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ON POLARS OF BLASCHKE-MINKOWSKI
HOMOMORPHISMS

ZHAO CHANG-JIAN∗

Abstract
In this paper we establish Minkowski, Brunn-Minkowski, and Aleksandrov-Fenchel type inequal-
ities for the volume difference of polars of Blaschke-Minkowski homomorphisms.

1. Introduction and statement of main results

The well-known classical Minkowski inequality and Brunn-Minkowski in-
equality can be stated as follows:

If K and L are convex bodies in Rn, then (see, e.g., [19])

V1(K, L)n ≥ V (K)n−1V (L),

and
V (K + L)1/n ≥ V (K)1/n + V (L)1/n.

In each case, equality holds if and only if K and L are homothetic. Here, + is
usual Minkowski sum and V1(K, L) denotes the mixed volume of the convex
bodies K and L defined by

V1(K, L) = 1

n

∫
Sn−1

h(L, u) dS(K, u),

where h(L, u) = max{u · x : x ∈ L} is the support function of L and S(K, u)

is the surface area measure of K (see, e.g., [19]).
Let K and L be star bodies in Rn, then the dual Minkowski inequality and

the dual Brunn-Minkowski inequality state that (see [15]).

Ṽ1(K, L)n ≤ V (K)n−1V (L),

and
V (K +̃ L)1/n ≤ V (K)1/n + V (L)1/n.
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In each case, equality holds if and only if K and L are dilates. Here, +̃ is radial
sum and Ṽ1(K, L) denotes the dual mixed volume of the star bodies K and L,
defined by

Ṽ1(K, L) = 1

n

∫
Sn−1

ρ(K, u)n−1ρ(L, u) dS(u),

where ρ(K, u) = max{λ ≥ 0 : λu ∈ K} is the radial function of K and S(u)

is the spherical Lebesgue measure (see [4]).
In 2004 Leng [11] defined the volume difference function of compact do-

mains D and K , where D ⊆ K , by

DV (K, D) = V (K) − V (D).

The following Minkowski and Brunn-Minkowski type inequalities for vol-
ume difference functions were also established by Leng [11].

Theorem A. If K, L, D and D′ are compact domains, D ⊆ K , D′ ⊆ L,
and D′ is a homothetic copy of D, then

(1.1) (V1(K, L) − V1(D, D′))n ≥ (V (K) − V (D))n−1(V (L) − V (D′)),

and

(1.2) (V (K + L) − V (D + D′))1/n

≥ (V (K) − V (D))1/n + (V (L) − V (D′))1/n.

In each case, equality holds if and only if K and L are homothetic and
(V (K), V (D)) = μ(V (L), V (D′)), where μ is a constant.

Recently, Lv [18] introduced the dual volume difference function for star
bodies and established the following dual Minkowski and Brunn-Minkowski
type inequalities for them:

Theorem B. If K, L, D and D′ are star bodies in Rn, and D ⊆ K , D′ ⊆ L,
and L is a dilation of K , then

(1.3) (Ṽ1(K, L) − (Ṽ1(D, D′))n ≥ (V (K) − V (D))n−1(V (L) − V (D′)),

with equality if and only if D and D′ are dilates and (K, D)) = μ(L, D′),
where μ is a constant, and

(1.4) (V (K +̃ L) − (V (D +̃ D′))1/n

≥ (V (K) − V (D))1/n + (V (L) − V (D′))1/n,
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with equality if and only if D and D′ are dilates and (V (K), V (D)) =
μ(V (L), V (D′)), where μ is a constant.

In fact, more general versions on these types of inequalities were proved
in [11] and [18], respectively. Moreover, inequalities for p-quermassintegral
difference functions were established in [31].

Let K n denote the space of convex bodies in Rn, i.e. compact, convex
subsets of Rn with non-empty interior. The topology on K n is induced by the
Hausdorff metric.

Definition 1.1 ([20]). A map � : K n → K n is called Blaschke-Minkow-
ski homomorphism if it satisfies the following conditions:

(a) � is continuous.

(b) For all K, L ∈ K n,

�(K +̈ L) = �(K) + �(L),

where +̈ denotes the Blaschke sum of the convex bodies K and L.

(c) For all K, L ∈ K n and every ϑ ∈ SO(n),

�(ϑK) = ϑ�(K),

where SO(n) is the group of rotations in n dimensions.

Blaschke-Minkowski homomorphism is an important notion in the theory
of convex body valued valuations (see, e.g., [1], [5], [8], [10], [12]–[14],
[17], [21], [23]–[25], [30]). Their natural dual, radial Blaschke-Minkowski
homomorphism, was introduced by Schuster [20] and further investigated to
be meaningful (see [22]).

Let �(K1, . . . , Kn−1) denote mixed Blaschke-Minkowski homomorphisms
of convex bodies K1, . . . , Kn−1 (see Section 2). The convex body �(K1, . . . ,

Kn−1) contains the origin in its interior, as was shown in [20]–[22].
If K is a convex body that contains the origin in its interior, the polar body

of K is defined by

K∗ := {x ∈ Rn | x · y ≤ 1, y ∈ K}.
Thus, the polar body (�(K1, . . . , Kn−1))

∗, in particular, (�K)∗ is well defined.
We will simply write �∗

i (K1, . . . , Kn−1) and �∗K rather than (�(K1, . . . ,

Kn−1))
∗ and (�K)∗. If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = B,

then write �∗
i K for �∗(K, . . . , K︸ ︷︷ ︸

n−i−1

, B, . . . , B︸ ︷︷ ︸
i

), and write �∗
i (K, L) for the

mixed �(K, . . . , K︸ ︷︷ ︸
n−i−1

, L, . . . , L︸ ︷︷ ︸
i

). We write �∗
0K as �∗K.
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In 2006, Schuster [20] established the following Minkowski, Brunn-Min-
kowski, and Aleksandrov-Fenchel type inequalities for Blaschke-Minkowski
homomorphisms.

Theorem C. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If K, L are convex bodies in Rn, then

(1.5) V (�∗
1(K, L))n−1 ≤ V (�∗K)n−2V (�∗L),

with equality if and only if K and L are homothetic.

Theorem D. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If K, L are convex bodies in Rn, then

(1.6) V (�∗(K + L))−1/n(n−1) ≥ V (�∗K)−1/n(n−1) + V (�∗L)−1/n(n−1).

with equality if and only if K and L are homothetic.

Theorem E. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If Ki (1 ≤ i ≤ n − 1) are convex bodies in Rn, and 1 ≤ r ≤ n − 1,
then

(1.7) V (�∗(K1, . . . , Kn−1))
r ≤

r∏
j=1

�∗(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn−1).

Motivated by the work of Leng and Lv, we give the following definition:

Definition 1.2. The volume difference function for polar Blaschke-Min-
kowski homomorphism of convex bodies K and D, DV (�∗K, �∗D), is de-
fined by

DV (�∗K, �∗D) = V (�∗K) − V (�∗D).

The aim of this paper is to establish the following Minkowski, Brunn-
Minkowski, and Aleksandrov-Fenchel type inequalities for volume difference
of polars of Blaschke-Minkowski homomorphisms.

Theorem C′. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If D, D′, K, L ∈ K n, V (�∗(D)) ≤ V (�∗(K)) and V (�∗(D′)) ≤
V (�∗(L)), and L is a homothetic copy of K , then

(1.8) [V (�∗
1(K, L)) − V (�∗

1(D, D′))]n−1

≥ [V (�∗K) − V (�∗D)]n−2[V (�∗L) − V (�∗D′)],

with equality if and only ifD andD′ are homothetic and (V (�∗K),V (�∗L)) =
μ(V (�∗D), V (�∗D′)), where μ is a constant.
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Theorem C′ just is a special case of Theorem 4.3 established in Section 4.

Theorem D′. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If D, D′, K, L ∈ K n, V (�∗(D)) ≤ V (�∗(K)) and V (�∗(D′)) ≤
V (�∗(L)), and L is a homothetic copy of K , then

(1.9) [V (�∗(K + L)) − V (�∗(D + D′))]−1/n(n−1)

≤ [V (�∗K) − V (�∗D)]−1/n(n−1) + [V (�∗L) − V (�∗D′)]−1/n(n−1),

with equality if and only ifD andD′ are homothetic and (V (�∗K),V (�∗L)) =
μ(V (�∗D), V (�∗D′)), where μ is a constant.

Theorem D′ just is a special case of Theorem 4.1 established in Section 4.

Theorem E′. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If Ki and Di (1 ≤ i ≤ n − 1) are convex bodies in Rn,

V (�∗(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn−1))

≥ V (�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)),

and Kj (j = 1, . . . , r) be homothetic copies of each other, then

(1.10) [V (�∗(K1, . . . , Kn−1)) − V (�∗(D1, . . . , Dn−1))]
r

≥
r∏

j=1

DV

(
�∗(Kj , . . . , Kj︸ ︷︷ ︸

r

, Kr+1, . . . , Kn−1),

�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)
)
.

2. Definitions and preliminaries

The setting for this paper is n-dimensional Euclidean space Rn(n > 2). Let
K n denote the set of all convex bodies (compact, convex subsets with non-
empty interiors) in Rn. We reserve the letter u for unit vectors, and the letter
B is reserved for the unit ball centered at the origin. The surface of B is Sn−1.
The volume of the unit n-ball is denoted by ωn. For u ∈ Sn−1, let Eu denote
the hyperplane, through the origin, that is orthogonal to u. We will use Ku to
denote the image of K under an orthogonal projection onto the hyperplane Eu.
If K1, . . . , Kn−1 ∈ K n, then write v(Ku

1 , . . . , Ku
n−1) for the mixed volume of

the figures Ku
1 , . . . , Ku

n−1 in the space Eu. If K1 = · · · = Kn−1 = K , then
write v(Ku) for v(Ku, . . . , Ku).
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We use V (K) for the n-dimensional volume of convex body K . Let h(K, ·) :
Sn−1 → R, denote the support function of K ∈ K n; i.e. for u ∈ Sn−1

h(K, u) = max{u · x : x ∈ K},
where u · x denotes the usual inner product u and x in Rn.

Let δ denote the Hausdorff metric on K n, i.e., for K, L ∈ K n, δ(K, L) =
|hK − hL|∞, where | · |∞ denotes the sup-norm on the space of continuous
functions C(Sn−1).

2.1. Mixed volumes

If Ki ∈ K n (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real
numbers, then the volume of λ1K1 +· · ·+λrKr is a homogeneous polynomial
in λi given by

(2.1) V (λ1K1 + · · · + λrKr) =
∑

i1,...,in

λi1 . . . λinVi1...in ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not ex-
ceeding r . The coefficient Vi1...in depends only on the bodies Ki1 , . . . , Kin , and
is uniquely determined by (2.1), it is called the mixed volume of Ki, . . . , Kin ,
and is written as V (Ki1 , . . . , Kin). Let K1 = . . . = Kn−i = K and Kn−i+1 =
. . . = Kn = L, then the mixed volume V (K1, . . . , Kn) is usually written
Vi(K, L). If L = B, then Vi(K, B) is the i-th projection measure (Quer-
massintegral) of K and is written as Wi(K).

2.2. Projection bodies and mixed projection bodies

If K ∈ K n, then the projection body of convex body K will be denoted as
�K and whose support function is defined by

(2.2) h(�K, u) = v(Ku), u ∈ Sn−1.

If K1, . . . , Kr ∈ K n and λ1, . . . , λr ≥ 0, then the projection body of the
Minkowski linear combination λ1K1 + · · · + λrKr ∈ K n can be written as a
symmetric homogeneous polynomial of degree (n − 1) in the λi ([17]):

(2.3) �(λ1K1 + · · · + λrKr) =
∑

λi1 . . . λin−1�i1···in−1 ,

where the sum is a Minkowski sum taken over all (n−1)-tuples (i1, . . . , in−1) of
positive integers not exceeding r . The body �i1...in−1 depends only on the bodies
Ki1 , . . . , Kin−1 , and is uniquely determined by (2.3), it is called the mixed pro-
jection bodies of Ki1 , . . . , Kin−1 , and is written as �(Ki, . . . , Kin−1). If K1 =
· · · = Kn−1−i = K and Kn−i = · · · = Kn−1 = L, then �(Ki1 , . . . , Kin−1)
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will be written as �i (K, L). If L = B, then �i (K, L) is denoted �iK and
when i = 0, �iK is denoted �K .

The support function of mixed projection bodies of K1, . . . , Kn−1 given by

(2.4) h(�(K1, . . . , Kn−1), u) = v(Ku
1 , . . . , Ku

n−1).

2.3. Mixed Blaschke-Minkowski homomorphisms

There is a continuous operator (see [20])

� : K n × · · · × K n︸ ︷︷ ︸
n−1

→ K n,

symmetric in its arguments such that, for K1, . . . , Kr and λ1, . . . , λr ≥ 0,

�(λ1K1 + · · · + λrKr) =
∑

i1,...,in−1

λi1 . . . λn−1�(Ki1 , . . . , Kin−1).

Clearly, above the continuous operator generalizes the notion of Blaschke-
Minkowski homomorphism. We call

� : K n × · · · × K n︸ ︷︷ ︸
n−1

→ K n

the mixed Blaschke-Minkowski homomorphism induced by �. The mixed
Blaschke-Minkowski homomorphisms were first studied in more detail in [20].
If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = B, we write �iK for
�(K, . . . , K︸ ︷︷ ︸

n−i−1

, B, . . . , B︸ ︷︷ ︸
i

) and call �i the mixed Blaschke-Minkowski homo-

morphism of order i. For 0 ≤ i ≤ n, we write �i(K, L) for �(K, . . . , K︸ ︷︷ ︸
n−i−1

,

L, . . . , L︸ ︷︷ ︸
i

). We write �0K as �K .

3. Auxiliary Results

The following results will be required to prove our main theorems.

Lemma 3.1 ([20]). Let � : K n → K n be an even Blaschke-Minkowski
homomorphism. If K, L ∈ K n, and 0 ≤ j ≤ n − 3, then

(3.1) V (�∗
j (K + L))−1/(n−1)(n−1−j)

≥ V (�∗
j K)−1/(n−1)(n−1−j) + V (�∗

j L)−1/(n−1)(n−1−j),
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with equality if and only if K and L are homothetic.

Lemma 3.2 ([2], p. 38, Reversed Bellman’s inequality). Leta = {a1, . . . , an}
and b = {b1, . . . , bn} be two series of positive real numbers and p < 0 (or
0 < p < 1) such that a

p

1 − ∑n
i=2 a

p

i > 0 and b
p

1 − ∑n
i=2 b

p

i > 0, then

(3.2)

(
a

p

1 −
n∑

i=2

a
p

i

)1/p

+
(

b
p

1 −
n∑

i=2

b
p

i

)1/p

≥
(

(a1 + b1)
p −

n∑
i=2

(ai + bi)
p

)1/p

,

with equality if and only if a = υb where υ is a constant.
The inequality is reversed for p > 1.

Lemma 3.3 ([20]). Let � : K n → K n be an even Blaschke-Minkowski
homomorphism. If K, L ∈ K n and 0 ≤ j ≤ n − 2, then

(3.3) V (�∗
j (K, L))1/(n−1) ≤ V (�∗K)n−j−1 + V (�∗L)j ,

with equality if and only if K and L are homothetic.

Lemma 3.4 ([31]). If a, b, c, d > 0, 0 < α < 1, 0 < β < 1 and α +β = 1.
Let a > b and c > d, then

(3.4) aαcβ − bαdβ ≥ (a − b)α(c − d)β,

with equality if and only if a/b = c/d.

Lemma 3.5 ([20]). Let � : K n → K n be an even Blaschke-Minkowski
homomorphism. If K1, . . . , K1 ∈ K n, and 1 ≤ r ≤ n − 1, then

(3.5) V (�∗(K1, . . . , Kn−1))
r ≤

r∏
j=1

V (�∗(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn)).

Lemma 3.6 ([2], p. 26). If ci > 0, bi > 0, ci > bi , i = 1, . . . , n, then

(3.6)

( n∏
i=1

(ci − bi)

)1/n

≤
( n∏

i=1

ci

)1/n

−
( n∏

i=1

bi

)1/n

,

with equality if and only if c1/b1 = c2/b2 = · · · = cn/bn.
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4. Inequalities for volume differences of polar Blaschke-Minkowski
homomorphisms

4.1. Brunn-Minkowski-type inequalities

In the following we establish the Brunn-Minkowski inequality for volume dif-
ferences of Blaschke-Minkowski homomorphisms stated in the introduction.

In fact, Theorem D′ is just the special case j = 0 of

Theorem 4.1. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. Let D, D′, K and L be convex bodies in Rn, V (�∗

j D) ≤ V (�∗
j K)

and V (�∗
j D′) ≤ V (�∗

j L), and let L be a homothetic copy of K . If 0 ≤ j <

n − 1, then

(4.1) [V (�∗
j (K + L)) − �∗

j (D + D′)]−1/n(n−j−1)

≤ [V (�∗
j K) − V (�∗

j D)]−1/n(n−j−1)

+ [V (�∗
j L) − V (�∗

j D′)]−1/n(n−j−1),

with equality if and only ifD andD′ are homothetic and (V (�∗K),V (�∗L)) =
μ(V (�∗D), V (�∗D′)), where μ is a constant.

Proof. By Lemma 3.1, we have

(4.2) V (�∗
j (D + D′))−1/(n−1)(n−j−1)

≥ V (�∗
j D)−1/(n−i)(n−j−1) + V (�∗

j D′)−1/(n−i)(n−j−1),

with equality if and only if D and D′ are homothetic. Since L is a homothetic
copy of K , note that

(4.3) V (�∗
j (K + L))−1/(n−1)(n−j−1)

= V (�∗
j K)−1/(n−i)(n−j−1) + V (�∗

j L)−1/(n−i)(n−j−1).

From (4.2) and (4.3), we obtain

(4.4) DV

(
�∗

j (K + L), �∗
j (D + D′)

)−1/n(n−j−1)

≤
{[

V (�∗
j K)−1/n(n−j−1) + V (�∗

j L)−1/(n−i)(n−j−1)
]−n(n−j−1)

− [
V (�∗

j D)−1/n(n−j−1) + V (�∗
j D′)−1/n(n−j−1)

]−n(n−j−1)
}−1/n(n−j−1)

,

with equality if and only if D and D′ are homothetic.
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From (4.4) and an application of Bellman’s inequality, Lemma 3.2, we thus
obtain the desired inequality

DV (�∗
j (K + L), �∗

j (D + D′))−1/n(n−j−1)

≤ (V (�∗
j K) − V (�∗

j D))−1/n(n−j−1) + (V (�∗
j L) − V (�∗

j D′))−1/n(n−j−1).

By the equality conditions of inequalities (4.4) and (3.2), equality holds in
(4.1) if and only if D and D′ are homothetic and (V (�∗

j K), V (�∗
j L)) =

μ(V (�∗
j D), V (�∗

j D′)), where μ is a constant.

Since the projection body operator � : K n → K n is a Blaschke-Minkow-
ski homomorphism, we have

Corollary 4.2. Let D, D′, K and L be convex bodies in Rn, K ⊆ D, L ⊆
D′ and let L be a homothetic copy of K . If 0 ≤ j < n − 1, then

(4.5) DV (�∗
j (K + L), �∗

j (D + D′))−1/n(n−j−1)

≤ (V (�∗
j K) − V (�∗

j D))−1/n(n−j−1)

+ (V (�∗
j L) − V (�∗

j D′))−1/n(n−j−1),

with equality if and only if D and D′ are homothetic and (V (�∗
j K),V (�∗

j L))=
μ(V (�∗

j D),V (�∗
j D′)), where μ is a constant.

4.2. Minkowski-type inequalities

In the following we establish the Minkowski inequality for volume differences
of Blaschke-Minkowski homomorphisms stated in the introduction.

In fact, Theorem C′ is just the special case j = 1 of

Theorem 4.3. Let � : K n → K n be an even Blaschke-Minkowski ho-
momorphism. Let D, D′, K and L be convex bodies in Rn, V (�∗(D)) ≤
V (�∗(K)) and V (�∗(D′)) ≤ V (�∗(L)), and let L is a dilated copy of K . If
1 ≤ j < n − 1, then

(4.6) DV (�∗
j (K, L), �∗

j (D, D′))

≥ (V (�∗K) − V (�∗D))(n−j−1)/(n−1)(V (�∗L) − V (�∗D′))j/(n−1),

with equality if and only ifD andD′ are homothetic and (V (�∗K),V (�∗L)) =
μ(V (�∗D), V (�∗D′)), where μ is a constant.

Proof. By Lemma 3.3, we have

V (�∗
j (D, D′))n−1 ≤ V (�∗D)n−j−1V (�∗D′)j ,
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with equality if and only if D and D′ are homothetic. Since L is a homothetic
copy of K , note that

V (�∗
j (K, L))n−1 = V (�∗K)n−j−1V (�∗L)j .

Therefore, in view of n−j−1
n−1 + j

n−1 = 1 by Lemma 3.4, we obtain

DV (�∗
j (K, L), �∗

j (D, D′))

≥ V (�∗K)(n−j−1)/(n−1)V (�∗L)j/(n−1)

− V (�∗D)(n−j−1)/(n−1)V (�∗D′)j/(n−1)

≥ (V (�∗K) − V (�∗D))(n−j−1)/(n−1)(V (�∗L) − V (�∗D′))j/(n−1).

By the equality conditions of Lemma 3.3 and (3.4), equality holds if and only if
D and D′ are homothetic and (V (�∗K), V (�∗L)) = μ(V (�∗D), V (�∗D′)),
where μ is a constant.

If we take the projection body operator � as the Blaschke-Minkowski ho-
momorphism in Theorem 4.3, we have the following

Corollary 4.4. Let D, D′, K and L be convex bodies in Rn, K ⊆ D,
L ⊆ D′, and let L be a homothetic copy of K . If 1 ≤ j < n − 1, then

DV (�∗
j (K, L), �∗

j (D, D′))

≥ (V (�∗K) − V (�∗D))(n−j−1)/(n−1)(V (�∗L) − V (�∗D′))j/(n−1),

with equality if and only if D and D′ are homothetic and (V (�∗K),V (�∗L))=
μ(V (�∗D), V (�∗D′)), where μ is a constant.

4.3. Aleksandrov-Fenchel-type inequalities

The Aleksandrov-Fenchel inequality for volume differences of polar mixed
Blaschke-Minkowski homomorphisms stated in the introduction will be es-
tablished as follows:

Theorem 4.5. Let � : K n → K n be an even Blaschke-Minkowski homo-
morphism. If Ki and Di (1 ≤ i ≤ n − 1) are convex bodies in Rn,

V (�∗(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn−1))

≥ V (�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)),
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and Kj (j = 1, . . . , r) be homothetic copies of each other, then

(4.7) [V (�∗(K1, . . . , Kn−1)) − V (�∗(D1, . . . , Dn−1))]
r

≥
r∏

j=1

DV

(
�∗(Kj , . . . , Kj︸ ︷︷ ︸

r

, Kr+1, . . . , Kn−1),

�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)
)
.

Proof. By Lemma 3.5, we have

V (�∗(D1, . . . , Dn−1))
r ≤

r∏
j=1

V (�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)).

Suppose Kj(j = 1, . . . , r are homothetic copies of each other, we have

V (�∗(K1, . . . , Kn−1))
r =

r∏
j=1

V (�∗(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn−1)).

Hence

(4.8) V (�∗(K1, . . . , Kn−1)) − V (�∗(D1, . . . , Dn−1))

≥
( r∏

j=1

V (�∗(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn−1))

)1/r

−
( r∏

j=1

V (�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1))

)1/r

,

with equality if and only if D1, . . . , Dr are homothetic.
By using Lemma 3.6 in (4.8), we obtain

DV (�∗(K1, . . . , Kn−1), �
∗(D1, . . . , Dn−1))

≥
( r∏

j=1

[
V (�∗(Kj , . . . , Kj︸ ︷︷ ︸

r

, Kr+1, . . . , Kn−1))

− V (�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1))
])1/r
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=
r∏

j=1

DV

(
�∗(Kj , . . . , Kj︸ ︷︷ ︸

r

, Kr+1, . . . , Kn−1),

�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)
)1/r

.

If we take the projection body operator � as the Blaschke-Minkowski ho-
momorphism in Theorem 4.5, we have

Corollary 4.6. If Ki and Di , 1 ≤ i ≤ n − 1, are convex bodies in Rn,
Ki ⊆ Di and Kj (j = 1, . . . , r, 1 ≤ r ≤ n − 1) be homothetic copies of each
other, then

(4.9) (V (�∗(K1, . . . , Kn−1)) − V (�∗(D1, . . . , Dn−1)))
r

≥
r∏

j=1

DV

(
�∗(Kj , . . . , Kj︸ ︷︷ ︸

r

, Kr+1, . . . , Kn),

�∗(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn)
)
.

Moreover, Zhao [32] defined the volume sum function of polar projection
bodies of convex D and K , by

SV (�∗K, �∗D) = V (�∗K) + V (�∗D).

We finally remark that inequalities for the sum function of polar of mixed
projection bodies were established in [32], inequalities for Lp-intersection
bodies were established in [3], [6], [7], [26], [28]–[29] and [33], and for Lp-
mixed intersection bodies in [28].
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