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ON WEIGHTED BOCHNER-MARTINELLI
RESIDUE CURRENTS

ELIZABETH WULCAN∗

Abstract
We study the weighted Bochner-Martinelli residue current Rp(f ) associated with a sequence
f = (f1, . . . , fm) of holomorphic germs at 0 ∈ Cn, whose common zero set equals the origin,
and p = (p1, . . . , pm) ∈ Nm. Our main results are a description of Rp(f ) in terms of the Rees
valuations of the ideal generated by (f

p1
1 , . . . , f

pm
m ) and an explicit description of Rp(f ) when

f is monomial. For a monomial sequence f we show that Rp(f ) is independent of p if and only
if f is a regular sequence.

1. Introduction

Let f = (f1, . . . , fm) be a sequence of germs of holomorphic functions at 0 ∈
Cn, such that V (f ) := {f1 = · · · = fm = 0} = {0}. If f is a regular sequence,
that is, m = n, then there is a canonical residue (current) associated with f

– the Grothendieck residue Res
( •

f1...fm

)
, see [12], and its current avatar, the

Coleff-Herrera product RCH(f ) = ∂̄[1/f1] ∧ · · · ∧ ∂̄[1/fm], introduced in [9].
In [19] Passare-Tsikh-Yger constructed residue currents based on the Bochner-
Martinelli kernel as a natural generalization of the Coleff-Herrera product. This
idea is further developed in [6], where Berenstein-Yger introduced weighted
Bochner-Martinelli residue currents.

Let p = (p1, . . . , pm) ∈ Nm and let f p denote the sequence (f
p1
1 , . . . , f

pm
m );

here N denotes the natural numbers 1, 2, . . . . For each ordered multi-index
I = {i1, . . . , in} ⊆ {1, . . . , m} let

(1.1) R
p

I (f )

= ∂̄|f p|2λ ∧ cn

n∑
�=1

(−1)�−1
f̄i� |fi� |2(pi�

−1)
∧′

q �=� ∂̄(f̄iq |fiq |2(piq −1))

|f p|2n

∣∣∣∣
λ=0

,

where cn = (−1)n(n−1)/2(n − 1)!, |f p|2 = |f p1
1 |2 + · · · + |f pm

m |2,
∧′ denotes

increasing order in q in the wedge product, and α|λ=0 denotes the analytic con-
tinuation of the form α to λ = 0. Moreover, let Rp(f ) denote the vector-valued
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current with entries R
p

I (f ); we will refer to this as the Bochner-Martinelli
residue current of weight p associated with f . Then Rp(f ) is a well-defined
(0, n)-current with support at the origin and gR

p

I (f ) = 0 if g is a holomorphic
function that vanishes at the origin. It follows that the coefficients of the R

p

I (f )

are just finite sums of holomorphic derivatives at the origin. If p = (1, . . . , 1),
then Rp(f ) is the Bochner-Martinelli residue current associated with f , in-
troduced in [19]; we denote it by R(f ) and its entries by RI (f ). Note that, in
fact,

(1.2) R
p

I (f ) = f
pi1 −1
i1

. . . f
pin −1
in

RI (f p).

Indeed, the sequence f p in the factor ∂̄|f p|2λ in (1.1) can be replaced by any
sequence of functions that vanish at the origin.

Let O n
0 be the local ring of germs of holomorphic functions at 0 ∈ Cn. Given

a germ of a current μ at 0 ∈ Cn, let ann μ denote the (holomorphic) annihilator
ideal of μ, that is, ann μ = {h ∈ O n

0 , hμ = 0}. Our first result concerns
ann Rp(f ). Let �(f ) denote the ideal generated by the fi in O n

0 . Recall that
h ∈ O n

0 is in the integral closure of �(f ), denoted by �(f ), if |h| ≤ C|f |, for
some constant C. Moreover, recall that �(f ) is a complete intersection ideal
if it can be generated by n = codim V (f ) functions. Note that this condition
is slightly weaker than that f is a regular sequence. Also, recall that, given
ideals �, � ⊆ O n

0 , the colon ideal �: � is the ideal �: � = {h ∈ O n
0 : h� ⊆ �}.

We also provide a characterization of the non-vanishing entries of Rp(f ).
Let π : X → (Cn, 0) be a log-resolution of �(f ), see [16, Def. 9.1.12].
Following [15] we say that a multi-index I = {i1, . . . , in} is essential with
respect to f if there is an exceptional prime E ⊆ π−1(0) of X such that the
mapping [fi1 ◦ π : . . . : fin ◦ π ] : E → CPn−1 is surjective and moreover
ordE(fik ) ≤ ordE(f�) for 1 ≤ k ≤ n, 1 ≤ � ≤ m, see Section 2 and also [15,
Section 3] for details. The valuations ordE that satisfy this are precisely the
Rees valuations of �(f ). We say that I is p-essential if it is essential with
respect to f p. For h ∈ O n

0 , let (h) denote the ideal generated by h.

Theorem A. Suppose that f is a sequence of germs of holomorphic func-
tions at 0 ∈ Cn, such that V (f ) = {0}. Let Rp(f ) be the corresponding
Bochner-Martinelli residue current of weight p. Then the entry R

p

I (f ) �≡ 0 if
and only if I is p-essential. Moreover

(1.3)
⋂

I p-essential

�(f p)n: (f
pi1 −1
i1

. . . f
pin −1
in

) ⊆ ann Rp(f ) ⊆ �(f ).

The left inclusion in (1.3) is strict whenever n ≥ 2. If the right inclusion is an
equality, then �(f ) is a complete intersection ideal.
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The new results in Theorem A are the characterization of the non-vanishing
entries and the last two statements. Berenstein-Yger [6] showed that
�(f p)n: (f

pi1
i1

. . . f
pin

in
) ⊆ ann R

p

I (f ), and it is easy to see from Andersson’s
construction of residue currents in [1] that the right inclusion in (1.3) holds. In
fact, Berenstein-Yger defined currents R

p

I (f ) also when dim V (f ) > 0. The
inclusions in (1.3) hold true also in this case, and one can replace the leftmost

ideal by
⋂

I ={i1,...,iμ} �(f p)μ: (f
pi1 −1
i1

. . . f
piμ −1
iμ

), where μ = min(m, n).

Also, for R(f ) = R(1,...,1)(f ) Theorem A was proved in parts in [19],
[1], and [15]. If f is a regular sequence, then the only entry R{1,...,m}(f )

of R(f ) coincides with the Coleff-Herrera product RCH(f ), whose annihil-
ator ideal is precisely �(f ), see [10], [18]. This should be compared to [12,
Chapter 5.1] where Res

( •
f1...fm

)
is defined using the Bochner-Martinelli kernel.

The idea of regarding (complete intersection) ideals of holomorphic functions
as the annihilator ideals of certain residue currents is central for many applic-
ations, see, for example, [7]. For p = (1, . . . , 1), the inclusions (1.3) read
�(f )n ⊆ ann R(f ) ⊆ �(f ), which gives a direct proof of the Briançon-Skoda
Theorem [8]: �(f )n ⊆ �(f ). For other applications of Bochner-Martinelli
residue currents, see for example [3], [4], and [22].

Weighted Bochner-Martinelli residue currents were introduced in [6] as a
tool to construct Green currents but also as a natural extension of Bochner-
Martinelli residue currents in the spirit of Lipman [17]; the currents have been
further studied in [5] and [24]. In the monograph [17] not only the residue
Res

( •
f1...fm

)
associated with a sequence f plays a role but also residues of the

form Res
( f

p1−1
1 ...f

pm−1
m •

f
p1
1 ...f

pm
m

)
. The currents Rp(f ) can thus be seen as analogues of

these residues. Iff is a regular sequence, then Res
(f

p1−1
1 ...f

pm−1
m •

f
p1
1 ...f

pm
m

) = Res
( •

f1...fm

)
,

which in current language reads

(1.4) f
p1−1
1 . . . f pm−1

m RCH(f p) = RCH(f ).

It follows that Rp(f ) is independent of p if f is a regular sequence. In general,
however, Rp(f ) depends in an essential way on p; the set of non-vanishing
entries as well as ann Rp(f ) depend on p, see Sections 4 and 5. Proposition 5.1
asserts that if f is monomial, then Rp is independent of p if and only if f is
a regular sequence. This motivates the following question.

Question B. Suppose that f = (f1, . . . , fm) is a sequence of germs of
holomorphic functions at 0 ∈ Cn. Let Rp(f ) be the Bochner-Martinelli residue
current of weight p. Is it true that Rp(f ) is independent of p if and only if f

is a regular sequence?
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Question B could be asked also for ann Rp(f ): is it true that ann Rp(f ) is
independent of p if and only if f is a regular sequence?

Lemma 1.2 in [6] asserts that

(1.5)
∑

I ={i1,...,in}⊆{1,...,m}
R

p

I (f ) ∧ dfin ∧ · · · ∧ dfi1/(2πi)n = ep(f )[0],

where ep(f ) is a positive number; in fact each term in (1.5) is a positive
current with support at the origin, see Lemma 3.1. Andersson [2] showed that
e(1,...,1)(f ) is the Hilbert-Samuel multiplicity of the ideal �(f ). In general
ep(f ) depends on p, see Example 4.4, but it can also happen that ep(f ) is
independent of p even if ann Rp(f ) and Rp(f ) vary with p, as shown in
Example 5.5.

In general it is hard to compute Rp(f ), as well as ann Rp(f ) and ep(f ).
However, if the fj are monomials we can give an explicit description of
Rp(f ) based on [23, Thm. 3.1]. For A = {a1, . . . , am} ⊆ Zn, let zA de-

note the sequence of monomials za1
, . . . , zam

, where zaj = z
a

j

1
1 · · · za

j
n

n if
aj = (a

j

1 , . . . , a
j
n). Moreover, for p ∈ Nm, let pA denote the set pA =

{p1a
1, . . . , pmam} ⊆ Zn. Given a holomorphic function g we will use the nota-

tion ∂̄[1/g] for the value at λ = 0 of ∂̄|g|2λ/g, a priori defined for Re λ  0,
and analogously by [1/g] we will mean |g|2λ/g|λ=0, that is, the principal value
of 1/g.

Theorem C. Suppose that zA is a sequence of germs of holomorphic
monomials at 0 ∈ Cn, such that V (zA) = {0}. Let Rp(zA) be the corres-
ponding Bochner-Martinelli residue current of weight p. Then

(1.6) R
p

I (zA) = sgn(AI )CI ∂̄

[
1

z
αI

1
1

]
∧ · · · ∧ ∂̄

[
1

z
αI

n
n

]
;

here sgn(AI ) is the sign of the determinant of the matrix with rows ai1 , . . . , ain ,
we have CI > 0 if I is p-essential, and CI = 0 otherwise, and (αI

1 , . . . ,

αI
n ) = αI = ∑

j∈I aj .

In particular, Theorem C implies that

ann Rp(zA) =
⋂

I p-essential

(z
αI

1
1 , . . . , z

αI
n

n ).

In Section 2 we provide some background on Rees valuations, whereas the
proof of Theorem A occupies Section 3. In Section 4 we focus on the case
when f is monomial; we prove Theorem C and compute the coefficients CI
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in some special cases. Finally, in Section 5 we discuss Question B and some
related questions.

2. Rees valuations and essential multi-indices

Let f = (f1, . . . , fm) be a sequence of germs of holomorphic functions at
0 ∈ Cn, such that V (f ) = {0}. The Rees valuations of �(f ) are defined in
terms of the normalized blowup ν : X+ → (Cn, 0) of �(f ), see [13, Ch. II.7].
Since V (�) = {0}, ν is an isomorphism outside 0 ∈ Cn and ν−1(0) is the union
of finitely many prime divisors E ⊆ X+. The Rees valuations of �(f ) are
then the associated divisorial valuations ordE on O n

0 : ordE(g) is the order of
vanishing of ν∗g along E.

Let π : X → (Cn, 0) be a log-resolution of �(f ), see [16, Def. 9.1.12].
Then, in fact, a divisorial valuation ordE is a Rees valuation of �(f ) if and
only if the image of the prime divisor E ⊆ π−1(0) under the rational mapping
� = [f1 ◦ π : . . . : fm ◦ π ] : X ��� CPm−1 is of (maximal) dimension n − 1,
see [20, p. 332].

Consider a multi-index I = {i1, . . . , in} ⊆ {1, . . . , m}. Let πI : CPm−1 \
WI → CPn−1, where WI := {wi1 = . . . = win = 0} ⊆ CPn, be the projection
[w1 : . . . : wm] �→ [wi1 : . . . : win ]. Following [15] we say that I is
essential with respect to E (and the sequence f ) if �(E) �⊆ WI and the
mapping πI ◦ � : E ��� CPn−1 is surjective; in particular, ordE(fi1) = . . . =
ordE(fin) = ordE(�). Moreover we say that I is essential (with respect to f )
if I is essential with respect to at least one exceptional prime. Furthermore
we say that I is p-essential with respect to E (and f ) if I is essential with
respect to the divisor E and the sequence f p, and that I is p-essential (with
respect to f ) if I is essential with respect to the sequence f p.

Observe that if I is p-essential with respect to E, then ordE must be a Rees
valuation of �(f p). Conversely, if ordE is a Rees valuation of �(f p), then
there exists at least one multi-index I , which is p-essential with respect to E.
However, note that I can be p-essential with respect to more than one divisor
E, and conversely there can be several multi-indices that are p-essential with
respect to a given E.

Recall that the integral closure of � ⊆ O n
0 can be defined in terms of the

Rees valuations of �. Indeed, h ∈ O n
0 is in � if and only if ordE(h) ≥ ordE(�)

for all Rees valuations ordE of �, see for example [16, Ex. 9.6.8].
Given a sequence f and a multi-index I = {i1, . . . , in}, let fI denote the

sequence (fi1 , . . . , fin).
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3. Proof of Theorem A

The proof of Theorem A is very much inspired by and based on (the proofs of)
Theorems A and B in [15] and it also uses Andersson’s construction of residue
currents in [1]. The following result is Theorem B and Lemma 4.3 in [15].

Lemma 3.1. RI (f ) �≡ 0 if and only if I is essential with respect to f .
Moreover RI (f ) ∧ dfin ∧ · · · ∧ dfi1/(2πi)n is a positive current and its mass
is strictly positive if and only if I is essential.

We first prove that R
p

I (f ) �≡ 0 precisely if I is p-essential. If I is not
p-essential, then RI (f p) = 0 by Lemma 3.1, and hence in light of (1.2)
R

p

I (f ) = 0. For the converse, note that

(3.1) R
p

I (f ) ∧ dfin ∧ · · · ∧ dfi1 = 1

pi1 . . . pin

RI (f p) ∧ df
pin

in
∧ · · · ∧ df

pi1
i1

by (1.2). Lemma 3.1 asserts that the right hand side of (3.1) is non-vanishing
if I is essential with respect to f p. Thus R

p

I (f ) �≡ 0 if I is p-essential.
The inclusion ann Rp(f ) ⊆ �(f ) follows from Andersson’s construction

of global Bochner-Martinelli residue currents based on the Koszul complex in
[1]. We provide (a sketch of) a proof for completeness.

We identify the sequence f = (f1, . . . , fm) with a holomorphic section of
the dual bundle V ∗ of a trivial rank m vector bundle V over some neighborhood
U of 0 ∈ Cn, endowed with the trivial metric. If {ei}mi=1 is a global holomorphic
frame for V and {e∗

i }mi=1 is the dual frame, we can write f = ∑m
i=1 fie

∗
i . Let

sp be the section sp = ∑m
i=1 f̄i |fi |2(pi−1)ei , and let

up =
∑

�

sp ∧ (∂̄sp)�−1

|f p|2�
.

Then up is a section of 	(V ⊕ T ∗
0,1(U)) (where ej ∧ dz̄i = −dz̄i ∧ ej ),

that is clearly well-defined and smooth outside V (f ) = {0}, and moreover
∂̄|f p|2λ ∧ up, has an analytic continuation as a current to Re λ > −ε, see
[1]. Note that the ein ∧ · · · ∧ ei1 -coefficient of R(up) := ∂̄|f |2λ ∧ up|λ=0 is
just the current R

p

I (f ), and thus in particular, ann R(up) = ann Rp(f ). Let
∇ = δf − ∂̄ : 	(V ⊕ T ∗

0,1(U)) → 	(V ⊕ T ∗
0,1(U)); here δf denotes interior

multiplication by f . Observe that ∇up = 1 outside V (f ). In [1] it was proved
if u is any section of 	(V ⊕ T ∗

0,1(U)) that is smooth and satisfies ∇u = 1
outside V (f ), then the corresponding current R(u) := ∂̄|f |2λ ∧u|λ=0 satisfies
that ann R(u) ⊆ �(f ). We conclude that ann Rp(f ) ⊆ �(f ).

Given a sequence of germs g1, . . . , gn ∈ O n
0 , let Jac(g) denote the Jacobian

determinant Jac(g) = ∣∣ ∂gi

∂zj

∣∣
1≤i,j≤n

. Note that dfin ∧· · ·∧dfi1 = ± Jac(fI )dzn∧
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· · · ∧ dz1. Thus in light of (3.1) and Lemma 3.1, Jac(fI ) ∈ ann R
p

I (f ) if and
only if R

p

I (f ) ≡ 0. Given this we can show that ann Rp(f ) = �(f ) implies
that �(f ) is a complete intersection ideal by following the proof of Theorem A
in [15, Section 5].

It remains to prove that the right inclusion in (1.3) is strict whenn ≥ 2. Given
a multi-index I = {i1, . . . , in}, let P(I ) = ∑n

j=1
1

pij

. Pick two multi-indices

I and J , such that P(I ) ≥ P(J ). We claim that then R
p

J (f )∧dfin ∧· · ·∧dfi1

either vanishes or is a positive pointmass at the origin.
Let π : X → (Cn, 0) be a log-resolution of �(f p). Then RJ (f p) is the

push-forward of a current R̃ on X, which has support on the exceptional primes
with respect to whom J is essential. More precisely, R̃ can be decomposed as
R̃ = ∑

R̃E , where the sum is over the exceptional primes E ⊆ X, such that
J is essential with respect to E, and R̃E has support on E, see [15, Section 6].

Let E1 be an exceptional prime, such that J is essential with respect to E1.
Then we can choose local coordinates σ on X, so that E1 = {σ1 = 0} and
R̃E1 is of the form ∂̄[1/σ

na1
1 ] ∧ [1/(σ

na2
2 . . . σ nan

n )] ∧ β, where β is a smooth
form and aj = ordEj

(f p), where Ej = {σj = 0}. Observe that for 1 ≤ � ≤ m,

π∗f p�

� is divisible by σ
aj

j and so π∗f� is divisible by σ
�aj /p��
j . It follows that

π∗(f pj1 −1
j1

. . . f
pjn −1

jn
)R̃E1 = ∂̄[1/σ

b1
1 ] ∧ [1/(σ

b2
2 . . . σ bn

n )] ∧ β,

where bj ≤ ajP (J ). A computation following [15, p. 2130] yields that

π∗(dfin ∧ · · · ∧ dfi1) = σ
c1−1
1 (σ

c2
2 . . . σ cn

n γ + σ1δ)dσ1 ∧ · · · ∧ dσn,

where cj ≥ ajP (I ) and γ and δ are holomorphic functions. Since, by as-

sumption, P(I ) ≥ P(J ), π∗(f pj1 −1
j1

. . . f
pjn −1

jn
)R̃E1 ∧ π∗(dfin ∧ · · · ∧ dfi1)

is of the form ∂̄[1/σ1] ∧ dσ1 ∧ β̃ = 2πi[E1] ∧ β̃, where β̃ is a smooth form.
Hence

R
p

J (f ) ∧ dfin ∧ · · · ∧ dfi1

=
∑
E

π∗
(
π∗(f pj1 −1

j1
. . . f

pjn −1
jn

)R̃E ∧ π∗(dfin ∧ · · · ∧ dfi1)
)

is a non-negative point mass at 0 and the claim is proved.
Now pick a p-essential multi-index I , for which P(I ) = max

J p-essential
P(J ).

Then the non-vanishing entries of Rp(f ) ∧ dfin ∧ · · · ∧ dfi1 are just point-
masses at the origin; in particular, Jac(fI )� ⊆ ann Rp(f ), where � denotes
the maximal ideal in O n

0 . Let E be an exceptional prime, such that I is p-
essential with respect to E. A direct computation gives that ordE(df

pi1
i1

∧· · ·∧
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df
pin

in
) = n ordE(f p) − 1 and ordE(dz1 ∧ · · · ∧ dzn) ≥ ∑n

i=1 ordE(zi) − 1.

Note that ordE(zk) ≥ 1 for 1 ≤ k ≤ n. Since df
pi1
i1

∧ · · · ∧ df
pin

in
=

pi1 . . . pinf
pi1 −1
i1

. . . f
pin −1
in

Jac(fI )dz1 ∧ · · · ∧ dzn it follows that

ordE(zkf
pi1 −1
i1

. . . f
pin −1
in

Jac(fI )) ≤ n ordE(f p) − n + 1

= ordE �(f p)n − n + 1

for 1 ≤ k ≤ n. Here we have used that � is the set of all h ∈ O n
0 , that satisfy

ordE(h) ≥ ordE(�) for all Rees valuations ordE of �, see Section 2. Hence,
if n ≥ 2, there are elements, for example zk Jac(fI ), in ann Rp(f ) that are

not in �(f p)n: (f
pi1 −1
i1

. . . f
pin −1
in

). This proves that the first inclusion in (1.3)
is strict for n ≥ 2 and concludes the proof of Theorem A.

4. The monomial case

Let zA = (za1
, . . . , zam

) be a sequence of germs of monomials in O n
0 . Recall

that the Newton polyhedron NP(A) is defined as the convex hull in Rn of the
set of exponents of monomials in �(zA). The Rees valuations of �(zA) are
monomial and in one-to-one correspondence with the compact facets (faces
of dimension n − 1) of NP(A). More precisely, the facet τ with normal vector
ρ = (ρ1, . . . , ρn) corresponds to the monomial valuation ordτ (z

a1
1 . . . zan

n ) =
ρ1a1 + · · · + ρnan, see for example [14, Thm. 10.3.5]. Given a multi-index
I = {i1, . . . , in}, let AI denote the set {ai1 , . . . , ain} ⊆ A so that zAI is
the sequence zai1

, . . . , zain . Moreover, let det(AI ) denote the determinant of
the matrix with rows ai1 , . . . , ain . It follows that a multi-index I is essential
with respect to Eτ precisely if AI is contained in τ and det(AI ) �= 0; here
Eτ denotes the exceptional prime associated with τ . This means that I is p-
essential if and only if pAI := {pi1a

i1 , . . . , pina
in} is contained in a facet of

NP(pA) and det(AI ) �= 0.
Observe that if V (zA) = {0}, then zA is regular precisely if m = n and zaj

is
of the form z

bj

j (possibly after reordering the variables). Moreover, recall that
the integral closure of �(zA) is the monomial ideal generated by monomials
with exponents in NP(A), see for example [20].

Let us illustrate Theorem C with some examples.

Example 4.1. Let zA be the sequence of monomials zA = (za1
, . . . , za4

) =
(z5

1, z
4
1z2, z

2
1z

2
2, z

3
2). Then NP(A) has just one compact facet and so �(zA) has

exactly one Rees valuation, which is the monomial valuation ordE given by
ordE(z

b1
1 z

b2
2 ) = 3b1+5b2. Moreover the only essential multi-index with respect

to zA is {1, 4} and so Theorem C asserts that R(zA) = Rp(zA), where p =
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r4a4

r3a3

r2a2

r1a1

a3 � q3a3

q4a4

q2a2

q1a1

a4

a2 a1

Figure 1. The Newton polytopes of the sequences zA (light grey), zqA

(medium grey), and zrA (dark grey) in Example 4.1.

(1, 1, 1, 1), has one non-vanishing entry R{1,4}(zA) = C{1,4}∂̄
[

1
z5

1

] ∧ ∂̄
[

1
z3

2

]
and

ann R(zA) = (z5
1, z

3
2).

Let q = (2, 2, 1, 3). Then NP(qA) has two compact facets, so that �(zqA) =
(z10

1 , z8
1z

2
2, z

2
1z

2
2, z

9
2) has two Rees valuations: ordE1(z

b1
1 z

b2
2 ) = b1 + 4b2 and

ordE2(z
b1
1 z

b2
2 ) = 7b1 + 2b2. Moreover there are two q-essential multi-indices,

{1, 3} and {3, 4}, corresponding to E1 and E2, respectively. It follows from
Theorem C that ann Rq(zA) = (z7

1, z
2
2) ∩ (z2

1, z
5
2) = (z7

1, z
2
1z

2
2, z

5
2). Note that

ann Rp �⊆ ann Rq and ann Rq �⊆ ann Rp, which illustrates that in general
no relation between the weights p and q is reflected in the relation between
ann Rp(zA) and ann Rq(zA). One can check that by varying the weight p

one gets all together 9 different annihilator ideals. Let us consider one more
example. Let r = (3, 3, 4, 5). Then NP(rA) has one compact facet, so that
�(zrA) has one Rees valuation. However, there are three r-essential multi-
indices, {1, 2}, {1, 4}, and {2, 4}, and ann Rr(zA) = (z9

1, z2)∩(z5
1, z

3
2)∩(z4

1, z
4
2).

In Figure 1 we have drawn NP(pA) and also marked the elements in pA, for
the weights p, q, and r .

Note that z(q1−1)a1
z(q3−1)a3 = z5

1 and z(q3−1)a3
z(q4−1)a4 = z6

2. It follows that
for the weight q the leftmost ideal in (1.3) is given by (z15

1 , z11
1 z2, z

7
1z

2
2, z

3
1z

3
2,

z2
1z

5
2, z1z

9
2, z

12
2 ) and so one sees directly that the left inclusion in (1.3) is strict

in this case. In Figure 2 the three ideals in (1.3) are depicted for weights p,
q, and r . Note that ann Rp(zA) is strictly included in �(zA) is all three cases.
Also note that �(zA)2 �⊆ ann Rr(zA), which shows that it is not true in general
that �(f )n ⊆ ann Rp(f ).
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p rq

Figure 2. The exponent sets of the ideals �(zA) (light grey), ann Rp(zA) (medium grey)

and
⋂

(zA)2 : (z(pi1 −1)ai1
z(pi2 −1)ai2

) (dark grey) for weights p, q, and r in Example 4.1.

Example 4.2. Let zA = (z, z2). Then �(zA) is just the maximal ideal
� ⊆ O 1

0 . Note that since n = 1 there is a unique Rees valuation associated with
�(zA), namely the order of vanishing at the origin. For j ∈ N, let pj = (j, 1).
Then R(zA) = Rp1

(zA) = (
∂̄ [1/z] , 0

)
, Rp2

(zA) = (
∂̄ [1/z] , ∂̄

[
1/z2

])
, and

Rpj

(zA) = (
0, ∂̄

[
1/z2

])
for j ≥ 3. It follows that ann R = �, whereas

ann Rpj = �2 for j ≥ 2.

Example 4.2 shows that in general Rp(f ), as well as ann Rp(f ), depends
in an essential way on the particular sequence f and not only on the ideal
�(f ). Theorem A in [15] asserts that ann R(f ) = �(f ) if and only if �(f ) is a
complete intersection ideal. Theorem A says that the only if-direction of this
statement holds for any p, whereas Example 4.2 shows that the if-direction
fails in general. Moreover, in the monomial case R(f ) only depends on �(f )

and not on the particular sequence f . Question D in [15] asks whether it is
always true (as long as V (f ) = {0}) that ann R(f ) only depends on �(f ).

4.1. Proof of Theorem C

Theorem 3.1 in [23] states that if I is essential with respect to zA, then RI (f )

is of the form (1.6), where CI is a nonzero constant. Thus, using (1.2) and
(1.4), we conclude that the entries of Rp(f ) are of the form (1.6).

Assume that I is p-essential. Then by Lemma 3.1, (3.1) times 1/(2πi)n has

strictly positive mass. Note that dzain ∧ · · · ∧ dzai1 = det(AI )z
αI

1 −1
1 · · · zαI

n −1
n

dzn ∧ · · · ∧ dz1. Since ∂̄
[

1
z

] ∧ dz = 2πi[0], it follows that the left hand side
of (3.1) is equal to (2πi)nCI |det(AI )|[0], and so CI ≥ 0.

4.2. The coefficients CI

Given a sequence of monomials zA one can find a log-resolution XA → (Cn, 0)

of �(zA), where XA is a toric variety constructed from (the normal fan of)
NP(A), see [7, p. 82]. In [23] we computed R(zA) as the push-forward of a
certain current on XA. Assume that I is essential with respect to Eτ , where
τ is a facet of NP(A). According to [23, p. 381], the coefficient CI is of the
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form CI = ± 1
(2πi)n−1 (n − 1)!DI , where I is an integral of the form

I =
∫ ∏n−1

j=1 |tj |2(cj1+···+cjn−1)

∑�
k=1

∏n−1
j=1 |tj |2cjk

dt̄1 ∧ · · · ∧ dt̄n−1 ∧ dtn−1 ∧ · · · ∧ dt1,

for some n ≤ � ≤ m and {cjk}1≤j≤n−1,1≤k≤�, and D is the determinant of the
matrix with entries {djk}1≤j,k≤n, where djk = cjk if j ≤ n − 1 and dnk = 1.
The terms in the denominator correspond to the aj ∈ A that lie in τ ; in
particular, CI depends only on τ ∩ A. (Assuming that I = {1, . . . , n} and
that {a1, . . . , a�} are the exponents in τ , then, in the terminology of [23],
cjk = ρj · (bk − a0).) In general the integral I is hard to compute; compare to
(5.1).

Assume that � = n and that cjk = 0 unless j = k, possibly after rearranging
the variables tj . Then

I =
∫ ∏n−1

j=1 |tj |2(cj −1)

(
1 + ∑n−1

j=1 |tj |2cj
)n dt̄1 ∧ · · · ∧ dt̄n−1 ∧ dtn−1 ∧ · · · ∧ dt1,

where cj just denotes cjj . A direct computation gives that

∫ |s|2(N−1)

(1 + |s|2N)p
ds̄ ∧ ds = 2πi

1

p − 1

1

N
,

which implies that I = (2πi)n−1

(n−1)!
1

c1···cn−1
. Moreover D = c1 · · · cn−1, and since

CI ≥ 0, we conclude that CI = 1.
The assumption that � = n is satisfied precisely if I is the unique multi-

index that is essential with respect to a certain Rees valuation. The assumption
that cjk = 0 for j �= k is for example satisfied if the normal fan of NP(A) is
regular, see [11]. It is also satisfied if n = 2.

Given a facet τ of NP(A), let det(τ ) be the normalized volume, that is, n!
times the Euclidean volume, of the convex hull of τ and the origin in Rn. If
τ is simplicial with vertices b1, . . . , bn, then det(τ ) is just (the absolute value
of) the determinant of the matrix with rows b1, . . . , bn. For n = 2 we have the
following description of the coefficients CI :

(4.1)
∑

AI ⊆τ

|det(AI )|CI = det(τ ).

To prove this, recall that if V (zA) = {0}, then the Hilbert-Samuel multiplicity
e(zA) of �(zA) equals the normalized volume Vol(Rn+ \NP(A)) of the comple-
ment in Rn+ of NP(A), see for example [21]. Observe that Vol(Rn+ \ NP(A)) =
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∑
det(τ ), where the sum runs over the facets τ of NP(A). Now (4.1) follows

in light of (1.5) and the fact that if I is essential with respect to Eτ , then CI

depends only on aj ∈ A ∩ τ .

Question 4.3. Does (4.1) hold also when n > 2?

Example 4.4. Let zA and p, q, and r be as in Example 4.1, and let s =
(2, 1, 1, 2). From [2] we know that ep(zA) is the Hilbert-Samuel multiplicity
of �(zA). Since there is only one essential multi-index with respect to zA we
can also compute this directly from (4.1). Indeed C{1,4} = 1 and so ep(zA) =
|det(A{1,4})| = 15.

Moreover, recall that �(zqA) has two Rees valuations and that there is one
q-essential multi-index associated with each divisor: {1, 3} and {3, 4}. Hence
C{1,3} = C{3,4} = 1 and so eq(zA) = |det(A{1,3})| + |det(A{3,4})| = 10 + 6 =
16, that is, the normalized area of the convex hull of a1 = (5, 0), a3 = (2, 2),
and a4 = (0, 3). Similarly �(zsA) has three Rees valuations and there is one
s-essential multi-index for each valuation; it follows that es(zA) = 17, see
Figure 3.

p q s

Figure 3. The multiplicities ep(zA), eq(zA), and es(zA) in Example 4.4.

Finally �(zrA) has one Rees valuation, but there are three r-essential multi-
indices. From (4.1) we know that C{1,2}|det(A{1,2})| + C{1,4}|det(A{1,4})| +
C{2,4}|det(A{2,4})| = |det(A{1,4})|, which means 5C{1,2}+15C{1,4}+12C{2,4} =
15. However, we cannot say more; in particular, we cannot determine er(zA).

5. Discussion of Question B

Theorem C allows us to give an affirmative answer to Question B in the
monomial case. Recall that if �(f ) is a complete intersection ideal, then �(f )

is, in fact, generated by n of the fj . This follows for example from Nakayama’s
Lemma.

Proposition 5.1. Suppose that zA = (zaj

)mj=1 is a sequence of germs of
holomorphic monomials at 0 ∈ Cn, such that V (zA) = {0}. Then Rp(zA) is
independent of p if and only if zA is a regular sequence.

Moreover, ann Rp(zA) is independent of p if and only if for each I =
{i1, . . . , in} ⊆ {1, . . . , m}, either zAI generates �(zA) or det(AI ) = 0.
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Note that the condition that either zAI generates �(zA) or det(AI ) = 0
is equivalent to that �(zA) is a complete intersection ideal, generated by say
z
b1
1 , . . . , zbn

n , and that moreover, for 1 ≤ j ≤ m, zaj

is equal to z
bk

k for some
1 ≤ k ≤ n.

Proof. First, note that the if-directions of the statements in Proposition 5.1
follow immediately from Theorem C. Thus we need to prove the only if-
directions.

Let I be a multi-index defined by that z
aij is of the form z

bj

j , where bj

is the smallest number such that z
bj

j is among the entries of zA. Without loss
of generality we may assume that I = {1, . . . , n}. Choose p ∈ Nm, so that
pi = 1 if i ≤ n and pi  1 otherwise. Then I is the unique p-essential
multi-index.

Assume that m > n and choose j , such that n < j ≤ m. Moreover, choose
q ∈ Nm such that aj lies in the one of the compact facets of NP(qA). For
example, let q be defined by qi = |a1|+· · ·+|ai−1|+|ai+1|+· · ·+|am|, where
|a�| = a�

1 + · · · + a�
n. Then j is contained in a q-essential multi-index, say J .

It follows that R
q

J (zA) �= 0, whereas R
p

J (zA) = 0. Hence Rp(zA) �= Rq(zA)

and we have proved the first part of Proposition 5.1.
Next, assume that there is an aj ∈ A such that zaj is not equal to any of

z
b1
1 , . . . , zbn

n . Since V (zA) = {0}, at least one of the entries of aj is positive, say
a

j

k > 0. Let J = {1, . . . , k − 1, k + 1, . . . , n, j}. Then det(AJ ) �= 0, which
means that we can find a weight q such that J is q-essential; for instance we
can take q as above. By assumption, a

j

k > bk or a
j

i > 0 for some i �= k. In
both cases, for some �, the �th entry of

∑
j∈J aj is strictly larger than the �th

entry of
∑

j∈I aj and thus ann R
q

J (zA) �⊇ ann R
p

I (zA). This proves the second
part of Proposition 5.1.

Observe that a necessary condition for Question B to be true would be
that the set of p-essential multi-indices is independent of p if and only if
f is a regular sequence. As we saw in the above proof this is true if f is
monomial, but we do not know if it holds in general. When f is monomial,
the essential multi-indices are rather special. For example, a multi-index can
be essential with respect to at most one Rees valuation, which is not the case
in general. Indeed, if m = n, then I = {1, . . . , n} is essential with respect
to all Rees valuations (and there can be more than one Rees valuation). The
following example illustrates another phenomenon, which does not occur in
the monomial case.

Example 5.2. Letf = (z4
1−z4

2, z
2
1z2, z1z

2
2). Then �(f )has three Rees valu-

ations, namely the monomial valuations ordE1(z
b1
1 z

b2
2 ) = b1 + b2,

ordE2(z
b1
1 z

b2
2 ) = 2b1+b2, ordE3(z

b1
1 z

b2
2 ) = b1+2b2, and {2, 3}, {1, 3} and {1, 2}
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are the unique essential multi-indices with respect to ordE1 , ordE2 , and ordE3 ,
respectively. Note that this situation cannot happen if fj are all monomials.

Let q = (1, 2, 2). Then �(f q) = (z4
1 − z4

2, z
4
1z

2
2, z

2
1z

4
2) has four Rees valu-

ations, ordE1 , . . . , ordE4 . To see this, note that after blowing up the origin once,
the strict transform of �(f q) has support at four points x1, . . . , x4. The divisor
Ej is obtained by further blowing up xj twice. A computation yields that {1, 2}
and {1, 3} are both q-essential with respect to Ej for 1 ≤ j ≤ 4, whereas {2, 3}
is not q-essential. Hence R(f ) �= Rq(f ).

Note that det(AI ) = 0 is equivalent to that dzai1 ∧ · · · ∧ dzain vanishes
identically, which in turn implies that I is not p-essential for any p ∈ Nm.
This motivates the following version of Question B.

Question B′. Is it true that ann Rp(f ) is independent of p if and only if
for any I = {i1, . . . , in}, either fI generates �(f ) or the form dfi1 ∧· · ·∧dfin

vanishes identically.

Let us mention some partial answers to Question B′. Theorem C in [15]
asserts that if �(f ) is a complete intersection ideal, then RI (f ) is a con-
stant times the Coleff-Herrera product RCH(fI ) if fI generates �(f ) and 0
otherwise. Using this and (1.4) one can check that ann Rp(f ) is independent
of p if �(f ) is a complete intersection ideal, generated by say f1, . . . , fn,
and moreover for j > n, fj is equal to (a constant times) one of the fk for
1 ≤ k ≤ n; compare this to (the discussion right after) Proposition 5.1.

Example 5.3. Let f = (z1, z2, z1+z2). Then �(f ) is just the maximal ideal
in O 2

0 , which is clearly a complete intersection ideal, and thus by Theorem C
in [15], ann R(f ) = �(f ). Note that any choice of fi and fj generate �(f ),
so f satisfies the condition in Question B′.

Let p = (3, 3, 3). Observe that �(f p) = (z3
1, z

3
2, z

2
1z2 + z1z

2
2) is not a

complete intersection ideal. A computation yields that

R{1,3}(f p) = A1∂̄[1/z5
1] ∧ ∂̄[1/z2]

+ A2∂̄[1/z4
1] ∧ ∂̄[1/z2

2] + A3∂̄[1/z3
1] ∧ ∂̄[1/z3

2],

for some constants A1, A2, and A3. It follows that R
p

{1,3}(f ) = (A1 + 2A2 +
A3)∂̄[1/z1] ∧ ∂̄[1/z2]. In fact, also the other entries of Rp are of this form and
so ann Rp = �(f ).

Note that if there is a subsequence fI = (fi1 , . . . , fin) of f such that
V (fI ) = {0}, then by choosing pj = 1 if j ∈ I and pj  1 for j /∈
I , the only non-vanishing entry of Rp(f ) is R

p

I (f ), which is a constant
times RCH(fI ). Thus, given that there exists such an fI , ann Rp(f ) is not
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independent of p as soon as, for example, there is another multi-index J ,
such that V (fJ ) = {0}, or as soon as ann R(f ) is not a complete intersection
ideal. One can, however, not always find such an fI , as the following example
shows.

Example 5.4. Let f = (f1, f2, f3) = (z1z2, z1(z1 + z2), z2(z1 + z2)).
Then V (fI ) is a line through the origin for all I = {i1, i2}; in particular,
V (fI ) �= {0}. Moreover, �(f ) is the (monomial) ideal �2, where � is the
maximal ideal in O 2

0 . Thus the only Rees valuation of �(f ) is the order of
vanishing at the origin and so R(f ) can be computed by blowing up the origin
once. Note that all multi-indices I = {i1, i2} are essential. Let R�,k denote the
current ∂̄[1/z�

1] ∧ ∂̄[1/zk
2], and let

(5.1) Cj = 1

2πi

∫ |t |2j dt̄ ∧ dt

(|t |2 + |1 + t |2 + |t (1 + t)|2)2
.

Then, a computation yields that R{1,2}(f ) = −C0R
3,1, R{1,3}(f ) = 2C2R

1,3,
and R{2,3}(f ) = C0R

3,1 + 2C1R
2,2 + C2R

1,3. It follows that ann R(f ) = �3.
Let p = (2, 1, 1). Then �(f p) has two Rees valuations, ordE1 and ordE2 ,

where E1 is the exceptional divisor obtained by blowing up the origin once,
whereas E2 is obtained by further blowing up a point on E1 twice. Moreover,
{2, 3} is essential with respect to E1 and {1, 2} and {1, 3} are essential with
respect to E2. A computation gives that Rp

{1,2}(f ) = R
p

{1,3}(f ) = −1/2(R3,1 −
R2,2 +R1,3) and R

p

{2,3}(f ) = A3,1R3,1 +A2,2R2,2 +A1,3R1,3, where Ai,j > 0.
Note that R

p

I (f ) �= RI (f ), as well as ann R
p

I (f ) �= ann RI (f ), for, at
least, I = {1, 2}, {1, 3}. Moreover, note that ann R(f ) is strictly included in
ann Rp(f ). Indeed, (A2,2 + A1,3)z2

1 + (A1,3 − A3,1)z1z2 − (A3,1 + A2,2)z2
2 ∈

ann Rp(f ) \ ann R(f ).

5.1. Related questions

Question B could be posed also for the currents (1.5). The following ex-
ample shows that ep(f ) does not necessarily vary with p even if Rp(f ) and
ann Rp(f ) do.

Example 5.5. Let zA = (z2
1, z1z2, z

2
2). Then by varying p there are three

different possibilities of p-essential multi-indices. First, all three multi-indices
I = {i1, i2} could be p-essential, which for example is the case for p =
(1, 1, 1). Next, for p = (1, 2, 1), {1, 3} is the only p-essential multi-index,
and for p = (2, 1, 1), the p-essential multi-indices are {1, 2} and {2, 3}. In
the first situation, by [2], ep(zA) is the Hilbert-Samuel multiplicity of �(zA),
which is equal to Vol(Rn+ \ NP(A)) = |det(A{1,3})| = 4. In light of (4.1) it is
not hard to check that this is holds true also if p is another weight such that



on weighted bochner-martinelli residue currents 33

all I are p-essential. In the latter two cases, by Section 4.2, the coefficients
CI are all 1, when I is p-essential. It follows that ep = |det(A{1,3})| = 4 and
ep = |det(A{1,3})| + |det(A{2,3})| = 2 + 2, respectively, so in fact ep(zA) is
independent of p.

One can also ask in what sense R
p

I (f ) and ann R
p

I (f ) depend on p, once I

is p-essential. In the monomial case ann R
p

I (f ) is fix as long as I is essential
but the coefficient CI in (1.6) vary in general. Indeed, in Example 5.5 above,
in the first case, for p = (1, 1, 1), CI are all strictly between 0 and 1, whereas
in the latter cases they are either 0 or 1. In general, also ann R

p

I (f ) varies with
p, see Example 5.4 above. Computations, such as in Example 5.4, suggest that
in general there may be infinitely many different annihilator ideals ann R

p

I (f )

and ann Rp(f ) as p varies over Nm. This contrasts the monomial case, where
there are always finitely many different ideals ann Rp(f ).
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