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THE GENERALIZED KINETIC EQUATION FOR
SYMMETRIC PARTICLE SYSTEMS

HALYNA M. HUBAL

Abstract
The generalized kinetic equation is obtained for symmetric system of many particles interacting via
a pair potential. A representation of a solution of the Cauchy problem for the BBGKY hierarchy
is used in the form of an expansion over particle groups whose evolution is governed by the
cumulants (semi-invariants).

1. Introduction

The evolution of states of many-particle systems is described by the BBGKY
hierarchy of equations [1], [3]. A solution of the Cauchy problem for the
BBGKY hierarchy of equations can be represented in the form of the iteration
or the functional series, or the non-equilibrium cluster expansion: [3], [6], [7].
In this article we use a representation of a solution in the form of an expansion
over particle groups whose evolution is governed by the cumulants (semi-
invariants) of the evolution operator of the corresponding particle group [5].
Such a representation of solution enables us to describe the cluster nature of
the evolution of infinite particle systems with different symmetry properties in
detail.

In certain situations states of many-particle systems can be described in
terms of the one-particle distribution function that satisfies some closed evol-
ution equation, which we call the kinetic equation.

In this article, we derive the generalized kinetic equation in explicit form
from the BBGKY hierarchy of equations. For a mathematical formulation
of the problem we consider the Cauchy problem for the BBGKY hierarchy
of equations with initial data which are products of one-particle distribution
functions. Such an assumption for the initial data is natural for the kinetic
description of a gas, since its states, in this case, are described only by the one-
particle distribution function. Under this assumption we prove that the Cauchy
problem for the BBGKY hierarchy of equations in the space of sequences of
summable functions is equivalent to the corresponding initial value problem
for the generalized kinetic equation.
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Note that generalized kinetic equations were obtained for a discrete ve-
locity symmetric system of hard spheres [2] and for a symmetric system of
particles [4] by using a solution of the Cauchy problem for the BBGKY hier-
archy in another representation. For a symmetric system of particles the kinetic
equation has been obtained in non-explicit form: see [3].

In Sections 2–4, after having given the formulation of the problem we
present the main technical result (Theorem 4.1) which is necessary to derive,
in Section 5, the generalized kinetic equation (Theorem 5.1). In Section 6 we
formulate the existence theorem (Theorem 6.1) for the derived kinetic equation.
In Section 7 we formulate conclusion.

2. The BBGKY hierarchy of equations

Let us consider a symmetric system of finitely many particles of mass m = 1
interacting via a pair potential �. We assume that the interaction potential
� satisfies conditions guaranteeing the existence an uniqueness of solutions,
global in time, for the initial value problem for the Hamilton equations of a
system of an arbitrary finite number of particles. For example, � is a twice
continuously differentiable function with a compact support.

Each i-th particle is characterized by the phase-coordinates (qi, pi) ≡ xi ∈
Rν × Rν , ν ≥ 1.

Let L1 (Rνs × Rνs) be the linear space of summable functions fs(x1, . . . , xs)

defined on the phase space Rνs × Rνs and invariant under permutations of the
arguments (x1, . . . , xs) with the norm

‖fs‖ =
∫

Rνs×Rνs

dx1 . . . dxs |fs(x1, . . . , xs)| .

We define the space L1
0 (Rνs × Rνs) as consisting of those functions fs ∈

L1 (Rνs × Rνs) which have compact support, and which are continuously dif-
ferentiable with respect to the variables (x1, . . . , xs). This space is dense in
L1 (Rνs × Rνs). Let α > 1 be an integer. By

L1
α :=

∞⊕
s=0

αsL1(Rνs × Rνs)

we denote the Banach space of infinite sequences f = {fs(x1, . . . , xs)}s≥0

with the property that ‖f ‖ := ∑∞
s=0 αs ‖fs‖ < ∞.

The state of such a system is determined by a solution of the Cauchy problem
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for the BBGKY hierarchy of equations:

(1)
∂

∂t
Fs(t, x1, . . . , xs) = {Hs(x1, . . . , xs), Fs(t, x1, . . . , xs)}

+ 1

υ

∫
Rν×Rν

dxs+1

{ s∑
i=1

�(qi − qs+1), Fs+1(t, x1, . . . , xs+1)

}

with initial data possessing the factorization property (the chaos property):

(2)

F1(t, x1)|t=0 = F1(0, x1),

Fs(t, x1, . . . , xs)|t=0 =
s∏

i=1

F1(0, xi), s ≥ 2,

where Hs(x1, . . . , xs) is the Hamilton function, 1
υ

is the density, {·, ·} is the
Poisson bracket [3], F1(0, xi) ∈ L1

0(R
ν × Rν).

3. A global solution of the Cauchy problem for the BBGKY hierarchy

A solution of the Cauchy problem for the BBGKY hierarchy of equations is
represented as the expansion over particle groups whose evolution is governed
by the cumulants [5]

(3) F|Y |(t, Y ) =
∞∑

n=0

1

n!

∫
Rνn×Rνn

d(X \ Y ) �|XY |(t, XY )F|X|(0, X),

where

Y = (x1, . . . , xs), X = (x1, . . . , xs, xs+1, . . . , xs+n),

XY = (Y, xs+1, . . . , xs+n), d(X \ Y ) = dxs+1 . . . dxs+n, dxj = dqjdpj ,

�|XY |(t, XY ) =
∑

P :XY =∪iXi

(−1)|P |−1(|P |−1)!
∏

Xi⊂P

S|Xi |(−t, Xi), |X\Y | ≥ 0.

Here
∑

P :XY =∪iXi
is the sum over all possible partitions of the set XY into |P |

nonempty pairwise disjoint subsets Xi ⊂ XY and the set Y lies in one of the
subsets Xi . The symbol Ss(−t) is the evolution operator:

(Ss(−t)fs)(x1, . . . , xs)

= fs(X1(−t, x1, . . . , xs), . . . , Xs(−t, x1, . . . , xs)), s ≥ 1,

where Xi(t) = Xi(t, x1, . . . , xs), i = 1, . . . , s is a solution of the initial
value problem for the Hamilton equations of s-particle system with initial data
Xi(0, x1, . . . , xs) = xi , i = 1, . . . , s [3].
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Taking into account (3) for the Cauchy problem (1), (2) in the space L1
α the

following theorem is true.

Theorem 3.1. If F1(0) ∈ L1
0(R

ν × Rν) ⊂ L1(Rν × Rν) then there exists
a unique strong, global in time, solution F(t) = {Fs(t, Y )}s=|Y |≥0, where
Fs(t) ∈ L1(Rνs × Rνs), s ≥ 1, of the Cauchy problem (1), (2), which is given
as the expansion over particle groups whose evolution is governed by the
cumulants

(4) Fs(t, Y ) = Ss(−t, Y )

s∏
i=1

F1(0, xi)

+
∞∑

n=1

1

υn

1

n!

∫
Rνn×Rνn

d(X \ Y ) �|XY |(t, XY )

n+s∏
i=1

F1(0, xi), s ≥ 1.

The proof of this statement is straightforward. Each term of the series in (4)
is a well-defined function, since the integrand is defined almost everywhere
outside of the set U0

s+n of zero Lebesgue measure [3]. The functional series
(4) converges in the norm of the space L1(Rνs × Rνs) for arbitrary t ∈ R1. The
following estimate holds

(5) ‖Fs(t)‖ ≤ ‖F1(0)‖se
1
υ
‖F1(0)‖ 1

1 − ‖F1(0)‖
υ

, s ≥ 1.

Indeed, denote by k the number of subsets Xi in partition P and taking into
account that ‖S|Xi |(−t)‖ = 1 in the space of summable functions we obtain

‖Fs(t)‖ ≤
∞∑

n=0

1

υn

1

n!

∥∥∥∥
∫

Rνn×Rνn

d(X \ Y )

n+1∑
k=1

∑
P : |P |=k

(−1)k−1

× (k − 1)!
∏

Xi⊂P

S|Xi |(−t, Xi)

n+s∏
i=1

F1(0, xi)

∥∥∥∥

≤
∞∑

n=0

1

υn

1

n!

∫
Rν(n+s)×Rν(n+s)

dX

n+1∑
k=1

Ck−1
n (k − 1)!

∣∣∣∣
n+s∏
i=1

F1(0, xi)

∣∣∣∣

=
∞∑

n=0

1

υn

1

n!

n+1∑
k=1

Ck−1
n (k − 1)!‖F1(0)‖n+s

=
∞∑

n=0

1

υn

n∑
j=0

1

(n − j)!
‖F1(0)‖n+s



144 halyna m. hubal

=
∞∑

n=0

1

υn

n∑
j=0

1

j !
‖F1(0)‖n+s =

∞∑
j=0

1

j !

∞∑
n=j

1

υn
‖F1(0)‖n+s

= ‖F1(0)‖s

∞∑
j=0

1

j !

(‖F1(0)‖
υ

)j ∞∑
n=j

(‖F1(0)‖
υ

)n−j

= ‖F1(0)‖se
‖F1(0)‖

υ
1

1 − ‖F1(0)‖
υ

.

The symbol Ck−1
n stands for a binomial coefficient.

4. On a solution of the nonlinear equation for the one-particle
distribution function

If the initial data (2) are assigned in terms of the initial one-particle distribution
function F1(0) then the problem (1), (2) is not a “completely well-defined" in
the sense, that the initial data Fs(0) = ∏s

i=1 F1(0, xi), s ≥ 2, are not in-
dependent for every unknown function in (1). Thus, let us re-formulate the
problem (1), (2) as a new Cauchy problem for the independent unknown func-
tion, i.e. F1(t), together with an infinite sequence of functionals, Fs(t |F1(t)) =
Fs(t, Y |F1(t)), s = |Y | ≥ 2 (see Eq. (24) and text below).

Let us consider relation (4) for s = 1 as a closed equation for the function
F1(0) in the space L1(Rν × Rν)

(6) F1(0) = AF1(0),

where

(7) (AF1(0))(x1) = S1(t, x1)F1(t, x1)

−
∞∑

n=1

1

υn

1

n!

∫
Rνn×Rνn

d(X \ {x1})S1(t, x1) �|X{x1}|(t, X{x1})
n+1∏
i=1

F1(0, xi),

d(X \ {x1}) = dx2 . . . dxn+1.
Denote S1(t, x1)F1(t, x1) ≡ F 0

1 and let ‖F1(t, x1)‖ ≤ r < +∞. Then
F 0

1 ∈ L1(Rν × Rν), ‖F 0
1 ‖ = ‖S1(t, x1)F1(t, x1)‖ ≤ r < +∞. In the space

L1
0(R

ν × Rν) ⊂ L1(Rν × Rν) we consider a ball

S(F 0
1 , R) ≡ {F1(0) ∈ L1

0(R
ν × Rν) : ‖F1(0) − F 0

1 ‖ ≤ R}.

The following theorem holds.
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Theorem 4.1. Let υ, R, and r be given strictly positive numbers. Let x and
z be real solutions of the equations

ex

1 − x
= 2R + r

R + r
, and ez · 1 + z − z2

(1 − z)2
= 2

respectively. Suppose that

1

υ
<

1

R + r
min{x, z}.

Put �̂|Xi |(t, Xi) = �|Xi |(t, Xi)
∏

xj ∈Xi
S1(t, xj ). Then there exist a unique solu-

tion of equation (6) in the domain S(F 0
1 , R) ⊂ L1(Rν×Rν) given by the formula

(8) F1(0, x1) = S1(t, x1)F1(t, x1)

+
∞∑

n=1

1

υn

∫
Rνn×Rνn

d(X \ {x1}) �̃(n)(t)

n+1∏
i=1

F1(t, xi),

where

�̃(1)(t) = −S1(t, x1) �̂2(t, x1, x2),

�̃(2)(t) = S1(t, x1) �̂2(t, x1, x2)(�̂2(t, x1, x3) + �̂2(t, x2, x3))

− 1

2!
S1(t, x1) �̂3(t, x1, x2, x3),

and so on.

Proof. Let us establish that the operator A defined in (7) maps the ball
S(F 0

1 , R) into itself and is a contraction operator. Since

‖F1(0)‖ ≤ ‖F1(0) − F 0
1 ‖ + ‖F 0

1 ‖ ≤ R + r,

then by definition (7) and the condition ‖S|Xi |(t, Xi)‖ = 1 in the space of
summable functions we have

‖AF1(0) − F 0
1 ‖

=
∥∥∥∥

∞∑
n=1

1

υn

1

n!

∫
Rνn×Rνn

d(X \ {x1})S1(t, x1) �|X{x1}|(t, X{x1})
n+1∏
i=1

F1(0, xi)

∥∥∥∥

≤
∞∑

n=1

1

υn

1

n!

∫
Rν(n+1)×Rν(n+1)

dX

n+1∑
k=1

Ck−1
n (k − 1)!

∣∣∣∣
n+1∏
i=1

F1(0, xi)

∣∣∣∣
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=
∞∑

n=1

1

υn

1

n!

n+1∑
k=1

Ck−1
n (k − 1)!‖F1(0)‖n+1

= ‖F1(0)‖
( ∞∑

n=0

1

υn

n∑
j=0

1

j !
‖F1(0)‖n − 1

)

= ‖F1(0)‖
( ∞∑

j=0

1

j !

∞∑
n=j

(‖F1(0)‖
υ

)n

− 1

)

= ‖F1(0)‖
( ∞∑

j=0

1

j !

(‖F1(0)‖
υ

)j ∞∑
n=j

(‖F1(0)‖
υ

)n−j

− 1

)

= ‖F1(0)‖
(

e
‖F1(0)‖

υ
1

1 − ‖F1(0)‖
υ

− 1

)
≤ (R + r)

(
1

1 − R+r
υ

e
R+r

υ − 1

)
.

Thus, the operator A maps the ball S(F 0
1 , R) into itself if

(9) (R + r)

(
1

1 − R+r
υ

e
R+r

υ − 1

)
≤ R.

Let us find a simple condition on the density 1
υ

in order that (9) holds.
Observe that (9) is equivalent to

1

1 − R+r
υ

e
R+r

υ ≤ 2R + r

R + r
,

and let x ∈ R be such that

(10)
ex

1 − x
= 2R + r

R + r
.

Then for υ such that R+r
υ

≤ x the inequality in (9) follows. Here we use the
fact that the function y 
→ ey

1−y
is increasing for y < 1.

Thus, the condition (9) gives the condition on the density

1

υ
≤ 1

R + r
x,

where x is a solution of the equation (10).
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Let us find a condition under which the operator A is a contraction on
S(F 0

1 , R). For arbitrary elements Y1, Y2 ∈ S(F 0
1 , R) we have

(11) ‖AY1 − AY2‖ ≤
∞∑

n=1

1

υn

1

n!

n+1∑
k=1

Ck−1
n (k − 1)!

×
∫

Rν(n+1)×Rν(n+1)

dX

∣∣∣∣
n+1∏
j=1

Y1(0, xj ) −
n+1∏
j=1

Y2(0, xj )

∣∣∣∣.

Let us formulate a version of Duhamel’s formula as the following lemma.

Lemma 4.2. The equality

(12)

n+1∏
j=1

Y1(0, xj ) −
n+1∏
j=1

Y2(0, xj )

=
n+1∑
i=1

i−1∏
j=1

Y1(0, xj )(Y1(0, xi) − Y2(0, xi))

n+1∏
j=i+1

Y2(0, xj ), n ∈ N

is true.

Proof. Let us use induction on the number of particles. It is evident that
for n = 1 the equality (12) is true. Assume that the equality (12) is true for
n = m. Let us prove the equality (12) for n = m + 1, using the assumption:

m+2∏
j=1

Y1(0, xj ) −
m+2∏
j=1

Y2(0, xj )

=
m+1∏
j=1

Y1(0, xj )(Y1(0, xm+2) − Y2(0, xm+2))

+
(m+1∏

j=1

Y1(0, xj ) −
m+1∏
j=1

Y2(0, xj )

)
Y2(0, xm+2)

=
m+2∑
i=1

i−1∏
j=1

Y1(0, xj )(Y1(0, xi) − Y2(0, xi))

m+2∏
j=i+1

Y2(0, xj ).

Thus, the equality (12) is true for n ∈ N.
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Using Lemma 4.2 the expression (11) takes the form

‖AY1 − AY2‖

≤
∞∑

n=1

1

υn

1

n!

n+1∑
k=1

Ck−1
n (k − 1)!

×
∥∥∥∥

n+1∑
i=1

i−1∏
j=1

Y1(0, xj )(Y1(0, xi) − Y2(0, xi))

n+1∏
j=i+1

Y2(0, xj )

∥∥∥∥

≤
∞∑

n=1

1

υn

1

n!

n+1∑
k=1

Ck−1
n (k − 1)!

n+1∑
i=1

(R + r)i−1‖Y1 − Y2‖(R + r)n+1−i

=
∞∑

n=1

1

υn

1

n!

n+1∑
k=1

Ck−1
n (k − 1)!(n + 1)(R + r)n‖Y1 − Y2‖

=
∞∑

n=1

(n + 1)

(
R + r

υ

)n n∑
j=0

1

j !
‖Y1 − Y2‖.

A condition which makes the operator A a strict contraction is of the form

(13)

∞∑
n=0

(n + 1)

(
R + r

υ

)n n∑
j=0

1

j !
< 2.

We want to rewrite the condition on the density 1
υ

in inequality (13). There-
fore we notice that, for |w| < 1,

∞∑
n=0

(n + 1)wn

n∑
j=0

1

j !

=
∞∑

j=0

∞∑
n=j

(n + 1)wn

j !
=

∞∑
j=0

1

j !

d

dw

( ∞∑
n=j

wn+1

)

= d

dw

( ∞∑
j=0

1

j !

wj+1

1 − w

)
= d

dw

(
ew w

1 − w

)
= ew · 1 + w − w2

(1 − w)2
.

Choose 0 < z < 1 in such a way that

(14) ez · 1 + z − z2

(1 − z)2
= 2,

and put w = R+r
υ

. If 0 < w < z, then the inequality (13) is satisfied and so A

is a strict contraction for such a density 1
υ

.
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Thus, the condition (13) gives the following condition on the density

1

υ
<

1

R + r
z,

where z is a solution of the equation (14).
Thus, under condition

1

υ
<

1

R + r
min{x, z},

where x is a solution of the equation (10), z is a solution of the equation
(14), there exists a unique solution of equation (6) in the domain S(F 0

1 , R) ⊂
L1(Rν × Rν). This solution can be determined as the limit of successive ap-
proximations F

(n)
1 (0) = AF

(n−1)
1 (0), where F

(0)
1 (0) = F 0

1 ≡ S1(t)F1(t). The
limit limn→∞ F

(n)
1 (0) = F1(0) has the form (8).

According to (7) the first approximation of the solution, which describes
the interaction between particles is expressed by the following formula

F
(1)
1 (0) = AF 0

1

= F 0
1 − 1

υ

∫
Rν×Rν

dx2 S1(t, x1) �2(t, x1, x2)

2∏
i=1

S1(t, xi)F1(t, xi)

− 1

υ2

1

2!

∫
R2ν×R2ν

dx2dx3 S1(t, x1) �3(t, x1, x2, x3)

3∏
i=1

S1(t, xi)F1(t, xi) − · · ·

Analogously the second approximation of the solution, which describes the
interaction between particles, is expressed by the following formula

F
(2)
1 (0) = AF

(1)
1 (0)

= F 0
1 − 1

υ

∫
Rν×Rν

dx2 S1(t, x1) �2(t, x1, x2)

2∏
i=1

S1(t, xi)F1(t, xi)

+ 1

υ2

∫
R2ν×R2ν

dx2dx3

(
S1(t, x1) �2(t, x1, x2)S1(t, x1)

× �2(t, x1, x3)

3∏
i=1

S1(t, xi)F1(t, xi)

+ S1(t, x1) �2(t, x1, x2)S1(t, x2) �2(t, x2, x3)

3∏
i=1

S1(t, xi)F1(t, xi)

− 1

2!
S1(t, x1) �3(t, x1, x2, x3)

3∏
i=1

S1(t, xi)F1(t, xi)

)
+ · · · .
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In a similar manner we construct the n-th approximation.
Denote

�̃(1)(t) = −S1(t, x1) �2(t, x1, x2)

2∏
i=1

S1(t, xi) = −S1(t, x1) �̂2(t, x1, x2),

�̃(2)(t) = S1(t, x1) �2(t, x1, x2)

×
(

S1(t, x1) �2(t, x1, x3)

3∏
i=1

S1(t, xi)

+ S1(t, x2) �2(t, x2, x3)

3∏
i=1

S1(t, xi)

)

− 1

2!
S1(t, x1) �3(t, x1, x2, x3)

3∏
i=1

S1(t, xi)

= S1(t, x1) �̂2(t, x1, x2)
(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

)
− 1

2!
S1(t, x1) �̂3(t, x1, x2, x3),

and so on, where �̂|Xi |(t, Xi) = �|Xi |(t, Xi)
∏

xj ∈Xi
S1(t, xj ). Then we obtain

F1(0, x1) = S1(t, x1)F1(t, x1) + 1

υ

∫
Rν×Rν

dx2 �̃(1)(t)

2∏
i=1

F1(t, xi)

+ 1

υ2

∫
R2ν×R2ν

dx2dx3 �̃(2)(t)

3∏
i=1

F1(t, xi) + · · ·

= S1(t, x1)F1(t, x1)

+
∞∑

n=1

1

υn

∫
Rνn×Rνn

d(X \ {x1}) �̃(n)(t)

n+1∏
i=1

F1(t, xi).

5. The generalized kinetic equation

The one-particle distribution function which is a solution of the initial value
problem (1), (2) can be represented as the following expansion (Theorem 3.1):

(15) F1(t, x1) = S1(−t, x1)F1(0, x1)

+
∞∑

n=1

1

υn

1

n!

∫
Rνn×Rνn

d(X \ {x1}) �|X{x1}|(t, X{x1})
n+1∏
i=1

F1(0, xi).
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Theorem 5.1. The strong derivative with respect to t of relation (15) has
the form

(16)
∂

∂t
F1(t, x1) = −p1

∂

∂q1
F1(t, x1)

+ 1

υ

∫
Rν×Rν

dx2{�(q1 − q2), F2(t, x1, x2|F1(t))} + · · · ,

where the functional F2(t, x1, x2|F1(t)) is given by the following formula:

(17) F2(t, x1, x2|F1(t)) = Ŝt
2(x1, x2)

2∏
i=1

F1(t, xi)

+
∞∑

n=1

1

υn

∫
Rνn×Rνn

d(X \ {x1, x2}) �̆(n)(t, X{x1,x2})
n+2∏
i=1

F1(t, xi).

Here

Ŝt
2(x1, x2) = S2(−t, x1, x2)

2∏
i=1

S1(t, xi),

�̆(1)(t) = −Ŝt
2(x1, x2)

(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

) + �̂3(t, x1, x2, x3),

�̆(2)(t) = (
�̂2(t, x1, x4) + �̂2(t, x2, x4) + �̂2(t, x3, x4)

)
× (

Ŝt
2(x1, x2)

(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

) − �̂3(t, x1, x2, x3)
)

− 1

2!
Ŝt

2(x1, x2)
(
�̂2(t, x1, x3, x4) + �̂2(t, x2, x3, x4)

)

+ 1

2!
�̂3(t, x1, x2, x3, x4)

and so on.

Proof. Let us consider relation (15) in the form

F1(t) = U(t)F1(0),

where

(U(t)F1(0))(x1) = S1(−t, x1)F1(0, x1)

+
∞∑

n=1

1

υn

1

n!

∫
Rνn×Rνn

d(X \ {x1}) �|X{x1}|(t, X{x1})
n+1∏
i=1

F1(0, xi).
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Thus, using the group property [5], [6] of the operator U(t) and the expres-
sion (15) we obtain

∂

∂t
F1(t, x1)

= ∂

∂t
(U(t)F1(0))(x1)

= lim
�t→0

1

�t
((U(t + �t) − U(t))F1(0))(x1)

= lim
�t→0

1

�t
(U(t)(U(�t) − I )F1(0))(x1)

= lim
�t→0

1

�t
((U(�t) − I )U(t)F1(0))(x1)

= lim
�t→0

1

�t
(S1(−�t, x1) − I )(U(t)F1(0))(x1)

+ 1

υ
lim

�t→0

1

�t

∫
Rν×Rν

dx2 �2(�t, x1, x2)U(t, x1, x2)

2∏
i=1

F1(0, xi) + · · · .

Taking into account the equality [3]

lim
�t→0

1

�t
(S1(−�t, x1) − I ) = {H1, ·},

the expression [5]

�2(�t, x1, x2) = S2(−�t, x1, x2) − S1(−�t, x1)S1(−�t, x2)

and using the Liouville theorem, we obtain
(18)
∂

∂t
F1(t, x1)

= {H1, F1(t, x1)}
+ 1

υ
lim

�t→0

1

�t

(∫
Rν×Rν

dx2(S2(−�t, x1, x2) − I )

− (S1(−�t, x1) − I ) ×
∫

Rν×Rν

dx2

)
F2(t, x1, x2|F1(t)) + · · ·

= −p1
∂

∂q1
F1(t, x1)

+ 1

υ

(∫
Rν×Rν

dx2{H2, ·} − {H1, ·}
∫

Rν×Rν

dx2

)
F2(t, x1, x2|F1(t)) + · · · .
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Let us calculate the difference of the terms between the parentheses in the
final of the equality in (18). Recall that the function � stands for the pair
potential of our problem. A calculation shows:

(19)

∫
Rν×Rν

dx2{H2, F2(t, x1, x2|F1(t))}

=
∫

Rν×Rν

dx2

{ 2∑
i=1

p2
i

2
+ �(q1 − q2), F2(t, x1, x2|F1(t))

}

=
∫

Rν×Rν

dx2{�(q1 − q2), F2(t, x1, x2|F1(t))}

− p1

∫
Rν×Rν

dx2
∂

∂q1
F2(t, x1, x2|F1(t))

−
∫

Rν×Rν

dx2 p2
∂

∂q2
F2(t, x1, x2|F1(t))

=
∫

Rν×Rν

dx2{�(q1 − q2), F2(t, x1, x2|F1(t))}

− p1
∂

∂q1

∫
Rν×Rν

dx2F2(t, x1, x2|F1(t))

−
∫ ∞

−∞
dp2 p2

∫ ∞

−∞
dq2

∂

∂q2
F2(t, x1, x2|F1(t))

=
∫

Rν×Rν

dx2{�(q1 − q2), F2(t, x1, x2|F1(t))}

− p1
∂

∂q1

∫
Rν×Rν

dx2 F2(t, x1, x2|F1(t)).

In the ultimate equality of (19) we used the fact that the probability of state
with infinite distance between particles is equal to zero:

∫ ∞

−∞
dp2 p2

∫ ∞

−∞
dq2

∂

∂q2
F2(t, x1, x2|F1(t)) = 0.

We also have

(20)

{
H1,

∫
Rν×Rν

dx2 F2(t, x1, x2|F1(t))

}

= −p1
∂

∂q1

∫
Rν×Rν

dx2 F2(t, x1, x2|F1(t)).



154 halyna m. hubal

By substituting (19) and (20) into (18) we obtain

(21)
∂

∂t
F1(t, x1) = −p1

∂

∂q1
F1(t, x1)

+ 1

υ

∫
Rν×Rν

dx2{�(q1 − q2), F2(t, x1, x2|F1(t))} + · · · .

The explicit construction of the functional F2(t, x1, x2|F1(t)) goes as fol-
lows. The solution (4) for Y = {x1, x2} has the form
(22)

F2(t, x1, x2)

= S2(−t, x1, x2)

2∏
i=1

F1(0, xi)

+ 1

υ

∫
Rν×Rν

dx3 �3(t, x1, x2, x3)

3∏
i=1

F1(0, xi)

+ 1

υ2

1

2!

∫
R2ν×R2ν

dx3dx4 �4(t, x1, x2, x3, x4)

4∏
i=1

F1(0, xi) + · · · .

We rewrite the solution in (8) as follows:
(23)

F1(0, x1)

= S1(t, x1)F1(t, x1)

− 1

υ

∫
Rν×Rν

dx2 S1(t, x1) �2(t, x1, x2)

2∏
i=1

S1(t, xi)F1(t, xi)

+ 1

υ2

∫
R2ν×R2ν

dx2dx3

(
S1(t, x1) �2(t, x1, x2)S1(t, x2) �2(t, x2, x3)

+ S1(t, x1) �2(t, x1, x2)S1(t, x1) �2(t, x1, x3)

− 1

2!
S1(t, x1) �3(t, x1, x2, x3)

) 3∏
i=1

S1(t, xi)F1(t, xi) + · · · .

By substituting the solution (23) into the solution (22), taking into account the
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interaction between particles we obtain

F2(t, x1, x2|F1(t))

= S2(−t, x1, x2)

[ 2∏
i=1

S1(t, xi)F1(t, xi)

− 1

υ

(
S1(t, x2)F1(t, x2)

∫
Rν×Rν

dx3 S1(t, x1) �2(t, x1, x3)

× S1(t, x1)F1(t, x1)S1(t, x3)F1(t, x3)

+ S1(t, x1)F1(t, x1)

∫
Rν×Rν

dx3 S1(t, x2) �2(t, x2, x3)

3∏
i=2

S1(t, xi)F1(t, xi)

)

+ 1

υ2

(
S1(t, x1)F1(t, x1)

∫
R2ν×R2ν

dx3dx4

(
S1(t, x2) �2(t, x2, x3)

× S1(t, x3) �2(t, x3, x4)

4∏
i=2

S1(t, xi)F1(t, xi)

+ S1(t, x2) �2(t, x2, x3)S1(t, x2) �2(t, x2, x4)

4∏
i=2

S1(t, xi)F1(t, xi)

− 1

2!
S1(t, x2) �3(t, x2, x3, x4)

4∏
i=2

S1(t, xi)F1(t, xi)

)

+
∫

Rν×Rν

dx3 S1(t, x1) �2(t, x1, x3)S1(t, x1)F1(t, x1)S1(t, x3)F1(t, x3)

×
∫

Rν×Rν

dx4 S1(t, x2) �2(t, x2, x4)S1(t, x2)F1(t, x2)S1(t, x4)F1(t, x4)

+
∫

Rν×Rν

dx3 S1(t, x2) �2(t, x2, x3)

3∏
i=2

S1(t, xi)F1(t, xi)

×
∫

Rν×Rν

dx4 S1(t, x1) �2(t, x1, x4)S1(t, x1)F1(t, x1)S1(t, x4)F1(t, x4)

+ S1(t, x2)F1(t, x2)

∫
R2ν×R2ν

dx3dx4

(
S1(t, x1) �2(t, x1, x3)

× S1(t, x3) �2(t, x3, x4)S1(t, x1)F1(t, x1)

4∏
i=3

S1(t, xi)F1(t, xi)

+ S1(t, x1) �2(t, x1, x3)S1(t, x1) �2(t, x1, x4)

× S1(t, x1)F1(t, x1)

4∏
i=3

S1(t, xi)F1(t, xi)
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− 1

2!
S1(t, x1) �3(t, x1, x3, x4)S1(t, x1)F1(t, x1)

4∏
i=3

S1(t, xi)F1(t, xi)

))]

+ 1

υ

∫
Rν×Rν

dx3 �3(t, x1, x2, x3)

[ 3∏
i=1

S1(t, xi)F1(t, xi)

− 1

υ

2∏
i=1

S1(t, xi)F1(t, xi)

∫
Rν×Rν

dx4 S1(t, x3) �2(t, x3, x4)

×
4∏

i=3

S1(t, xi)F1(t, xi)

− 1

υ

3∏
i=2

S1(t, xi)F1(t, xi)

∫
Rν×Rν

dx4 S1(t, x1) �2(t, x1, x4)

× S1(t, x1)F1(t, x1)S1(t, x4)F1(t, x4)

− 1

υ
S1(t, x1)F1(t, x1)S1(t, x3)F1(t, x3)

×
∫

Rν×Rν

dx4 S1(t, x2) �2(t, x2, x4)S1(t, x2)F1(t, x2)S1(t, x4)F1(t, x4)

]

+ 1

υ2

1

2!

∫
R2ν×R2ν

dx3dx4 �4(t, x1, x2, x3, x4)

4∏
i=1

S1(t, xi)F1(t, xi) + · · · .

In terms of the operators Ŝt
2(x1, x2), �̂|Xi |(t, Xi) we obtain

F2(t, x1, x2|F1(t))

=
[
Ŝt

2(x1, x2)

2∏
i=1

F1(t, xi)

− 1

υ

(
Ŝt

2(x1, x2)

∫
Rν×Rν

dx3 �̂2(t, x1, x3)

3∏
i=1

F1(t, xi)

+ Ŝt
2(x1, x2)

∫
Rν×Rν

dx3 �̂2(t, x2, x3)

3∏
i=1

F1(t, xi)

)

+ 1

υ2

(
Ŝt

2(x1, x2)

∫
R2ν×R2ν

dx3dx4

(
�̂2(t, x2, x3) �̂2(t, x3, x4)

4∏
i=1

F1(t, xi)

+ �̂2(t, x2, x3) �̂2(t, x2, x4)

4∏
i=1

F1(t, xi)
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− 1

2!
�̂3(t, x2, x3, x4)

4∏
i=1

F1(t, xi)

)

+ Ŝt
2(x1, x2)

∫
Rν×Rν

dx3 �̂2(t, x1, x3)

∫
Rν×Rν

dx4 �̂2(t, x2, x4)

4∏
i=1

F1(t, xi)

+ Ŝt
2(x1, x2)

∫
Rν×Rν

dx3 �̂2(t, x2, x3)

∫
Rν×Rν

dx4 �̂2(t, x1, x4)

4∏
i=1

F1(t, xi)

+ Ŝt
2(x1, x2)

∫
R2ν×R2ν

dx3dx4

(
�̂2(t, x1, x3)�̂2(t, x3, x4)

4∏
i=1

F1(t, xi)

+ �̂2(t, x1, x3) �̂2(t, x1, x4)

4∏
i=1

F1(t, xi)

− 1

2!
�̂3(t, x1, x3, x4)

4∏
i=1

F1(t, xi)

))]

+
[

1

υ

∫
Rν×Rν

dx3 �̂3(t, x1, x2, x3)

3∏
i=1

F1(t, xi)

− 1

υ2

(∫
Rν×Rν

dx3 �̂3(t, x1, x2, x3)

∫
Rν×Rν

dx4 �̂2(t, x3, x4)

4∏
i=1

F1(t, xi)

+
∫

Rν×Rν

dx3 �̂3(t, x1, x2, x3)

∫
Rν×Rν

dx4 �̂2(t, x1, x4)

4∏
i=1

F1(t, xi)

+
∫

Rν×Rν

dx3 �̂3(t, x1, x2, x3)

∫
Rν×Rν

dx4 �̂2(t, x2, x4)

4∏
i=1

F1(t, xi)

)]

+ 1

υ2

1

2!

∫
R2ν×R2ν

dx3dx4 �̂4(t, x1, x2, x3, x4)

4∏
i=1

F1(t, xi) + · · · .

In the representation of the functional F2(t, x1, x2|F1(t)) we collect the
terms of the same order in the density 1

υ
. This yields the more compact form:

F2(t, x1, x2|F1(t))

= Ŝt
2(x1, x2)

2∏
i=1

F1(t, xi)

+ 1

υ

∫
Rν×Rν

dx3

[
−Ŝt

2(x1, x2)
(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

)
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+ �̂3(t, x1, x2, x3)

] 3∏
i=1

F1(t, xi)

+ 1

υ2

∫
R2ν×R2ν

dx3dx4

[(
�̂2(t, x1, x4) + �̂2(t, x2, x4) + �̂2(t, x3, x4)

)

× Ŝt
2(x1, x2)

(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

) − �̂3(t, x1, x2, x3)

− 1

2!
Ŝt

2(x1, x2)
(
�̂3(t, x1, x3, x4) + �̂3(t, x2, x3, x4)

)

+ 1

2!
�̂4(t, x1, x2, x3, x4)

] 4∏
i=1

F1(t, xi) + · · · .

Denote

�̆(1)(t) = −Ŝt
2(x1, x2)

(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

) + �̂3(t, x1, x2, x3),

�̆(2)(t) = (
�̂2(t, x1, x4) + �̂2(t, x2, x4) + �̂2(t, x3, x4)

)
× Ŝt

2(x1, x2)
(
�̂2(t, x1, x3) + �̂2(t, x2, x3)

) − �̂3(t, x1, x2, x3)

− 1

2!
Ŝt

2(x1, x2)
(
�̂3(t, x1, x3, x4) + �̂3(t, x2, x3, x4)

)

+ 1

2!
�̂4(t, x1, x2, x3, x4)

and so on. Then we obtain
(24)

F2(t, x1, x2|F1(t))

= Ŝt
2(x1, x2)

2∏
i=1

F1(t, xi)

+ 1

υ

∫
Rν×Rν

dx3 �̆(1)(t)

3∏
i=1

F1(t, xi)

+ 1

υ2

∫
R2ν×R2ν

dx3dx4 �̆(2)(t)

4∏
i=1

F1(t, xi) + · · ·

= Ŝt
2(x1, x2)

2∏
i=1

F1(t, xi)

+
∞∑

n=1

1

υn

∫
Rνn×Rνn

d(X \ {x1, x2}) �̆(n)(t, X{x1,x2})
n+2∏
i=1

F1(t, xi).
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We call equation (21) the generalized kinetic equation.
In view of estimate (5) and Theorem 4.1 the functional series in (17), and,

more generally, the functional series for F|Y |(t, Y |F1(t)) converges with re-
spect to the norm of the space L1(Rνs × Rνs), i.e., these functionals exist.

We omit, here, for the sake of conciseness, to write the explicit form of the
n-th approximation �̆(n)(t) in (17), since, to the aims of the present paper we
only need the strong convergence of series (17).

6. The existence theorem for the generalized kinetic equation

The next theorem follows directly from Theorems 3.1 and 4.1.

Theorem 6.1. Let υ, R, and r be strictly positive real numbers, and let x

and z, 0 < z < 1, be solutions to the equations

ex

1 − x
= 2R + r

R + r
, and ez · 1 + z − z2

(1 − z)2
= 2

respectively. Suppose that F1(0) ∈ S(F 0
1 , R) ⊂ L1

0(R
ν × Rν) and

1

υ
<

1

R + r
min{x, z}.

Then there exist a unique strong, global in time, solution of the Cauchy problem
for equation (21), which is given by strongly convergent series (15).

7. Conclusion

For low densities the Cauchy problem (1), (2) for the BBGKY hierarchy of
equations with initial data satisfying the factorization property is reduced to
the corresponding initial value problem for the generalized kinetic equation
(21).

Thus, the generalized kinetic equation in explicit form is obtained for sym-
metric system of many particles interacting via a pair potential by using a
solution of the Cauchy problem for the BBGKY hierarchy in the form of
cumulant representation.
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