WEAK COMPACTNESS IN THE DUAL SPACE OF A JB*-TRIPLE IS COMMUTATIVELY DETERMINED

FRANCISCO J. FERNÁNDEZ-POLO and ANTONIO M. PERALTA*

Abstract
We prove the following criterium of weak compactness in the dual of a JB*-triple: a bounded set \(K \) in the dual of a JB*-triple \(E \) is not relatively weakly compact if and only if there exist a sequence of pairwise orthogonal elements \((a_n)\) in the closed unit ball of \(E \), a sequence \((\varphi_n)\) in \(K \), and \(\vartheta > 0 \) satisfying that \(|\varphi_n(a_n)| > \vartheta \) for all \(n \in \mathbb{N} \). This solves a question stimulated by the main result in [11] and posed in [9].

1. Introduction and Preliminaries
Relatively weakly compact subsets in the dual of a C*-algebra have been intensively studied during the last fifty years. The first precedent appears in a paper by A. Grothendieck in 1953 (see [15]). This forerunner establishes the following characterization of weak compactness in the dual of a \(C(\Omega) \)-space: a bounded subset \(K \subseteq C(\Omega)^* \) is not relatively weakly compact if and only if there exists a sequence \((O_n)\) of pairwise disjoint open subsets of \(\Omega \) such that \(\lim_{n \to \infty} \sup \{ |\mu(O_n)| : \mu \in K \} \neq 0 \). Urysohn’s lemma allows us to replace the \(O_n \)’s by norm-one positive continuous functions on \(\Omega \) with mutually disjoint supports.

When \(K \) is a bounded set in the predual of a von Neumann algebra \(M \), M. Takesaki [26] and C. Akemann [1] (see also [27, Theorem III.5.4]) proved that \(K \) is not relatively weakly compact if and only if there exists a sequence \((p_n)\) of pairwise orthogonal projections in \(M \) such that \(\lim_{n \to \infty} \sup \{ |\phi(p_n)| : \phi \in K \} \neq 0 \). That is, weak compactness in \(M^* \) is determined by the abelian subalgebras of \(M \). Consequently, relatively weakly compact subsets in the dual of a C*-algebra \(A \) are commutatively determined by the abelian subalgebras of \(A^{**} \).

In [24] H. Pfitzner showed that weak compactness in the dual of a C*-algebra \(A \) is in fact determined by the abelian subalgebras of \(A \). Concretely, a bounded set \(K \subseteq A^* \) fails to be relatively weakly compact if and only if there

* Authors partially supported by M.I.C. project no. MTM2008-02186, and Junta de Andalucía grants FQM0199 and FQM1215.

Received June 9, 2008; in final form October 15, 2008.
exist a positive θ, a sequence (a_n) of pairwise orthogonal positive elements in the closed unit ball of A and a sequence (φ_n) in K satisfying $|\varphi_n(a_n)| > \theta$, for every $n \in \mathbb{N}$ (compare [12] for a new and shorter proof).

C*-algebras belong to a more general class of complex Banach spaces in which the geometric, holomorphic, and algebraic structure mutually interplay. We are referring to the class of JB*-triples. We recall (see [21]) that a JB*-triple is a complex Banach space E equipped with a continuous triple product $\{ \cdot, \cdot, \cdot \} : E \times E \times E \to E$, which is symmetric and linear in the first and third variables, conjugate linear in the second variable and satisfies:

(i) (Jordan Identity) $L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y) - L(x, L(b, a)y)$, where $L(a, b)$ is the operator on E given by $L(a, b)x = \{ a, b, x \}$;

(ii) $L(a, a)$ is a hermitian operator with non-negative spectrum;

(iii) $\| L(a, a) \| = \| a \|^2$.

Every C*-algebra is a JB*-triple with respect to the product $\{ x, y, z \} = \frac{1}{2}(xy^*z + zy^*x)$, and every JB*-algebra is a JB*-triple under the triple product $\{ x, y, z \} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*$.

A JBW*-triple is a JB*-triple which is also a dual Banach space (with a unique isometric predual [3]). It is known that the second dual of a JB*-triple is a JBW*-triple (compare [8]). Further, the triple product of every JBW*-triple is separately weak*-continuous [3].

The above quoted results of Takesaki and Akemann were extended in [23] to characterize relatively weakly compact subsets in the predual of a JBW*-triple.

A JC*-triple is a norm-closed subspace of a C*-algebra which is closed under the ternary product $\{ x, y, z \} = \frac{1}{2}(xy^*z + zy^*x)$. JC*-triples form an intermediate class of complex Banach spaces between C*-algebras and JB*-triples. A criterium for weak compactness in the dual of a JC*-triple, which is also a generalization of Pfitzner’s result, was established in [11]. This criterium assures that a bounded subset in the dual space of a JC*-triple E is relatively weakly compact if and only if its restriction to any abelian maximal subtriple C of E is relatively weakly compact in the dual of C. However, as pointed out by C. M. Edwards in [9], “whether the results hold for general JB*-triples remains an open question”. The main result of this paper gives a positive answer to this question for general JB*-triples (see Theorem 2.3). The solution presented in this paper is itself a novelty which simplifies the results in [11] with a new and shorter orthogonalization process based on Bergmann operators.

Reference [6] is a basic forerunner of the problem studied in this paper. Briefly speaking, we could say [6] contains a partial answer for our problem in terms of Pelczynski’s Property (V). We recall that a series $\sum_{n \geq 1} z_n$ in a Banach space X is called weakly unconditionally convergent (w.u.c. for short)
if for each \(\varphi \in X^* \) we have \(\sum_{n=1}^{\infty} |\varphi(z_n)| < \infty \), equivalently, there exists \(C > 0 \) such that for any finite subset \(\mathcal{F} \subseteq \mathbb{N} \) and \(|\varepsilon_k| = 1 \) in \(C \) we have \(\| \sum_{k \in \mathcal{F}} \varepsilon_k z_k \| \leq C \), (see, for example, [7, Theorem 6 in Chapter 5]). It is clear that every bounded linear operator between Banach spaces preserves w.u.c. series. A Banach space \(X \) has property \((V)\) if for any (bounded) non relatively weakly compact set \(K \subseteq X^* \) there exists a w.u.c. series \(\sum_n x_n \) in \(X \) such that \(\sup_{\varphi \in X^*} |\varphi(x_n)| \) does not converge to zero. It is established in [6] that every JB*-triple satisfies property \((V)\). We shall see later that every bounded sequence of mutually orthogonal elements in a JB*-triple defines a w.u.c. series, however the reciprocal statement need not hold in general. We shall establish a new orthogonalization method to construct sequences of mutually orthogonal elements from w.u.c. series.

1.1. Preliminaries

Let \(X \) and \(Y \) be two Banach spaces, throughout the paper, the symbol \(L(X, Y) \) will stand for the space of all bounded linear operators from \(X \) to \(Y \). We shall write \(L(X) \) for the space \(L(X, X) \).

A JB*-triple \(E \) is said to be abelian if\(\{\{x, y, z]\}, u, v\} = \{\{x, y\}, \{z, u, v\}\} \), for all \(x, y, z, u, v \in E \). The JB*-subtriple generated by a single element is always abelian.

Let \(x \) be an element in a JB*-triple \(E \). Throughout the paper the symbol \(E_x \) will denote the norm-closed subtriple of \(E \) generated by \(x \). It is known that \(E_x \) is JB*-triple isomorphic to the \(C^* \)-algebra \(C_0(L) \) of all complex-valued continuous functions on \(L \) vanishing at 0, where \(L \) is a locally compact subset of \((0, \|x\|] \) satisfying that \(L \cup \{0\} \) is compact. Further, there exists a JB*-triple isomorphism \(\Psi : E_x \to C_0(L) \) which satisfies \(\Psi(x)(t) = t \), for all \(t \) in \(L \) (compare [20, 4.8] and [21, 1.15]). In particular, given a natural \(n \), the symbol \(x^{\frac{-1}{n+1}} \) makes sense as an element of \(E_x \cong C_0(L) \).

An element \(u \) in a JB*-triple \(E \) is said to be a tripotent if \(u = \{u, u, u\} \). Given a tripotent \(u \in E \), the mappings \(P_i(u) : E \to E_i, (i = 0, 1, 2) \), defined by

\[
P_2(u) = L(u, u)(2L(u, u) - \text{id}_E),
\]
\[
P_1(u) = 4L(u, u)(\text{id}_E - L(u, u)), \quad \text{and}
\]
\[
P_0(u) = (\text{id}_E - L(u, u))(\text{id}_E - 2L(u, u)),
\]

are contractive linear operators. For each \(j = 0, 1, 2 \), \(P_j(u) \) is the projection onto the eigenspace \(E_j(u) \) of \(L(u, u) \) corresponding to the eigenvalue \(\frac{j}{2} \) and

\[
E = E_2(u) \oplus E_1(u) \oplus E_0(u)
\]

is the Peirce decomposition of \(E \) relative to \(u \). Furthermore, the following
Peirce rules are satisfied,

\begin{align}
\{E_2(u), E_0(u), E \} &= \{E_0(u), E_2(u), E \} = 0, \\
\{E_i(u), E_j(u), E_k(u)\} &\subseteq E_{i-j+k}(u),
\end{align}

where $E_{i-j+k}(u) = 0$ whenever $i-j+k \notin \{0, 1, 2\}$ (compare [13]).

When W is a JBW*-triple, the JBW*-subtriple generated by a norm-one element $x \in W$ coincides with the weak*-closure, $\overline{W_x}^w$, of W_x. By [18, Lemma 3.11] there exists a JBW*-triple isomorphism, Ψ, between W_x and a commutative W^*-algebra C. We shall write $r(x) = \Psi^{-1}(1)$, where 1 denotes the unit element in C. It is clear that $r(x)$, commonly termed the range tripotent of x, is a tripotent in W. Moreover, $r(x)$ coincides with the weak*-limit of the sequence $x^{\frac{1}{n}}$, $(n \in \mathbb{N})$. It is also known that the JBW*-algebra $E_2^*(r(x))$ contains x as a positive element (compare [10]).

Given a JBW*-triple W, a norm-one element φ in W^* and a norm-one element z in W with $\varphi(z) = 1$, it follows from [2, Proposition 1.2] that the assignment

$$(x, y) \mapsto \varphi \{x, y, z\}$$

defines a positive sesquilinear form on W. Further, for every norm-one element w in W satisfying $\varphi(w) = 1$, we have $\varphi \{x, y, z\} = \varphi \{x, y, w\}$, for all $x, y \in W$. The mapping $x \mapsto \|x\|_\varphi := (\varphi \{x, x, z\})^{\frac{1}{2}}$, defines a prehilbertian seminorm on W. The Strong*-topology (noted by $S^*(W, W^*)$) is the topology on W generated by the family \{ $\|\cdot\|_\varphi : \varphi \in W^*, \|\varphi\| = 1$\}. This topology was introduced by T. J. Barton and Y. Friedman in [2].

When φ is an element in the dual of a JB*-triple E, the prehilbertian seminorm $\|\cdot\|_\varphi$ is defined on E^{**} (and hence on E) by the assignment

$$x \mapsto \|x\|_\varphi := (\varphi \{x, x, z\})^{\frac{1}{2}},$$

where z is a norm-one element in E^{**} with $\varphi(z) = \|\varphi\|$. The inequality

$$\|\{x, y, z\}\| \leq \|x\| \|y\| \|z\|$$

holds for every x, y and z in a JB*-triple E (compare [14, Corollary 3]). Consequently,

$$\|x\|_\varphi \leq \|\varphi\|^{\frac{1}{2}} \|x\|,$$

for all $\varphi \in E^*$ and $x \in E$.

For each element a in a JB*-triple E, the conjugate linear mapping $Q(a)$ from E to itself is defined, for each element b in E, by $Q(a)(b) := \{a, b, a\}$. Let x, y be two elements in E. The Bergmann operator $B(x, y) : E \rightarrow E$
is defined by $B(x,y)(z) = z - 2L(x,y)(z) + Q(x)Q(y)(z)$, for all z in E (compare [22] or [28, page 305]). In the particular case of u being a tripotent, it is known that $P_0(u) = B(u,u)$.

Let x be a symmetric element in a unital JB*-algebra A. The operator $U_x : A \to A$ is defined by $U_x(y) := 2(y \circ x) - x^2 \circ y$, for all y in A. When A is regarded as a JB*-triple, we have $U_x(y) = Q(x)(y^*)$, $\forall y \in A$. Since by [16, Lemma 2.4.21] $U_x^2 = U_x$, we deduce that $Q(x)^2(y) = U_x^2(y) = U_x(y) = Q(x^2)(y^*)$, $\forall y \in A$.

We also have $2L(x,x)(y) = 2(x^2 \circ y + (y \circ x) \circ x - (y \circ x) \circ x) = 2x^2 \circ y$, for all $y \in A$. Therefore, for each $y \in A$ we have

$$B(x,x)(y) = y - 2L(x,x)(y) + Q(x^2)(y) = Q(1 - x^2)(y^*),$$

which implies that $\|B(x,x)\| \leq 1$, whenever x belongs to the closed unit ball of A.

A tripotent u, in a JB*-triple E, is said to be bounded if there exists a norm-one element $x \in E$ such that $L(u,u)x = u$. The element x is a bound of u and in this case we write $u \leq x$. We shall write $y \leq u$ whenever y is a positive element in the JB*-algebra $E_2(u)$ (compare [11, pages 79–80]).

Lemma 1.1. Let x be a symmetric element in the closed unit ball of a JB*-algebra A. Then $B(x,x)$ is a contractive operator. Moreover, if p is a projection in A with $p \leq x$, then $B(x,x)(y)$ belongs to $A_0(p)$, for every y in A.

Proof. We may assume that A is unital. The comments preceding this lemma guarantee that $\|B(x,x)\| \leq 1$ and $B(x,x)y = Q(1 - x^2)(y^*)$, $(y \in A)$. Since $p \leq x^2 \leq 1$, we have $0 \leq 1 - x^2 \leq 1 - p$, and hence $1 - x^2$ belongs to $A_0(p)$. Finally, it follows, by Peirce rules, that $B(x,x)y \in A_0(p)$.

Lemma 1.1 above can be now extended to JB*-triples.

Lemma 1.2. Let E be a JB*-triple, e a tripotent in E, and x a norm-one element in E with $e \leq x$. Then $B(x,x)$ is a contractive operator and $B(x,x)(y)$ belongs to $E_0(e)$, for every y in E.

Proof. By [14, Corollary 1] we may suppose that E embeds as a subtriple into a JBW*-algebra, A, of the form $L(H) \oplus \ell^\infty N$, where H is a complex Hilbert space and N is an ℓ^∞-sum of finite-dimensional simple JB*-algebras. We may then assume that $e \leq x \leq r(x)$
in the JBW*-algebra A, where $r(x)$ is the range tripotent of x in A. From [4, Lemma 2.3] and [22, Corollary 5.12] there exists a weak*-continuous isometric triple embedding T from A into A, such that $T(r(x))$ (and hence $T(e)$) is a projection in A. It is easy to check that $0 \leq T(e) \leq T(x) \leq T(r(x))$. By Lemma 1.1, we have $T(B(x, x)(y)) = B(T(x), T(x))(T(y)) \in A_0(T(e))$, for every $T(y) \in T(E) \subseteq A$. Therefore, $B(x, x)(y) \in A_0(e) \cap E = E_0(e)$, for all $y \in E$.

Another central notion in the paper is the concept of orthogonality. Two elements a, b in a JB*-triple, E, are said to be orthogonal (written $a \perp b$) if $L(a, b) = 0$. Lemma 1 in [5] shows that $a \perp b$ if and only if one of the following statements holds:

$$\{a, a, b\} = 0; \quad a \perp r(b); \quad r(a) \perp r(b); \quad E_2^{**}(r(a)) \perp E_2^{**}(r(b));$$

$$r(a) \in E_0^{**}(r(b)); \quad a \in E_0^{**}(r(b)); \quad b \in E_0^{**}(r(a)); \quad E_a \perp E_b.$$

The Peirce rule (1) shows that for each tripotent u in a JB*-triple E, $E_0(u) \perp E_2(u)$. The Jordan identity and the above reformulations assure that

$$(3) \quad a \perp \{x, y, z\}, \quad \text{whenever} \quad a \perp x, y, z.$$

Let A be a C^*-algebra. Two elements $a, b \in A$ are said to be orthogonal for the C^*-algebra product if $ab^* = b^*a = 0$. However, A also enjoys a structure of JB*-triple. We have, a priori, two notions of orthogonality in A. It can be checked, from the above reformulations, that two elements a, b in A are orthogonal for the C^*-algebra product if and only if they are orthogonal when A is considered as a JB*-triple.

For every tripotent e in a JB*-triple E, the formula

$$\|P_2(e)(x) + P_0(e)(x)\| = \max\{\|P_2(e)(x)\|, \|P_0(e)(x)\|\},$$

holds for every x in E (compare [13, Lemma 1.3]). In particular, if $\{x_1, \ldots, x_m\}$ is a set of mutually orthogonal elements in a JB*-triple E, it follows from the above equivalent reformulations of orthogonality and the previous formula, that the JB*-subtriple generated by the set $\{x_1, \ldots, x_m\}$ coincides with the ℓ_∞-sum $\bigoplus_{k=1}^\infty E_{x_k}$ and hence it is JB*-triple isomorphic to an abelian C^*-algebra.

We deduce from the above paragraph that every bounded sequence of pairwise orthogonal elements in a JB*-triple defines a w.u.c. series.
2. Main result

The aim of this section is to prove that weak compactness in the dual of a JB*-triple is commutatively determined. Bergmann operators, wisely used, turn to be a powerful tool in orthogonalization processes. More concretely, we shall make use of appropriated Bergmann operators to orthogonalize weakly unconditional convergent series in JB*-triples.

Lemma 2.1. Let E be a JB*-triple, v a tripotent in E, and φ an element in the closed unit ball of E^*. Then for each $y \in E_2(v)$ with $\|y\| \leq 1$ we have

$$|\varphi(x - B(y, y)(x))| < 21 \|x\| \|v\| \varphi,$$

for every $x \in E$.

Proof. By Peirce rules we have $L(y, y)(x) \in E_2(v) \oplus E_1(v)$ and $Q(y)^2(x) \in E_2(v)$. Since $x - B(y, y)(x) = 2L(y, y)(x) - Q(y)^2(x)$, the desired statement follows from [11, Lemma 3.2].

We shall also need the following strengthening version of [11, Lemma 3.4].

Lemma 2.2. Let E be a JB*-triple, $\theta > 0$, $\delta_n > 0$ ($n \in \mathbb{N}$), and let $\{\varphi_1\} \cup \{\varphi_n\}_{n \geq 2}$ be a sequence of functionals in the closed unit ball of E^*. Given an element x in the closed unit ball of E, satisfying $|\varphi_1(x)| > \theta$ and $\|x\| \varphi_n < \delta_n$, $n \geq 2$, there exist two elements a, y in the unit ball of E_x, and two tripotents u, v in $(E_x)^{**}$ such that $a \leq u \leq y \leq v$, $|\varphi_1(a)| > \frac{3}{4} \theta$, and $\|v\| \varphi_n < \frac{8}{\theta} \delta_n$, $n \geq 2$.

Proof. We have already commented that E_x is JB*-triple isomorphic to the C*-algebra $C_0(L)$, where L is a locally compact subset of $(0, \|x\|)$ satisfying that $L \cup \{0\}$ is compact. Moreover, there exists a JB*-triple isomorphism $\Psi : E_x \to C_0(L)$ satisfying $\Psi(x)(t) = t$, for all t in L. By slight abuse of notation, E_x and $C_0(L)$ will be identified.

Let $a, y \in C_0(L)$ be the functions defined by

$$a(t) := \begin{cases} 0, & \text{if } 0 \leq t \leq \frac{\theta}{4} \\ 2t - \frac{\theta}{2}, & \text{if } \frac{\theta}{4} \leq t \leq \frac{\theta}{2} \\ t, & \text{if } \frac{\theta}{2} \leq t \leq \|x\| \end{cases}$$

$$y(t) := \begin{cases} 0, & \text{if } 0 \leq t \leq \frac{\theta}{8} \\ \frac{8}{\theta} (t - \frac{\theta}{8}), & \text{if } \frac{\theta}{8} \leq t \leq \frac{\theta}{4} \\ 1, & \text{if } \frac{\theta}{4} \leq t \leq \|x\|. \end{cases}$$
Since \(\|x - a\| < \frac{\theta}{4}\) and \(|\varphi_1(x)| > \theta\) it follows that \(|\varphi_1(a)| > \frac{3}{4}\theta\).

The element \(x\) decomposes as the sum of two orthogonal elements \(x = x\chi_{[\frac{\theta}{4}, \|x\|]} + x\chi_{[0, \frac{\theta}{4}]}\) (in \((E_x)^*\)). Since \(\|\cdot\|_{\varphi_n}\) is additive when applied to the sum of orthogonal elements, we get \(\|x\chi_{[\frac{\theta}{4}, \|x\|]}\|_{\varphi_n} < \delta_n\). We define \(a = x\chi_{[\frac{\theta}{4}, \|x\|]}\), \(v = x\chi_{[\frac{\theta}{4}, \|x\|]}\) (in \((E_x)^*\)), which clearly satisfy that \(a \leq u \leq y \leq v\).

Since \(\|\cdot\|_{\varphi}\) is an order-preserving map on the set of positive elements in \((E_x)^*\) ([11, Lemma 3.3]), we have that \(\|v\|\varphi_n \leq \|\frac{8}{\theta}x\chi_{[\frac{\theta}{4}, \|x\|]}\|_{\varphi_n} < \frac{8}{\theta}\delta_n\) \((n \geq 2)\), which finishes the proof.

Our main result can be stated now.

Theorem 2.3. Let \(E\) be a JB*-triple and \(K\) be a bounded subset in \(E^*\). The following are equivalent:

a) \(K\) is not relatively weakly compact.

b) There exist a sequence of pairwise orthogonal elements \((a_n)\) in the closed unit ball of \(E\), a sequence \((\varphi_n)\) in \(K\), and \(\vartheta > 0\) satisfying that \(|\varphi_n(a_n)| > \vartheta\) for all \(n \in \mathbb{N}\).

b′) There exists a subtriple \(C\) of \(E\) isometric to an abelian C*-algebra such that the restriction of \(K\) to it is not relatively weakly compact.

Proof. a) \(\Rightarrow\) b). Since JB*-triples have Pelczynski’s Property (V) (compare [6]) there exist \(\theta > 0\), \((\varphi_n) \subset K\) and a w.u.c. series \(\sum_{n \geq 1} z_n\) in \(E\) with \(\|z_n\| \leq 1\), such that \(|\varphi_n(z_n)| > \theta\), \(\forall n \in \mathbb{N}\). We may assume that \(K\) is contained in the closed unit ball of \(E^*\).

Let us fix a decreasing sequence \((\delta_n)\) of positive numbers satisfying \(\frac{336}{\theta} \sum_{n=1}^{\infty} \delta_n < \frac{\theta}{2}\). We shall construct, inductively, a sequence \((a_n)\) of mutually orthogonal elements in the closed unit ball of \(E\), infinite subsets \(N \supsetneq N_1 \supsetneq N_2 \supsetneq \cdots \supsetneq N_{n-1} \supsetneq N_n \supsetneq \cdots\) and a strictly increasing mapping \(\sigma: \mathbb{N} \to \mathbb{N}\) such that for each natural \(n\) there exists a w.u.c. series \(\sum_{k \in N_n} z_{n,k}\) in \(E\) with \(\|z_{n,k}\| \leq 1\),

\[
|\varphi_{\sigma(i)}(a_i)| > \frac{3}{8} \theta, \quad i = 1, \ldots, n,
\]

and

\[
|\varphi_k(z_{n,k})| > \theta - \frac{336}{\theta} \sum_{j=1}^{n} \delta_j > \frac{\theta}{2}, \quad k \in N_n.
\]

To define \(a_1\), choose \(j_1 \in \mathbb{N}\) with \(\frac{1}{j_1} < \frac{1}{C^2}\delta_1^2\), where \(C\) is the positive constant associated to the w.u.c. series \(\sum_{n \geq 1} z_n\) (see comments in the Introduction).
Since every Hilbert space is of cotype 2 (compare [25, page 32]) we have

\[
\frac{1}{j_1} \sum_{k=1}^{j_1} \|z_k\|_{\varphi_m}^2 \leq \frac{1}{j_1} \int_D \left\| \sum_{k=1}^{j_1} \varepsilon_k z_k \right\|_{\varphi_m}^2 \, d\mu
\]

\[
\leq \frac{1}{j_1} \int_D \|\varphi_m\| \left\| \sum_{k=1}^{j_1} \varepsilon_k z_k \right\|_{\varphi_m}^2 \, d\mu \leq \frac{C^2}{j_1} < \delta_1^2,
\]

where \(m \in \mathbb{N} \), \(D = \{-1, 1\}^n \), \(\varepsilon_k \in \{\pm 1\} \) and \(\mu \) is the uniform probability measure on \(D \). Since the above inequality is satisfied for every \(m \in \mathbb{N} \), there exist \(\sigma(1) \in \{1, \ldots, j_1\} \) and an infinite subset \(N_1 \subset \mathbb{N} \) such that \(\sigma(1) < \min N_1 \) and \(\|z_{\sigma(1)}\|_{\varphi_m} < \delta_1 \), for every \(m \in N_1 \).

Applying Lemma 2.2 to \(z_{\sigma(1)} \) and \(\{\varphi_{\sigma(1)}\} \cup \{\varphi_m\}_{m \in N_1} \) we obtain two elements \(a_1, y_1 \) in the closed unit ball of \(E_{\sigma(1)} \) and two tripotents \(u_1, v_1 \in E^{**} \) such that \(a_1 \leq u_1 \leq y_1 \leq v_1 \).

\[|\varphi_{\sigma(1)}(a_1)| > \frac{3}{4} \theta > \frac{3}{8} \theta, \quad \text{and} \quad \|v_1\|_{\varphi_m} < \frac{8}{\theta} \delta_1 < \frac{16}{\theta} \delta_1, \quad m \in N_1. \]

We define \(z_{1,k} := B(y_1, y_1)z_k \), \(k \in N_1 \), which are elements in the closed unit ball of \(E \) by Lemma 1.2. Clearly \(\sum_{k \in N_1} z_{1,k} \) also is a w.u.c. series. Lemma 1.2 assures that \(z_{1,k} \) is contained in \(E \cap E_0^{**}(u_1) \). Since \(a_1 \in E_2^{**}(u_1) \), we deduce that \(a_1 \perp z_{1,k}, \forall k \in \mathbb{N} \) (compare with the reformulations of orthogonality given in page 312). Moreover \(\left\| \sum_{k \in \mathcal{F}} \varepsilon_k z_{1,k} \right\| = \left\| B(y_1, y_1) \left(\sum_{k \in \mathcal{F}} \varepsilon_k z_k \right) \right\| \leq C, \quad \text{for every finite } \mathcal{F} \in N_1 \) and \(|\varepsilon_k| \) in \(C \). Now, noticing that \(y_1 \in E_2^{**}(v_1) \), Lemma 2.1 applies to assure that

\[|\varphi_k(z_{1,k})| \geq |\varphi_k(z_k)| - |\varphi_k(z_k - z_{1,k})| > \theta - 21 \frac{16}{\theta} \delta_1 \left(\frac{\theta}{2} \right), \]

for all \(k \in N_1 \).

Suppose now, in our inductive step, that \(a_1, \ldots, a_n, N_n \subset N_{n-1} \subset \cdots \subset N_1 \subset \mathbb{N}, \sigma(1) < \sigma(2) < \cdots < \sigma(n) \), and the w.u.c. series \(\sum_{k \in L_{n-1}} z_{n,k} \) in \(E \) have been constructed satisfying the corresponding induction hypothesis.

Take \(j_{n+1} \in \mathbb{N} \) with \(\frac{1}{j_{n+1}} < \frac{1}{C} \delta_{n+1}^2 \) and a subset \(D_{n+1} \subset N_n \) with exactly \(j_{n+1} \) elements. As before, for \(m \in N_n \) we have

\[
\frac{1}{j_{n+1}} \sum_{k \in D_{n+1}} \|z_{n,k}\|_{\varphi_m}^2 \leq \frac{1}{j_{n+1}} \int_D \left\| \sum_{k \in D_{n+1}} \varepsilon_k z_{n,k} \right\|_{\varphi_m}^2 \, d\mu
\]

\[
\leq \frac{1}{j_{n+1}} \int_D \|\varphi_m\| \left\| \sum_{k \in D_{n+1}} \varepsilon_k z_{n,k} \right\|_{\varphi_m}^2 \, d\mu \leq \frac{C^2}{j_{n+1}} < \delta_{n+1}^2,
\]
hence there exist $\sigma(n+1) \in D_{n+1}$ and an infinite subset $N_{n+1} \subseteq N_n$ such that $\sigma(n+1) < \min N_{n+1}$ and $\|z_{n,\sigma(n+1)}\|_{\varphi_m} < \delta_{n+1}$, for every $m \in N_{n+1}$.

Applying Lemma 2.2 to $z_{n,\sigma(n+1)}$ and $\{\varphi_{\sigma(n+1)}\} \cup \{\varphi_m\}_{m \in N_{n+1}}$ we obtain two elements a_{n+1}, y_{n+1} in the closed unit ball of $E_{z_{n,\sigma(n+1)}}$ and two tripotents $u_{n+1}, v_{n+1} \in (E_{z_{n,\sigma(n+1)}})^{\ast\ast}$ such that $a_{n+1} \leq u_{n+1} \leq y_{n+1} \leq v_{n+1}$,

$$|\varphi_{\sigma(n+1)}(a_{n+1})| > \frac{3}{8} \theta, \quad \text{and} \quad \|v_{n+1}\|_{\varphi_m} < \frac{16}{\theta} \delta_{n+1}, \quad m \in N_{n+1}.$$

By the induction hypothesis, $z_{n,k} \perp a_j$, for all $j \in \{1, \ldots, n\}$, $k \in N_n$. Since $a_{n+1}, y_{n+1}, u_{n+1}$, and v_{n+1} belong to $(E_{z_{n,\sigma(n+1)}})^{\ast\ast}$, the equivalent reformulations of orthogonality given in page 312, guarantee that they are all orthogonal to a_j, for all $j \in \{1, \ldots, n\}$.

We define $z_{n+1,k} := B(y_{n+1}, y_{n+1})(z_{n,k})$, $k \in N_{n+1}$. Again, Lemma 1.2 assures that $z_{n+1,k}$ is contained in $E \cap E_0^{\ast\ast}(u_{n+1})$. Since $a_{n+1} \in E_2^{\ast\ast}(u_{n+1})$, we deduce that a_{n+1} is orthogonal to each $z_{n+1,k}$, $\forall k \in N_{n+1}$. Since y_{n+1} and $z_{n,k}$ are orthogonal to a_j for all $j \in \{1, \ldots, n\}$, $k \in N_{n+1}$, using (3), it can be seen that

$$z_{n+1,k} = B(y_{n+1}, y_{n+1})(z_{n,k}) = z_{n,k} - 2L(y_{n+1}, y_{n+1})(z_{n,k}) + Q(y_{n+1})^2(z_{n,k})$$

is orthogonal to a_j, for all $j \in \{1, \ldots, n\}$, $k \in N_{n+1}$. Moreover,

$$\left\|\sum_{k \in \mathcal{F}} \varepsilon_k z_{n+1,k}\right\| = \left\|B(y_{n+1}, y_{n+1})\left(\sum_{k \in \mathcal{F}} \varepsilon_k z_{n,k}\right)\right\| \leq C,$$

for any finite subset $\mathcal{F} \subset N_{n+1}$, and $|\varepsilon_k| = 1$ in C.

Finally, since $y_{n+1} \in E_2^{\ast\ast}(v_{n+1})$, Lemma 2.1 assures that

$$|\varphi_k(z_{n+1,k})| \geq |\varphi_k(z_{n,k})| - |\varphi_k(z_{n,k} - z_{n+1,k})|$$

$$> \theta - \frac{336}{\theta} \sum_{j=1}^n \delta_j - 21 \frac{16}{\theta} \delta_{n+1}$$

$$= \theta - \frac{336}{\theta} \sum_{j=1}^{n+1} \delta_j \left(\frac{\theta}{2}\right) \quad \text{for all} \quad k \in N_{n+1}.$$

b) \Rightarrow b') Since the elements (a_n) are mutually orthogonal, the subtriple \mathcal{C} generated by the family $\{a_n : n \in N\}$ coincides with the ℓ_{∞}-sum $\bigoplus_{n}^\infty E_{a_n}$. We recall that each E_{a_n} is isomorphic to $C_0(L)$, for a suitable locally compact Hausdorff space. Therefore \mathcal{C} is triple-isomorphic to an abelian C*-algebra and the restriction of K to \mathcal{C} cannot be relatively weakly compact.

b') \Rightarrow a) is obvious.
A Dieudonné-type theorem for JC*-triples was established in [11, Theorem 4.2]. When in the proof of the just quoted result, Theorem 2.3 replaces [11, Theorem 3.5], we obtain the following generalization of Dieudonné’s theorem in the more general setting of JB*-triples.

Theorem 2.4. Let \((\phi_n)\) be a sequence in the dual of a JB*-triple \(E\) such that the sequence \((\phi_n(r(x)))\) converges whenever \(r(x)\) is the range tripotent of a norm-one element \(x\) in \(E\). Then there exists \(\phi\) in \(E^*\) satisfying that \((\phi_n)\) converges weakly to \(\phi\). In particular, if \((\phi_n(r(x))) \to 0\), for every range tripotent, \(r(x)\), of a norm-one element \(x\) in \(E\), then \((\phi_n)\) is a weakly null sequence in \(E^*\).

The vector-valued version of the above theorem follows now as a consequence. The following corollary also generalizes the main result in [19] with a shorter and simpler proof.

Corollary 2.5. Let \(E\) be a JB*-triple, \(X\) a Banach space and \((T_n)\) a sequence of weakly compact operators from \(E\) to \(X\). Suppose that \(\lim T_n^{**}(r(x))\) exists whenever \(r(x)\) is the range tripotent of a norm-one element \(x\) in \(E\). Then there exists a unique weakly compact operator \(T : E \to X\), such that \(T^{**}(z) = \lim T_n^{**}(z)\), for every \(z \in E^{**}\).

Proof. We claim that for each \(z \in E^{**}\), \((T_n^{**}(z))\) is a norm convergent sequence. Otherwise, there exist \(z \in E^{**}\), \(\varepsilon > 0\), and \((\sigma(n)) \subset \mathbb{N}\) such that \(\|T_{\sigma(n+1)}^{**}(z) - T_{\sigma(n)}^{**}(z)\| > \varepsilon\), \(\forall n \in \mathbb{N}\). Defining \(S_k = T_{\sigma(k+1)}^{**} - T_{\sigma(k)}^{**}\), we can find norm-one functionals \(\psi_k \in X^*\) satisfying \(|\psi_k(S_k(z))| > \varepsilon\) (\(\forall k \in \mathbb{N}\)). Since \(T_k^{**} : E^{**} \to X^{**}\) is weak*-to-weak* continuous, the sequence \((\psi_k T_k^{**})_{k \in \mathbb{N}}\) lies, in fact, in \(E^{*}\). In particular, the sequence \((\psi_k S_k)\) satisfies, by hypothesis, that \(\lim \psi_k S_k(r) = 0\), for every range tripotent, \(r = r(x)\), of a norm-one element \(x\) in \(E\). Theorem 2.4 assures that \((\psi_k S_k)\) is weakly null in \(E^{*}\), which contradicts \(|\psi_k S_k(z)| = |\psi_k S_k(z)| > \varepsilon\), \((k \in \mathbb{N})\).

The assignment \(z \mapsto L_z := \lim T_n^{**}(z)\) defines a linear mapping \(L : E^{**} \to X^{**}\), which is continuous by the Uniform Boundedness Principle. Since each \(T_n\) is weakly compact we have \(T_n^{**}(E^{**}) \subseteq X\), \(\forall n \in \mathbb{N}\). In particular \(L(E^{**}) \subseteq X\). Therefore \(T := L|_E : E \to X\) is a well-defined bounded linear operator.

Theorem 2.4 implies that, for each \(\psi \in X^*\) the \(\psi T_n^{**} = T_n^{*}(\psi) \in E^*\) converge weakly to some \(\varphi \in E^*\). Thus \(\psi L = \varphi \in E^*\), which proves that \(L\) is weak*-to-weak* continuous. It is now clear that \(T^{**} = L\). Finally, the expression \(T^{**}(E^{**}) = L(E^{**}) \subseteq X\) shows that \(T\) is weakly compact.

Acknowledgements. The authors would like to express their gratitude to the anonymous referee whose valuable comments made the presentation more consistent.
REFERENCES

