lemma.

LEMMA 3.3. Let i € M(R) be a measure such that (1(§) = 1 outside some
compact set. Then

(3.2) o(f,t) < C(a)u(f, t)+t/00s—2wﬂ(f,s)ds>,

f€C.(R), t >0, hence w(f, 1) < Ca,(f,s).

Proor. If [£(0) # 0, then w,(f, ) in general does not tend to zero as
t — 0, so the statement is empty in this case. If 7(£) vanishes at the origin
of order at most 1 in the sense that & /z(§) is locally in L'(R) near the origin,
then the stronger conclusion w(f,t) < Cw,(f, Ct) holds [3, Corollary 2.3].
The interesting case is therefore when 1(£) vanishes at the origin of higher
order than 1. The statement of the lemma is a special case of Corollary 2.4 in
[3], but the case considered here is much simpler because of the assumption
that zt(§) = 1 for large |&|. We therefore give the short proof here.

By scaling we see that we may assume that £(§) = 1 for |§] > 1/4. Let
Y be the function defined by (2.4). Decompose the difference measure A by
writing A = vy + vy with Dy(§) = 1//(5)3(5). Then V; = Vi1, so it is enough
to estimate w,, ( f, ¢). Since Z(g) = e~ —1 we can write Dy (§) = V¥ (§)Eh(E),
where /(&) has compact support and is equal to (e "¢ — 1)/£ on the support
of ¥, hence 1 € L'(R). Therefore it is enough to estimate w,(f,t) where

PE) = EY(E). Set ¢(§) = Y(§) — ¥(26). Then Y (§) = Y72, ¢(2¢) for
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& # 0, and hence

(33)  EYE) =) EpQlE) =) 27292k =) 271 (2%),

k=0 k=0 k=0

where ¢1(§) = £¢(&). Since £(&) = 1 on the support of ¢, we have ¢ (§) =
w(&)¢1(§) and hence wy(f,1) < Caw,(f, 1) if L € L'(R) is the function
defined by /):(é-‘) = ¢1(£). The only non-trivial step is to estimate w,(f,t)
in terms of w; (f, s). To do this we replace & by £ in (3.3) and take inverse
Fourier transforms to obtain p, = ) 27,51, and hence

w,(f,1) <Y 27 i (f, 2°0).

k=0

It is an elementary fact that this implies

w,(fo1) < t/oosza),\(f, s)ds.

In fact for any non-negative increasing function ¢ we have

12k+1 [2k+]

t/ 572 p(s)ds > te(12") s72ds = 275 (12h).
12k 12k

Recalling that w,,(f, ) < Cw,(f,t) and that w, (f, 1) < Cw,(f,t) we can

now conclude (3.2).

ProOF OF THEOREM 1.1. Using a partition of unity it is easy to see that it is
sufficient to consider the case when f has compact support. We first prove the
assertions under the additional assumption that f is continuous. Assume now
that (6%, n°) € P(A) and that (n*, f) € K (8%, o) for every (6%, n*) € A. We
to see that ;g € Ngo(RP), becausg\ the measure v € M (R) defined by 89 — &,
has the property that U(1) /A is in M (R) by Lemma 2.2. We can therefore apply
Theorem 2.4 and obtain measures iy € Ny« (R?) such that

(3.4) "o =Y n*u
k

holds with px € Ng(R?). Applying Lemma 3.2 to the function R > ¢
(n*, f)(x + t6%) we can infer from the assumption (n*, f) € K (6%, o) that
a)m((nk, f),t) < Co(t) for every k. The identity (3.4) now shows that
a)ﬂo((no, f),t) < Co(t) with a new constant C, which proves the assertion.
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Assume next that (9°, n%) € F(A). Define 1o by o(&) = x((6°, &)).
By Theorem 2.1 we can find w; € Ng«(R?) such that (3.4) holds. Reasoning
as in the previous paragraph we can conclude that w,,, ((n°, f),1) < Co(?).
Finally, by Lemma 3.3 we can infer from here that (n°, f) € K(8°, &), which
completes the proof for the case when f is assumed to be continuous.

To prove those statements without the a priori assumption that f is con-
tinuous it is sufficient to apply (3.4) to a sequence of regularizations of f and
use standard arguments.

The converse statement is easy to prove using ideas from [1] as follows.
It is obvious that (1.3) cannot imply (n°, f) € K(6°,7) unless o < 7. If
©°,1n°) ¢ P(A) we take u € R”, v € R such that (u, ) (v, n) = 0 for all
©,n) € A, (u,0% (v, n° 0, and choose f(x) = vh({u, x)), where h is a
discontinuous function of one variable. Then ¢t — (5, f(x 4 t6)) is constant
for every (8,1) € A butt — (n°, f(x + t6°) is not continuous, so (1.3)
does not imply (n°, f) € K(6°, t) for any 7. In the case (8°, n°) € P(A)
but (6°,7°) ¢ P(A) we consider only o(t) = t; for general o one can
reason as in [1], p. 21. Assume (6°, n°) ¢ P(A) and choose a linear operator
B : R? — RY such that (5, B8) = 0 for all (9, 7n) € A but (n°, BO%) # 0.
Let f(x) = Bxlog|x|. Then it is easy to see that > (n°, f(x + 6°)) has
bounded derivative, hence (n, f) is in K (@, o), for every (6,n) € A, but
(n°, f)isin K(0°, t) only if 5 (¢) ~ t|logt| < T.
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