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EXISTENCE AND CONCENTRATION OF SOLUTIONS
FOR A CLASS OF ELLIPTIC PROBLEMS WITH

DISCONTINUOUS NONLINEARITY IN RN

CLAUDIANOR O. ALVES∗ and RÚBIA G. NASCIMENTO†

Abstract
Using variational methods we establish existence and concentration of positive solutions for a
class of elliptic problems in RN , whose nonlinearity is discontinuous.

1. Introduction

Many recent studies have focused on the nonlinear Schrödinger equation

(NLS) iε
∂�

∂t
= −ε2�� + (V (x)+ E)� − f (�) for all x ∈ RN,

where ε > 0. Knowledge of the solutions for the elliptic equation

(Pε) −ε2�u+ V (x)u = f (u) in RN,

which can be rewritten of the form

−�u+ V (εx)u = f (u) in RN,

has great importance in the study of standing-wave solutions of (NLS). In
recent years, the existence and concentration of positive solutions for general
semilinear elliptic equations (Pε) for the case N ≥ 3 have been extensively
studied, see for example, Bartsch, Pankov & Wang [6], Floer & Weinstein [17],
Oh [21], Rabinowitz [22], Wang [24], Alves & Souto [5], Alves & Figueiredo
[3], [4], del Pino & Felmer [15] and their references.

In [22], by a mountain pass argument, Rabinowitz proves the existence of
positive solutions of (Pε), for ε > 0 small, whenever

(V0) V∞ = lim inf|x|→∞ V (x) > inf
x∈RN

V (x) = γ > 0.
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Later Wang [24] showed that these solutions concentrate at global minimum
points of V (x) as ε tends to 0.

In [15], del Pino and Felmer find solutions which concentrate around a local
minimum of V (x) by introducing a penalization method. More precisely, they
assume that there is an open and bounded set� compactly contained in� such
that

(V1) 0 < γ ≤ V0 = inf
x∈�V (x) < min

x∈∂� V (x).

In [18], Gazzola & Radulescu have considered the existence of solution for
the following class of problem{

Lu+ V (x)u = f (x, u) in RN ,

u > 0 in RN ,

where L is a general elliptic operator of second order and f is a discontinuous
function with subcritical growth and V : RN → R is a coercive continuous
function, that is,

V (x) → +∞ as |x| → +∞.

In that paper, by using variational methods, the authors show that the co-
ercivity of V implies that the nonlinearity defines a compact operator. Such a
property is crucial to conclude that weak limit of (PS) sequence of the energy
functional are solutions of the problem. Still related to elliptic problems with
discontinuous nonlinearity, we cite the papers of Alves, Bertone & Gonçalves
[1], Alves, Santos & Gonçalves [2], Badiale [7], [8], Dinu [16], Radulescu
[23] and their references.

Motivated by the papers [18], [22] and [24], we study the existence and
concentration of solutions for the following class of problem

(P )ε,β

{ −�u+ V (εx)u = H(u− β)up in RN ,

u > 0 in RN ,

where ε, β > 0 are positive parameters, H is the Heaviside function given by

H(t) =
{ 1 if t > 0,

0 if t ≤ 0,

and p ∈ (
1, N+2

N−2

)
if N ≥ 3 or p ∈ (1,+∞) if N = 1, 2. Moreover, V :

RN → R is a positive continuous function verifying the assumption (V0).
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By a solution for (P )ε,β , we understand as a function u ∈ W
2, p+1

p

loc (RN) ∩
H 1(RN) verifying

(1.1) −�u(x)+ V (εx)u(x) ∈ [g(u(x)), g(u(x))] a.e in RN

where g(t) = H(t−β)tp, g(t) = limδ→0+ g(t+δ) and g(t) = limδ→0+ g(t−
δ).

The interest in the study of nonlinear partial differential equations with
discontinuous nonlinearities has increased because many free boundary prob-
lems arising in mathematical physics may be stated in this form. Among these
problems, we have the obstacle problem, the seepage surface problem, and the
Elenbaas equation, see for example [10], [11], [12].

Our main result is the following:

Theorem 1.1. Assume that (V0) holds. Then, there are ε∗, β∗ > 0 such that
(P )ε,β has a positive solution uε,β for ε ∈ (0, ε∗) and β ∈ (0, β∗). Moreover,
if zε,β ∈ RN denotes a maximum point of uε,β , we have that

lim
(ε,β)→(0,0)

V (ε zε,β) = γ.

Theorem 1.1 completes the study made in [18], [22] and [24], in the sense
that, in [18] the authors studied the case lim inf |x|→∞ V (x) = ∞, because in
that paperV is coercive. In the present paper, we do not assume this assumption
on V , this way, V can not be coercive. Once that V is not necessarily coer-
cive, we use a new argument to overcome the lack of compactness involving
the nonlinearity, see Lemma 3.3 in Section 3. Related to the papers [22] and
[24], our contribution is directly related to the fact that we are considering a
discontinuous nonlinearity, while that in those papers, the nonlinearity con-
sidered was continuous. The authors believe that this is the first work related
to the study of concentration of the solutions for a class of elliptic problems
with discontinuous nonlinearity. A first difficulty involving this class of prob-
lem, is the fact that we cannot use the classical variational methods; here it
is necessary to use some results for a locally Lipschitz functional. When the
nonlinearity is continuous and satisfies some assumptions, the mountain pass
level is equal to the minimum of the energy functional on Nehari manifolds,
which is a key point in a lot of papers. However, this property is not true for
discontinuous nonlinearity. Hence, the arguments used in the above reference
cannot be repeated directly, and a careful analysis is necessary to get similar
results to those found in [22] and [24].
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2. Basic results from convex analysis

In this section, for the reader’s convenience, we recall some definitions and
basic results on the critical point theory of locally Lipschitz continuous func-
tionals as developed by Chang [10], Clarke [13], [14] and Grossinho & Tersin
[19].

Let X be a real Banach space. A functional I : X → R is locally Lipschitz
continuous, I ∈ Liploc(X, R) for short, if given u ∈ X there is an open neigh-
borhood V := Vu ⊂ X and some constant K = KV > 0 such that

|I (v2)− I (v1)| ≤ K‖v2 − v1‖, vi ∈ V, i = 1, 2.

The directional derivative of I at u in the direction of v ∈ X is defined by

I 0(u; v) = lim sup
h→0,λ↓0

I (u+ h+ λv)− I (u+ h)

λ
.

Hence I 0(u; .) is continuous, convex and its subdifferential at z ∈ X is given
by

∂I 0(u; z) = {μ ∈ X∗; I 0(u; v) ≥ I 0(u; z)+ 〈μ, v − z〉, v ∈ X },
where 〈., .〉 is the duality pairing betweenX∗ andX. The generalized gradient
of I at u is the set

∂I (u) = {μ ∈ X∗; 〈μ, v〉 ≤ I 0(u; v), v ∈ X }.
Since I 0(u; 0) = 0, ∂I (u) is the subdifferential of I 0(u; 0).

A few definitions and properties will be recalled below.

∂I (u) ⊂ X∗ is convex, non-empty and weak*-compact,

λ(u) = min{ ‖ μ ‖X∗ ;μ ∈ ∂I (u) },
and

∂I (u) = {I ′(u)}, if I ∈ C1(X, R).

A critical point of I is an element u0 ∈ X such that 0 ∈ ∂I (u0) and a critical
value of I is a real number c such that I (u0) = c for some critical point u0 ∈ X.

Theorem 2.1 ([19], [23]). Let I ∈ Liploc(X, R) with I (0) = 0 and
satisfying:

(i) There are r > 0 and ρ > 0, such that I (u) ≥ ρ, for ‖u‖ = r , u ∈ X;

(ii) There is e ∈ X \ Br(0) with I (e) < 0.
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If c = infγ∈ maxt∈[0,1] I (γ (t)) and

 = { γ ∈ C([0, 1], X), γ (0) = 0 and γ (1) = e },
then c ≥ ρ and there is a sequence {un} ⊂ X verifying

I (un) → c and λ(un) → 0.

Proposition 2.1 ([10], [13]). Let {un} ⊂ X and {ρn} ⊂ X∗ with ρn ∈
∂I (un). If un → u in X and ρn

∗
⇀ ρ in X∗, then ρ0 ∈ ∂I (u).

Proposition 2.2 ([10], [13]). Let R > 0, �(u) = ∫
RN G(u) dx and

�R(v)=
∫
BR(0)

G(v) dx, whereG(t)= ∫ t
0 g(s) ds. Then,�∈ Liploc(L

p+1(RN),

R), �R ∈ Liploc(L
p+1(BR(0)), R), ∂�(u) ∈ L

p+1
p (RN) and ∂�R(v) ∈

L
p+1
p (BR(0)). Moreover, if ρ ∈ ∂�(u) and ζ ∈ ∂�R(v), then

ρ(x) ∈ [g(u(x)), g(u(x))] a.e in RN

and
ζ(x) ∈ [g(v(x)), g(v(x))] a.e in BR(0).

3. Existence of solution for (P )1,β

In this section, we will suppose that V∞ < +∞, because the case V∞ = +∞
has been considered in [18]. Here, we consider the space

(3.2) E =
{
u ∈ H 1(RN);

∫
RN
V (x)u2 < ∞

}

endowed with the norm

‖u‖2 =
∫

RN
(|∇u|2 + V (x)u2),

which is associated with inner product

〈u, v〉 =
∫

RN
(∇u∇u+ V (x)uv).

The energy functional associated with (P )1,β is given by

Iβ(u) = 1

2

∫
RN
(|∇u|2 + V (x)u2)−

∫
RN
G(u),

where G(t) = ∫ t
0 g(s) ds.
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Lemma 3.1. The functional Iβ satisfies the mountain pass geometry.

Proof. We begin observing that Iβ(0) = 0 and

Iβ(u) ≥ 1

2
‖u‖2 − 1

p + 1

∫
�

|u|p+1.

Hence, by Sobolev embedding

Iβ(u) ≥ 1

2
‖u‖2 − C‖u‖p+1.

Thereby, there exist r, ρ > 0 verifying

Iβ(u) ≥ ρ > 0 for ‖u‖ = r, u ∈ E.
Now, let ψ ∈ C∞

0 (R
N)with ψ > 0 andK = suptψ ⊂ RN . Then, for t > 0

Iβ(tψ) ≤ t2

2
‖ψ‖2 − tp+1

p + 1

∫
K∩[tψ>β]

ψp+1 +
∫
K∩[tψ>β]

βp+1

p + 1
+Cmed(K).

Once that p > 1,

Iβ(tψ) → −∞ as t → +∞.

Consequently, for t0 > 0 large enough, we derive that e = t0ψ satisfies

Iβ(e) < 0 with e ∈ E \ Br(0).

Combining Lemma 3.1 with Theorem 2.1, there is a sequence {un} ⊂ E

satisfying

(3.3) Iβ(un) → cβ and λβ(un) → 0,

where cβ is the mountain pass level of the functional Iβ .
In what follows, we will show that {un} given in (3.3) is bounded in E. To

this end, we will use the following notation for the functional Iβ :

Iβ(u) = Q(u)−�(u)

where Q(u) = 1
2

∫
RN (|∇u|2 + V (x)u2) and �(u) = ∫

RN G(u).

Lemma 3.2. The sequence {un} is bounded in E.

Proof. From (3.3),

Iβ(un) → cβ and λβ(un) → 0.
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From now on, we consider {ωn} ⊂ (H 1(RN))∗ such that λβ(un) = ‖ωn‖∗ and

ωn = Q′(un)− ρn

where {ρn} ⊂ ∂�(un). Then,

(3.4) 〈ωn + ρn, un〉 = 〈Q′(un), un〉 = ‖un‖2.

Once that 0 ≤ (p + 1)G(t) ≤ tg(t) ∀t ∈ R, it follows that

�(un) =
∫

RN
G(un) ≤ 1

p + 1

∫
RN
ung(un).

From Proposition 2.2,

g(un(x)) ≤ ρn(x) ≤ g(un(x)) a.e in RN

leading to
un(x)g(un(x)) ≤ ρn(x)un(x) a.e in RN,

which implies that ∫
RN
ung(un) ≤

∫
RN
ρnun = 〈ρn, un〉.

Therefore,

(3.5) �(un) ≤ 1

p + 1

∫
RN
ung(un) ≤ 1

p + 1
〈ρn, un〉.

Combining (3.4) and (3.5),

Iβ(un)− 1

p + 1
〈ωn + ρn, un〉 ≥

(
1

2
− 1

p + 1

)
‖un‖2 − 1

p + 1
〈ρn, un〉,

or equivalently,

Iβ(un)− 1

p + 1
〈ωn, un〉 ≥

(
1

2
− 1

p + 1

)
‖un‖2.

Using the fact that {Iβ(un)} is bounded, there is M > 0 such that

M − 1

p + 1
〈ωn, un〉 ≥

(
1

2
− 1

p + 1

)
‖un‖2.
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Recalling that 〈ωn, un〉 = on(1), we have

M + on(1)‖un‖ ≥
(

1

2
− 1

p + 1

)
‖un‖2,

showing that {un} is bounded in E.

The next lemma is a key point in our argument, because the functional� is
not compact. In what follows, for eachR > 0, we set�R : Lp+1(BR(0)) → R
the following functional

�R(u) =
∫
BR(0)

G(u).

Moreover, for each ψ ∈ Lp+1(BR(0)), we set the function ψ̃ ∈ Lp+1(RN)
given by

ψ̃(x) =
{
ψ(x), x ∈ BR(0)
0, x ∈ BcR(0).

Lemma 3.3. Let {un} ⊂ E with un ⇀ u in E and {ρn} ⊂ ∂�(un) with

ρn ⇀ ρ0 in L
p+1
p (RN). Then,

ρ0(x) ∈ [g(u(x)), g(u(x))] a.e in RN.

Proof. Hereafter, for each R > 0, we denote by un,R , ρn,R , uR and ρ0,R

the restriction of the functions un, ρn, u and ρ0 to BR(0). For each ψ ∈
Lp+1(BR(0)), a simple computation implies that∫

BR(0)
ρn,Rψ =

∫
RN
ρnψ̃

and
�0
R(un,R, ψ) = �0(un, ψ̃).

Once that ∫
RN
ρnψ̃ ≤ �0(un, ψ̃),

we derive ∫
BR(0)

ρn,Rψ ≤ �0
R(un,R, ψ), ∀ψ ∈ Lp+1(BR(0)),

which yields
ρn,R ∈ ∂�R(un,R).
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Since, un,R → uR in Lp+1(BR(0)) and ρn,R ⇀ ρ0,R in L
p+1
p (BR(0)), from

Proposition 2.1
ρ0,R ∈ ∂�R(uR)

and so, by Proposition 2.2

ρ0,R(x) ∈ [g(uR(x)), g(uR(x))] a.e in BR(0),

or equivalently,

ρ0(x) ∈ [g(u(x)), g(u(x))] a.e in BR(0).

Now, using the fact that R > 0 is arbitrary, we get

ρ0(x) ∈ [g(u(x)), g(u(x))] a.e in RN.

Theorem 3.1. Assume that cβ < c∞, where c∞ is the mountain pass level
associated with the functional

I∞(u) = 1

2

∫
RN
(|∇u|2 + V∞u2)− 1

p + 1

∫
RN

|u|p+1, ∀u ∈ H 1(RN).

Then, (P )1,β has a nontrivial solution.

Proof. From Lemma 3.1 and Theorem 2.1, there is a sequence {un} ⊂ E

satisfying

(3.6) Iβ(un) → cβ and λβ(un) → 0.

By using standard arguments, we can assume, without loss of generality, that
{un} is bounded in E and un(x) ≥ 0 for all x ∈ RN . This way, there is
u ∈ H 1(RN) such that, for some subsequence,

(3.7) un ⇀ u in E

and

(3.8) un → u in L
p

loc(R
N).

Claim 3.1. The weak limit u is nontrivial, that is, u �= 0.

In fact, if u ≡ 0, the limit un → 0 in E does not hold, because cβ > 0.
From Lions’ lemma [20], there are {yn} ⊂ RN and r, α > 0 verifying

lim inf
n→∞

∫
Br (yn)

|un|2 ≥ α > 0.
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Since we are supposing u = 0, the Sobolev embedding combined with the
above inequality yields {yn} is unbounded. Now, we set

(3.9) vn(x) = un(x + yn).

Using the boundedness of {un} inE, it follows that {vn} is bounded inH 1(RN).
Hence, there is v ∈ H 1(RN) \ {0} and a subsequence of {vn}, still denote by
itself, such that

vn ⇀ v in E

and
vn → v in Lsloc(R

N),

1 ≤ s < 2∗ if N ≥ 3 and 1 ≤ s if N = 1, 2.
Let ϕ ∈ C∞

0 (R
N) verifying ϕ(x) = 1 for x ∈ B1(0), ϕ(x) = 0 for x ∈

Bc2(0), 0 ≤ ϕ(x) ≤ 1 and ϕR(x) = ϕ( x
R
) for R > 0. Then,

〈ωn, (ϕRvn)(· − yn)〉 = on(1),

because the sequence {(ϕRvn)(· − yn)} is bounded in E. Thereby,∫
RN

∇un∇((ϕRun)(x − yn))+ V un(ϕRvn)(x − yn)

=
∫

RN
ρn((ϕRvn)(x − yn))+ on(1),

and so,∫
B2R

|∇vn|2ϕR(x)+
∫
B2R

V (x + yn)v
2
nϕR +

∫
B2R

vn∇vn∇ϕR ≤
∫
B2R

vp+1
n ϕR.

Combining Fatou’s lemma with the Sobolev embedding, we get∫
B2R

|∇v|2ϕR +
∫
B2R

V∞v2ϕR +
∫
B2R

v∇v∇ϕR ≤
∫
B2R

vp+1ϕR.

Now, taking the limit of R → +∞,

(3.10)
∫

RN
|∇v|2 + V∞v2 ≤

∫
RN
vp+1.

Once that v �= 0, there is t > 0, such that tv ∈ N∞, where N∞ is the Nehari
manifold associated with I∞ given by

N∞ = {
u ∈ H 1(RN) \ {0}; I ′

∞(u)u = 0
}
.
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Then,

(3.11)
∫

RN
|∇v|2 + V∞v2 = tp−1

∫
RN
vp+1.

From (3.10) and (3.11), we conclude that t ≤ 1.
By a result found in Willem [25],

c∞ ≤ inf
u∈N∞

I∞(u),

from where it follows that c∞ ≤ I∞(tv). Consequently,

c∞ ≤ I∞(tv) = I∞(tv)− 1

p + 1
I ′
∞(tv)tv

=
(

1

2
− 1

p + 1

)
t2

∫
RN

|∇v|2 + V∞v2,

and since t ≤ 1,

c∞ ≤
(

1

2
− 1

p + 1

) ∫
RN

|∇v|2 + V∞v2.

Combining Fatou’s lemma with the inequality g(s)s ≥ (p + 1)G(s) for all
s ≥ 0, we obtain

c∞ ≤ lim inf

[(
1

2
− 1

p + 1

) ∫
RN

|∇un|2 + V (x)u2
n

+
∫

RN

(
g(un)un

p + 1
−G(un)

)]
.

By Proposition 2.2,

c∞ ≤ lim inf
n→+∞

[(
1

2
− 1

p + 1

) ∫
RN

|∇un|2 + V (x)u2
n

+ 1

p + 1

∫
RN
ρnun −

∫
RN
G(un)

]

that is,

c∞ ≤ lim inf
n→+∞

[
Iβ(un)− 1

p + 1
〈ωn, un〉

]
= lim inf

n→+∞ [Iβ(un)+ on(1)] = cβ,
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obtaining a contradiction. Therefore, u ≥ 0 and u �= 0. Next, we will show that

u is a solution for (P )1,β . To this end, we need to prove that u ∈ W 2, p+1
p

loc (RN)∩
H 1(RN) and

−�u(x)+ V (x)u(x) ∈ [g(u(x)), g(u(x))] a.e in RN.

Since {un} ⊂ E is a (PS)cβ sequence, there are {ωn} ⊂ ∂Iβ(un) and {ρn} ⊂
∂�(un) verifying

(3.12) ‖ωn‖∗ → 0

and

(3.13) 〈ωn, ϕ〉 =
∫

RN
∇un∇ϕ + V (x)unϕ −

∫
RN
ρnϕ, ϕ ∈ E,

with

(3.14) ρn(x) ∈ [g(un(x)), g(un(x))] a.e in RN.

The boundedness of {un} combined with (3.14) implies that {ρn} is bounded

in L
p+1
p (RN). Thus, there is ρ0 ∈ L

p+1
p (RN) and a subsequence of {ρn}, such

that

(3.15) ρn ⇀ ρ0 in L
p+1
p (RN).

From (3.7) and (3.15)∫
RN

∇u∇ϕ + V (x)uϕ =
∫

RN
ρ0ϕ, ∀ϕ ∈ E.

Moreover, by Lemma 3.3,

(3.16) ρ0 ∈ [g(u(x)), g(u(x))] a.e in RN,

showing that u is a nonnegative weak solution of the problem

−�u+ V (x)u = ρ0 in RN.

Using regularity theory, it follows that u ∈ W 2, p+1
p

loc (RN), and so

(3.17) −�u(x)+ V (x)u(x) = ρ0(x) a.e in RN.

Therefore, from (3.16) and (3.17) it follows that u is a solution for (P )1,β .
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Remark 3.1. Using the fact that V (x) ≥ γ for all x ∈ RN , it is immediate
to check, by using the Stampachia theorem, that {x ∈ RN ; u(x) = β} has null
measure for β small enough, this way, the solution u verifies

−�u+ V (x)u = H(u− β)up a.e in RN.

This information is very important in many applications.

4. Existence and concentration of solutions for (P )ε,β

In this section, we consider the space

(4.18) Eε =
{
u ∈ H 1(RN);

∫
RN
V (εx)u2 < ∞

}

endowed with the norm

‖u‖2 =
∫

RN
(|∇u|2 + V (εx)u2),

which is associated with inner product

〈u, v〉 =
∫

RN
(∇u∇u+ V (εx)uv).

The energy functional associated with (P )ε,β is given by

Iε,β(u) = 1

2

∫
RN
(|∇u|2 + V (εx)u2)−

∫
RN
G(u),

and its mountain pass level is denoted by cε,β .

Proof of Theorem 1.1. We will divide the proof in two steps.

Step 1: Existence. In what follows, ω ∈ H 1(RN) denotes a positive ground
state solution of the problem

(4.19)

{ −�ω + γω = ωp in RN ,

ω > 0 in RN ,

that is, if I0 : H 1(RN) → R is the functional energy associated with (4.19)
given by

I0(u) = 1

2

∫
RN

|∇u|2 + γ |u|2 − 1

p + 1

∫
RN

|u|p+1,

we have that I0(ω) = c0 and I ′
0(ω) = 0, where c0 is the mountain pass level.
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Hereafter, we set ϕ ∈ C∞
0 (R

N) verifying

0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 ∀x ∈ B1(0) and ϕ(x) = 0 ∀x ∈ Bc2(0).
Furthermore, for each R > 1, we denote by ϕR and ωR the functions

ϕR(x) = ϕ
( x
R

)
and ωR(x) = ϕR(x)ω(x).

A direct computation shows that

(4.20) ωR → ω in H 1(RN) as R → +∞.

Hence, ωR �= 0 for R large enough. From this, there is tR > 0, such that

I0(tRwR) = max
t≥0

I0(tωR)

and so,

(4.21)
∫
B2R

|∇ωR|2 + γ |ωR|2 = t
p−1
R

∫
B2R

ω
p+1
R

and
lim
R→∞ tR = 1.

These facts imply that

ω̂R = ωRtR → ω in H 1(RN) as R → ∞.

Once that c0 < c∞, see [22], we can choose δ, R > 0 such that

c0 + δ < c∞ and I0(ω̂R) < c0 + δ

2
,

and t∗ > 0 verifying Iε,β(t∗ω̂R) < 0 uniformly in ε, β > 0 small enough.
Now, we consider γ̂ (t) = t (t∗ω̂R) for t ∈ [0, 1], which belongs to γ̂ ∈ .

From the definition of cε,β

cε,β ≤ max
t∈[0,1]

Iε,β(γ̂ (t)) = max
t≥0

Iε,β(tω̂R) = Iε,β(t̂ ω̂R)

for some t̂ = t̂ (ε, β, R) > 0.
A straightforward computation implies that for each R > 0 given, there are

positive constants C,K such that C ≤ t̂ ≤ K , for ε, β > 0 small enough.
Now, since γ ≤ V (x) for all x ∈ RN , it is easy to check that

(4.22) c0 ≤ cε,β ≤ max
t≥0

Iε,β(tω̂R).
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Without loss of generality, we assume that V (0) = γ . Thus, for each η > 0,
there is ε0 > 0 such that,

0 < V (εx)− γ < η for ε ∈ (0, ε0) and x ∈ supt ωR = B2R(0),

from where it follows that∫
RN
V (εx)ω̂2

R <

∫
RN
(γ + η)ω̂2

R.

Using these informations,

cε,β ≤ I0(t̂ ω̂R)+ t̂
2

2
η

∫
B2R

ω̂2
R+ t̂ p+1

p + 1

∫
B2R∩[t̂ ω̂R≤β]

ω̂
p+1
R +

∫
B2R∩[t̂ ω̂R>β]

βp+1

p + 1
,

that is,
cε,β ≤ c0 + δ

2
+ ηC1 + C2β

p+1

where C1, C2 do not depend of ε, β > 0. Hence, for η, β > 0 small enough

(4.23) cε,β ≤ c0 + δ

2
+ δ

4
+ δ

4
≤ c0 + δ < c∞.

From Theorem 3.1, the problem (P )ε,β has a nontrivial solution for ε, β > 0
small enough.

Step 2: Concentration of the solutions. Hereafter, we denote by uε,β the

solution given by Step 1. Thereby, there exists ρε,β ∈ Lp+1
p (RN) such that

(4.24) −�uε,β(x)+ V (x)uε,β(x) = ρε,β(x) a.e in RN

with ρε,β ∈ [g(uε,β(x)), g(uε,β(x))] a.e in RN .
Next, we fix εn → 0, βn → 0, un = uεn,βn and ρn = ρεn,βn . Our goal is to

study the behavior of the maximum points related to {un}, more precisely, if
zn ∈ RN denotes a maximum point of un, we will prove that

lim
n→∞V (εnzn) = γ.

The arguments used in the proof of Step 1, more precisely in (4.22) and
(4.23), lead to

(4.25) lim
n→∞ cεn,βn = c0 > 0.

Claim 4.1. There are {yn} ⊂ RN and r, η > 0 such that

lim inf
n→∞

∫
Br (yn)

|un|2 ≥ η > 0.
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In fact, if the claim does not hold, then by a result due to Lions

lim
n→∞

∫
RN

|un|p+1 = 0.

This limit combined with the fact that un is a solution of (P )εn,βn implies that

lim
n→∞ cεn,βn = lim

n→∞ Iεn,βn(un) = 0,

which is a contradiction with (4.25).

Claim 4.2. The sequence vn = un(·−yn) is strongly convergent inH 1(RN).
Moreover,

lim|x|→∞ vn(x) = 0

uniformly in n ∈ N, that is, for each η > 0, there is R > 0 such that

|vn(x)| < η ∀x ∈ RN \ BR(0) and n ∈ N.

In fact, repeating the same arguments used in the proof of Theorem 3.1, more
precisely Claim 3.1, we can assume without loss of generality that {εnyn} is a
convergent sequence in RN with εnyn → y∗ ∈ V −1(γ ). Furthermore, we also
derive that if v is the weak limit of {vn}, then

vn → v in H 1(RN).

Now, following the arguments found in Alves & Figueiredo [3], the Moser
interaction implies that

(4.26) lim|x|→∞ vn(x) = 0

uniformly in n ∈ N. The basic idea to prove the last limit is to consider the
following functions

uL,n(x) =
{
un(x), un(x) ≤ L

L, un(x) ≥ L,

zL,n = ηpnu
p(ξ−1)
L,n un

with ξ > 1 to be determined later. The limit in (4.26) follows taking zL,n(·−yn)
as a test function in (4.24) combined with the inequality ρn(x) ≤ u

p
n(x) a.e in

RN .
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On the other hand, it follows from (4.25) that lim infn→∞ ‖vn‖∞,RN > 0,
then there are δ∗ > 0 and n0 ∈ N such that

‖vn‖∞,RN ≥ δ∗, ∀n ≥ n0.

Choosing η = δ∗
2 , there is R > 0 such that

vn(x) <
δ∗

2
∀x ∈ RN \ BR(0) and n ∈ N

and so, if xn denotes a maximum point of vn, we get

vn(xn) ≥ δ∗ and xn ∈ BR(0).
Now, if zn denote the maximum point of un, we have that zn = xn + yn, this
way, εnzn = εnxn + εnyn → y∗. Since V is a continuous function,

lim
n→∞V (εnzn) = V (y∗) = γ
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