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NONTRIVIALLY NOETHERIAN C∗-ALGEBRAS

TAYLOR HINES and ERIK WALSBERG∗

Abstract
We say that a C∗-algebra is Noetherian if it satisfies the ascending chain condition for two-
sided closed ideals. A nontrivially Noetherian C∗-algebra is one with infinitely many ideals.
Here, we show that nontrivially Noetherian C∗-algebras exist, and that a separable C∗-algebra is
Noetherian if and only if it contains countably many ideals and has no infinite strictly ascending
chain of primitive ideals. Furthermore, we prove that every Noetherian C∗-algebra has a finite-
dimensional center. Where possible, we extend results about the ideal structure of C∗-algebras to
Artinian C∗-algebras (those satisfying the descending chain condition for closed ideals).

1. Introduction

A ring is Noetherian if every ascending chain of ideals stabilizes, that is, given
an increasing chain of two-sided ideals I1 ⊂ I2 ⊂ I3 ⊂ · · ·, there is an n such
that In = In+1 = · · · (also called the ascending chain condition for two-sided
ideals). In this paper, we extend the notion of a Noetherian ring to C∗-algebras,
and investigate the corresponding ideal structure.

Definition 1.1. We say that a C∗-algebra A is Noetherian1 if every as-
cending chain of closed two-sided ideals stabilizes, that is, if A satisfies the
ascending chain condition for closed ideals (from now on, by ‘ideal’ we mean
closed and two-sided unless otherwise specified or obviously false).

The dual notion to a Noetherian C∗-algebra is an Artinian C∗-algebra, which
satisfies the descending chain condition for closed ideals.

Example 1.2. Most obviously, every C∗-algebra with finitely many ideals
is Noetherian, such as B(H) for separable Hilbert space H or any finite-
dimensional C∗-algebra. We are particularly interested in Noetherian C∗-
algebras with infinitely many ideals, which we call nontrivially Noetherian.
By Corollary 4.2, nontrivially Noetherian C∗-algebras do indeed exist.

∗ The authors would like to express their gratitude to Professor John Quigg for his constant
support and guidance.

Received 11 January 2011.
1 This definition differs from the traditional definition of a Noetherian Banach algebra, which

requires every increasing chain of left-sided ideals to stabilize. In [14], it was shown that every
Noetherian Banach algebra is finite dimensional. After relaxing the ascending chain condition to
two-sided ideals, this result is still true for commutative C∗-algebras (Theorem 3.1), but not in
general. In Example 4.3, we give an example of a infinite-dimensional Noetherian C∗-algebra.



136 taylor hines and erik walsberg

In the following section we review basic facts about Noetherian topological
spaces. We primarily focus on the topological restrictions imposed on the space
of primitive ideals of Noetherian (and Artinian) C∗-algebras.

2. Noetherian Topological Spaces

A Noetherian topological space is a space that satisfies the ascending chain
condition for open subsets (equivalently, that every family of open subsets
contains a maximal element).

Example 2.1. Finite spaces are obviously Noetherian. A more enlighten-
ing example is a countable set with a single dense point (that is, a single point
whose closure is the entire space) and the cofinite topology on the complement
of this point. Although any set with the cofinite topology is Noetherian, we
will return to this specific example later.

In particular, we are interested in the primitive ideal space of a C∗-algebra,
which is the set of primitive ideals (kernels of irreducible representations)
denoted Prim(A). Endowed with the hull-kernel topology,2 Prim(A) is a T0

space3 wherein the correspondence I �→ hull(I ) is an inclusion-reversing
bijection from the set of closed ideals of A onto the closed subsets of Prim(A)

[13, Theorem 5.4.7]. This correspondence immediately gives us the following
result, which allows us to investigate the (algebraic) property of Noetherian-
ness via the topological properties of its primitive ideal space.

Lemma 2.2. A C∗-algebra A is Noetherian if and only if Prim(A) is.

The dual idea to a Noetherian space is an Artinian space, satisfying the des-
cending chain condition for open sets. In particular, every point in an Artinian
space has a minimal neighborhood. It is also easy to see that a C∗-algebra
is Artinian if and only if its primitive ideal space is Artinian, using the same
reasoning.

The following two results are elementary facts concerning Noetherian spa-
ces that are well-known4, and we include the proof of these facts in order to
make this paper self-contained. As these facts demonstrate, being Noetherian
is an extremely strong condition to impose on general topological spaces.

Lemma 2.3. A topological space is Noetherian if and only if it is hereditarily
compact (that is, every subspace is compact).5

2 Recall that ker(E) = ⋂
I∈E I for nonempty E ⊂ Prim(A), and for F ⊂ A, hull(F ) = {I |

I is primitive and F ⊂ I }. The hull-kernel topology is the unique topology on Prim(A) (see [13,
§5.4], [3, §2.9]) such that E = hull(ker(E)).

3 Distinct points have distinct closures.
4 See, e.g., [9, §1.1], [15] for a discussion of Noetherian spaces.
5 See [15, Theorem 1] for a more extensive list of equivalent conditions.
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Proof. By contrapositive, let X be a space with noncompact subspace Y ,
and let {Uα}α∈A be an open cover of distinct open sets in Y with no finite
subcover. Then we can construct a strictly increasing sequence of open sets
by taking unions of elements in this cover, proving that Y is not Noetherian.
Because every subspace of a Noetherian space is Noetherian, X is also not
Noetherian.

Conversely, say that X is not Noetherian and let Y1 ⊃ Y2 ⊃ · · · be a strictly
descending chain of closed sets. Define E = Y1\⋂

n Yn. It is clear that {E∩Yn}
is a family of closed sets in E with the finite intersection property and empty
intersection. So E is a noncompact subspace of X.

In the next lemma, recall that an irreducible set is a set that is not the union
of two proper closed subsets, and an irreducible component is a maximal
irreducible subspace. Note that the closure of an irreducible subspace is also
irreducible, so every irreducible component is closed. Any space can be written
as a union of irreducible components, since every singleton is irreducible, and
hence is contained in a maximal closed irreducible set (by Zorn’s lemma). A
sober space has the property that every closed irreducible set is the closure of a
unique point. Notice that every sober space is T0, since otherwise there would
exist an irreducible set that is the closure of two distinct points. An important
result, which we use frequently in Section 4, is that Prim(A) is sober when
A is separable [3, 3.9.1(b)], a property that is equivalent to every prime ideal
being primitive.6

Note that Prim(A) is not sober in general, as shown in both [17] and [12,
Proposition 31], as each author exhibits a (nonseparable) prime C∗-algebra
that is not primitive.7

Lemma 2.4 ([9, Proposition 1.5]). Every closed subspace of a Noetherian
topological space is uniquely expressible as the finite union of its irreducible
components.

Proof. Let X be a Noetherian space. To show that every closed subspace
of X is expressible as the finite union of irreducible closed sets, suppose that
some closed set cannot be. Consider the family of all nonempty closed sets
that cannot be written as the union of finitely many irreducible closed sets.
By assumption, this family is nonempty, and since X is Noetherian it has a
minimal element, call it Y . So Y is not irreducible, and hence can be written as

6 We say that A is primitive if the zero ideal is so. See, e.g., [8, Corollary 1.5 & Appx. A] for
a complete discussion, as well as a more complete characterization of the primitive ideal spaces
of separable nuclear C∗-algebras. In essence, the sobriety of Prim(A) follows because Prim(A)

is the continuous open image of the space of pure states of A.
7 The first reference relies on the continuum hypothesis, using a transfinite recursion of length

2ℵ0 . The second reference uses a simpler construction without CH.
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Y1 ∪ Y2 where Y1 and Y2 are distinct proper closed subsets. As Y is minimal,
Y1 and Y2 can be expressed as the union of finitely many irreducible closed
sets, so Y can also be, which is a contradiction.

Let Y be a closed subset of X, with Y = E1 ∪ · · · ∪ Em where each Ei

is closed and irreducible. Notice that every irreducible closed set is contained
in an irreducible component (a straightforward application of Zorn’s lemma)
so we may assume without loss of generality (after possibly throwing out
several of the Ei’s) that each Ei is a component of Y . Now suppose that
Y = F1 ∪ · · · ∪ Fn is another decomposition of Y into components. In this
case, E1 = ⋃n

1(E1 ∩ Fj ), and hence E1 ⊂ Fj for some 1 ≤ j ≤ n (since
E1 is irreducible) and thus E1 = Fj since E1 is a component. Proceeding by
induction, it is easy to see that the Ei’s are unique up to reordering.

It follows that the only Hausdorff Noetherian spaces are finite, because the
only irreducible sets in a Hausdorff space are the singletons. This also shows
that a Noetherian space cannot contain an infinite Hausdorff subspace, as every
subspace of a Noetherian space is Noetherian.

Now that the basic topological properties of Noetherian spaces (and hence
the primitive ideals space of Noetherian C∗-algebras) have been given, we
investigate their implications. Although our primary interest, as stated in Ex-
ample 1.2, are the Noetherian C∗-algebras with infinitely many ideals, in the
following section we first give some preliminary results for C∗-algebras that
trivially satisfy the condition of being Noetherian.

3. Trivially Noetherian C∗-algebras

In this section, we investigate the algebras that have only finitely many ideals,
and are thus clearly Noetherian. As will be shown here, trivially Noetherian C∗-
algebras can vary wildly in structure (e.g., C vs. B(H)), and the nontriviality
condition imposes considerably more control.

Theorem 3.1. For a commutative C∗-algebra A, the following are equi-
valent:

(i) A is finite-dimensional,

(ii) A has finitely many ideals,

(iii) A is Noetherian.

Proof. Since (i) ⇒ (ii) ⇒ (iii) is obvious, it remains to show (iii) ⇒ (i).
Since A is commutative, Prim(A) is Hausdorff. Furthermore, since A is

Noetherian, Prim(A) must be finite (say # Prim(A) = n) by the discussion
following Lemma 2.4. Therefore, thinking of A as C(Prim A), we have A ∼=
C n.
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In order to extend results of this type to noncommutative algebras, first
notice by definition (see [11, Definition 1.5]) that every unital C∗-algebra A

with center Z is a C(Prim Z)-algebra, and hence A is the C0-section algebra
of an upper semi-continuous C∗-bundle over Prim(Z) (see, e.g., [18, Theorem
C.26]). Therefore all ideals in Z (corresponding to the functions supported in
an open set U ⊂ Prim(Z)) can be uniquely extended to ideals in A. This fact
is summarized in the following lemma.

Lemma 3.2. Let A be a unital C∗-algebra with center Z. Then I �→ IA is
an injective map from the ideals of Z to the ideals of A.

As stated above, this fact can be used to extend results about commutative
algebras to the noncommutative case. Although it relies on facts that have not
yet been shown, we include the following result here to illustrate this point.

Corollary 3.3. A C∗-algebra A with countably many ideals (in partic-
ular, any separable Noetherian C∗-algebra, by Theorem 4.10) has a finite
dimensional center.8

Proof. Denote by Z the center of the (minimal) unitization of A (denoted
Ã) and assume that Z is infinite dimensional. Then Prim(Z) is an infinite Haus-
dorff space, and thus (by Lemma 4.11) contains uncountably many open sets.
So Z contains uncountably many ideals, and hence so does Ã, by Lemma 3.2.
But unitization adds only a single point to Prim(A), and so A has uncountably
many ideals if and only if the same is true of Ã.

4. Separable Noetherian C∗-algebras

In this section, we first review a theorem of Bratteli and Elliott which gives
sufficient conditions for a topological space to be the primitive ideal space of a
C∗-algebra. By exhibiting a few examples of infinite Noetherian (andArtinian)
spaces satisfying the prescribed conditions, this theorem implies the existence
of nontrivially Noetherian (and Artinian) C∗-algebras. In fact, we show that
this result is exhaustive in the case of separable Noetherian C∗-algebras, in
the sense that these algebras must have a countable sober Noetherian primitive
ideal space, and conversely any countable sober Noetherian space is in fact the
primitive ideal space of such an algebra.

Not only do Noetherian C∗-algebras have countably many ideals, but we
also believe that C∗-algebras with only countably many ideals are not too far

8 We hope to push this result further. Assuming that A is a unital Noetherian algebra, we can
use the Dauns-Hofmann Theorem (specifically, the version given in [4, Theorem, p. 272]) to write
A = ⊕

I∈Prim(Z) A/IA, where Z is the center of A, since Prim(Z) is finite (and discrete). Of

particular interest is the case where Z is one-dimensional.
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removed from being Noetherian (especially if they are approximately finite-
dimensional9) and we give a weakened converse to this fact. Of course, there
are plenty of nontrivially Noetherian C∗-algebras that are not AF, since the
(minimal) tensor product of any separable C∗-algebra with a simple, separable,
exact C∗-algebra does not change the primitive ideal space (see [16, Theorem
5]).10

Theorem 4.1 ([2, §5]). If X is a sober space wherein the compact open sets
form a countable base, then X is homeomorphic to the primitive ideal space
of an AF algebra.

It will be useful to note that the proof of Theorem 4.1 is constructive, in
that it describes an algorithm for creating a Bratteli diagram that gives an AF
algebra with the desired primitive ideal space. More specifically, if X is a
space satisfying the conditions of Theorem 4.1, then [2, §4] gives a way of
constructing a sequence F0, F1, . . . satisfying the following properties:

(i) Each Fn is a finite family of compact open subsets of X.

(ii) If an element U ∈ Fn+1 is contained in the union
⋃

α Vα with each
Vα ∈ Fn, then U ⊂ Vα0 for some α0,

(iii) Each element of Fn is a union of elements of Fn+1,

(iv) The elements
⋃

n Fn form a basis for X.

If we define a relation between the elements of Fn and Fn+1 (denoted Fn ↘
Fn+1) by saying that V ∈ Fn is related to U ∈ Fn+1 if U ⊂ V , then the
lattice F0 ↘ F1 ↘ · · · corresponds to a Bratteli diagram for an AF algebra
with primitive ideal space X.

Corollary 4.2. Nontrivially Noetherian C∗-algebras exist.

Example 4.3. Let k be a countable field (for example, the algebraic clos-
ure of a finite field). Our space is kn. A basis for the family of closed sets is
{(x1, . . . , xn) ∈ kn | p(x1, . . . , xn) = 0} where p ranges through the polyno-
mials in k[x1, . . . , xn]. It follows from general theorems in algebraic geometry
(see, e.g., [9, §1.1]) that this space is Noetherian and T1. However it is not sober
in general, since non-singleton irreducible closed sets exist (e.g. solutions to
X1 = 0) but all points are closed. So we can adjoin dense points to all the
irreducible closed sets (called generic points in [9]) to get a Noetherian, T1

9 Recall that an approximately finite-dimensional (AF) algebra A is a separable C∗-algebra that
is the direct limit of finite-dimensional algebras.

10 In [16], the result is shown when A⊗B satisfies the so-called ‘Property (F),’ which is satisfied
if either A or B is exact. A recent proof using more modern language can be found by combining
[1, Proposition 2.17 (2) and Proposition 2.16 (iii)].
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and sober space with countably many points. As explained in Corollary 4.2,
this space satisfies all the necessary properties of Theorem 4.1, and hence gen-
erates a Noetherian C∗-algebra. Similar constructions give many other spaces
with the same properties, giving us a large supply of separable nontrivially
Noetherian C∗-algebras.11

Example 4.4. For a simpler example, it is straightforward to check that
the space described in Example 2.1 (a countable space with one dense point
and the cofinite topology on the complement of that point) is sober, Noeth-
erian, and has a countable base of compact open sets. Notice, in particular,
that (the complement of) each closed point corresponds to a maximal ideal.
Arbitrary ideals are finite intersections of these maximal ideals, and any infin-
ite intersection of maximal ideals is zero. In fact, since the proof of [2, §5] is
constructive, we can give a more detailed description of AF algebras with this
primitive ideal space in the following few paragraphs.12

First, label X by X = N � {x0} (as a set), where N has the cofinite topology
and x0 is dense in X. We can construct one possible lattice satisfying condi-
tions described after Theorem 4.1 by letting each Fn = {UE} be the family of
2n compact open subsets indexed by the subsets of {1, . . . , n} (using the con-
vention that F0 = {∅}) defined by setting UE = X \ E. Then a set UE ∈ Fn

is related to a set UF ∈ Fn+1 if UF ⊂ UE (or equivalently if E ⊂ F ). To
simplify matters, we just set Fn = P({1, . . . , n}) and say E ↘ F if E ⊂ F .
The corresponding Bratteli diagram (giving the AF algebra in Example 4.4)
is shown in Figure 1. We label each node with the corresponding set, and the
superscript at each node is the size of the matrix algebra (the smallest size
possible suffices).

Note that many of the choices made in the construction of this particular
Bratteli diagram are completely arbitrary. In general, there are many ways to
construct a lattice of compact opens subsets of X in order to define an AF
algebra with X as its primitive ideal space.

Using Figure 1, we can see that the corresponding dimension group is
given by lim−→ Gn, where Gn

∼= Z2n

(with basis {[S] | S ⊂ {1, . . . , n}}) and
connecting homomorphisms ϕn : Gn → Gn+1 given on the basis elements by
ϕn([S]) = ∑

S⊂T [T ].

11 More generally (as explained in e.g [6, p. 187]), any T0 space X has a unique sobrification
Xs , the space of irreducible closed subsets of X. The open subsets of Xs are of the form {E ∈
Xs | E ∩ U �= ∅}, where U ranges through the open subsets of X. X can naturally be embedded
into Xs via the map x �→ {x}. Since sobriety is an important condition in many of the results in
Section 4, one interesting question is to investigate the sobrification of the primitive ideal space
of a non-separable C∗-algebra.

12 Many thanks to the reviewer for pointing out these facts, and the facts that follow.
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∅1

∅1 {1}1

∅1 {1}2 {2}1 {1,2}2

∅1 {1}3 {2}2 {3}1 {1,2}6 {1,3}3 {2,3}2 {1,2,3}6

Figure 1. The Bratteli diagram of anAF algebra with primitive ideal space homeomorphic
to the space described in Example 4.4.

We have so far not been able to come up with a more explicit description
of the dimension group, and different lattice constructions have not made this
computation much easier. However, if it can be shown in the case of Noetherian
spaces that the dimension group corresponding to any lattice constructed using
the method described in the paragraph following Example 4.4 depends only
on the underlying space, then perhaps it can be shown that the primitive ideal
space is a good (or even complete) invariant for Noetherian AF algebras.

Corollary 4.5. Nontrivially Artinian C∗-algebras exist.

Example 4.6. Consider the lower topology (see, e.g., [7, Definition O-5.4])
on the natural numbers, where the basic open sets are the subsets of the form
Un = {k | k ≤ n} for n ∈ N (i.e. the closed sets are the rays, and the open sets
have the form {0, . . . , n}.) Since any closed set has only finitely many closed
supersets, this space is Artinian. Sobriety is clear since {n} = {k | n ≤ k}. A
similar example was considered in the context of C∗-algebras in [10, Example
1.1].

Theorem 4.7. Every countable sober Noetherian (Artinian) space is the
primitive ideal space of a Noetherian (Artinian) C∗-algebra.

We prove the Noetherian case first, using the following topological lemma.

Lemma 4.8. Every infinite sober Noetherian space has the same number
of points as open sets.

Proof. If X is a Noetherian space, then any closed subset is the union of
its irreducible components, as shown in Lemma 2.4. Since X is sober, each
of the terms in this decomposition is a point closure. So we see that there is a
bijective correspondence between closed sets and finite sets of points. If X is
infinite, then the family of finite sets of points has the same cardinality as X.
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Proof of Theorem 4.7 in the Noetherian case. By Theorem 4.1, it
suffices to show that the compact open subsets form a countable base. But
any countable Noetherian space has at most countably many open sets by
Lemma 4.8, and each of these is compact by Lemma 2.3.

For the Artinian case, we use a similar technical lemma.

Lemma 4.9. A sober Artinian space with countably many points has only
countably many compact open subsets.

Proof. We show that each compact open set can be decomposed into a
finite union in a ‘canonical’ way. Let V be compact and open, and for each
x ∈ X denote by Ux the minimal neighborhood of x. Then {Ux}x∈V is an open
cover of V . This has a finite subcover, and so V can be written as finite union
of minimal neighborhoods. Since the collection of all finite unions of the Ux’s
is countable (since X is), X has only countably many compact open subsets.

Proof of Theorem 4.7 in the Artinian case. By Theorem 4.1, it suf-
fices to show that the compact open subsets form a countable base. But this
follows immediately by Lemma 4.9, after noting that the minimal neighbor-
hood around each point is compact.

Now that we know nontrivially Noetherian (and Artinian) separable C∗-
algebras exist, we begin an investigation into their properties. As is the case
with purely algebraic rings, the condition of being Noetherian puts a control on
their ideal structure. However, due to the stringent topological conditions that
are put on the primitive ideal space of Noetherian C∗-algebras, being Noeth-
erian is a much stronger condition in this context. A result that demonstrates
this fact is given below.

Theorem 4.10. Every separable Noetherian C∗-algebra has only count-
ably many ideals.13

Proof. Let A be separable Noetherian C∗-algebra containing uncountably
many ideals. It follows from the Lemma 4.8 that Prim(A) contains uncountably
many points. Let � be the collection of uncountable irreducible subsets of
Prim(A). By Lemma 2.4, Prim(A) can be decomposed into finitely many
irreducible components. At least one of these must be uncountable, so � is
nonempty. Let E be a minimal element of �. So E is uncountable and every
proper closed subset of E is countable, and hence every closed subset of E is
either countable or cocountable.

13 We would like to extend this result to Artinian C∗-algebras as well. However, a ‘finite
decomposition’ result analogous to Lemma 2.4 is missing.
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Now, by a result due primarily to Effros [5, Theorem 2.4],14 the Borel
structure on the primitive ideal space (with hull-kernel topology) of a separable
C∗-algebra with uncountably many ideals is isomorphic to the unit interval with
the standard Borel structure. Such an isomorphism takes E to an uncountable
Borel subset of the unit interval. But the countable-cocountable σ -algebra on
E does not agree with the standard Borel σ -algebra on any uncountable subset
of the unit interval, so we have a contradiction.

Notice that Theorem 4.10 does not have a direct converse, since there exist
non-Noetherian C∗-algebras with only countably many ideals. One counter-
example is in the proof of Corollary 4.5, where we define a non-Noetherian
(although Artinian) topological space which is the primitive ideal space of an
AF algebra with only countably many ideals.

However, it seems that having only countably many ideals is fairly close to
being Noetherian. We can show a partial equivalence, which is that a separable
C∗-algebra is Noetherian if and only if it has only countably many ideals and
it has no infinite strictly ascending sequence of primitive ideals. The latter
condition can be viewed as a weak version of being Noetherian. We will first
show that if A is a separable C∗-algebra with only countably many ideals, than
any ideal in A is a finite intersection of primitive ideals, which is to say that
any closed set in Prim(A) can be decomposed into finitely many irreducible
components. We use the following lemma.

Lemma 4.11. Any infinite Hausdorff space contains uncountably many
open sets.

Proof. It suffices to show that an infinite Hausdorff space has infinitely
many disjoint open sets, since if {Uα}α∈A were such a collection, then{⋃

α∈E Uα

}
E∈2A would be an uncountable collection of open sets.

Let X be an infinite Hausdorff space. If X contains infinitely many isolated
points then these points form an infinite family of disjoint open sets. So we
may suppose that X contains only finitely many isolated points. So X contains
a limit point, call it z. Let x1 be a point other than z. Let U1 and V1 be open sets
separating x1 and z respectively. As z is a limit point, V1 contains a point other
than z, call it x2. Again, let U2 and V2 be open subsets of V1 separating x2 and
z. We continue in this manner and produce a sequence of open sets {Un}n∈N.
It is easy to see that these open sets are disjoint.

Next, recall that a point x is separated if and only if it can be separated
from each point outside its closure by disjoint open sets.

A theorem of Dixmier [3, 3.9.4] states that in any separable C∗-algebra,
the separated points form a dense set in Prim(A). Before we use this result to

14 A very nice proof of this result is due to Dixmier, and is given in [18, Theorem H.39].
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prove Lemma 4.12, first note that a separated point in a T0 space cannot lie in
the closure of another point. If a point x is separated and lies in the closure of
a point y, then y cannot be in the closure of x, so x and y can be separated
with open sets, which is impossible.

Lemma 4.12. If a separable C∗-algebra A has countably many ideals,
then every closed subset of Prim(A) is the union of finitely many irreducible
subsets.

Proof. Let X be the set of separated points in Prim(A). Since no point
in X can lie in the closure of any other point in X, any two points in X

can be separated with open sets. Thus X is Hausdorff, and hence finite by
Lemma 4.11. Every space is the union of closed irreducible components15

(in particular, Prim(A) is) and since A is separable, Prim(A) is sober, and
hence Prim(A) can be written as a union of point-closures. Since X is finite, it
can be decomposed into finitely many irreducible subsets, the closures of the
separated points. Therefore, since Prim(A) = X = ⋃

x∈X {x} by [3, 3.9.4], the
same is true for Prim(A). Now if A contains only countably many ideals then
any quotient of A contains only countably many ideals, so we can apply the
same argument to any closed set in Prim(A) and deduce the general statement.

Theorem 4.13. A separable C∗-algebra A is Noetherian if and only if it
contains countably many ideals and has no infinite strictly ascending chain of
primitive ideals.16

Proof. One direction is obvious by Theorem 4.10. We show the converse
using Lemma 4.12.

Let A be a separable C∗-algebra with countably many ideals and no infinite
strictly ascending chain of primitive ideals. By contradiction, say A is not
Noetherian, with E1 ⊃ E2 ⊃ · · · an infinite strictly descending sequence of
closed sets in Prim(A). By Lemma 4.12, we can express each En as the union
of a finite family Fn of irreducibles. Let T be the family of all the sets in all of
the Fn’s. We construct a tree whose nodes are the sets in T . Two elements of
T are connected when one is contained in the other and there are no sets in T

that lie between them. It is easy to see that this is in fact a tree and that every
node has finite degree. So by Kőnig’s Lemma this tree contains an infinite
branch, which is nothing other than an infinite descending chain of irreducible
closed subsets.

15 This can be seen since, in particular, every singleton is irreducible, and hence is contained in a
maximal closed irreducible set (by Zorn’s lemma). As shown in Lemma 2.4, this union is unique
(and finite) in the case of Noetherian spaces, although not in general.

16 The latter notion can be viewed as a weak version of being Noetherian. It is equivalent to
saying that Prim(A) contains no infinite strictly descending sequence of irreducible closed subsets.
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Since each irreducible closed subset is the closure of a unique point (because
A was assumed to be separable, and hence Prim(A) sober), we have an infinite
ascending chain of primitive ideals in A, and thus a contradiction.
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