COFINITENESS AND COASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES

MOHARRAM AGHAPOURNAHR and LEIF MELKERSSON

Abstract

Let *R* be a noetherian ring, α an ideal of *R* such that dim $R/\alpha = 1$ and *M* a finite *R*-module. We will study cofiniteness and some other properties of the local cohomology modules $H^i_{\alpha}(M)$. For an arbitrary ideal α and an *R*-module *M* (not necessarily finite), we will characterize α -cofinite artinian local cohomology modules. Certain sets of coassociated primes of top local cohomology modules over local rings are characterized.

1. Introduction

Throughout R is a commutative noetherian ring. By a finite module we mean a finitely generated module. For basic facts about commutative algebra see [3] and [9] and for local cohomology we refer to [2].

Grothendieck [7] made the following conjecture:

CONJECTURE. For every ideal α and every finite *R*-module *M*, the module Hom_{*R*}(*R*/ α , H^{*n*}_{α}(*M*)) is finite for all *n*.

Hartshorne [8] showed that this is false in general. However, he defined an *R*-module *M* to be α -*cofinite* if Supp_{*R*}(*M*) \subset V(α) and Ext^{*i*}_{*R*}(*R*/ α , *M*) is finite (finitely generated) for each *i* and he asked the following question:

QUESTION. If α is an ideal of *R* and *M* is a finite *R*-module. When is $\operatorname{Ext}^{i}_{R}(R/\alpha, \operatorname{H}^{j}_{\alpha}(M))$ finite for every *i* and *j*?

Hartshorne [8] showed that if (R, \mathfrak{m}) is a complete regular local ring and M a finite R-module, then $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite in two cases:

(a) If α is a nonzero principal ideal, and

(b) If α is a prime ideal with dim $R/\alpha = 1$.

Yoshida [14] and Delfino and Marley [4] extended (b) to all dimension one ideals α of an arbitrary local ring *R*.

In Corollary 2.3, we give a characterization of the α -cofiniteness of these local cohomology modules when α is a one-dimensional ideal in a non-local

Received September 19, 2007, in final form October 14, 2008.

ring. In this situation we also prove in Theorem 2.7, that these local cohohomology modules always belong to a class introduced by Zöschinger in [16].

Our main result in this paper is Theorem 2.10, where we for an arbitrary ideal α and an *R*-module *M* (not necessarily finite), characterize the artinian α -cofinite local cohomology modules (in the range *i* < *n*). With the additional assumption that *M* is finitely generated, the characterization is also given by the existence of certain filter-regular sequences.

The second author has in [10, Theorem 5.5] previously characterized artinian local cohomology modules (in the same range). In case the module M is not supposed to be finite, the two notions differ. For example let α be an ideal of a local ring R, such that dim $(R/\alpha) > 0$ and let M be the injective hull of the residue field of R. The module $H^0_{\alpha}(M)$, which is equal to M, is artinian. However it is not α -cofinite, since $0 : \alpha$ does not have finite length.

An *R*-module *M* has *finite Goldie dimension* if *M* contains no infinite direct sum of submodules. For a commutative noetherian ring this can be expressed in two other ways, namely that the injective hull E(M) of *M* decomposes as a finite direct sum of indecomposable injective modules or that *M* is an essential extension of a finite submodule.

A prime ideal \mathfrak{p} is said to be *coassociated* to M if $\mathfrak{p} = \operatorname{Ann}_R(M/N)$ for some $N \subset M$ such that M/N is artinian and is said to be *attached* to Mif $\mathfrak{p} = \operatorname{Ann}_R(M/N)$ for some arbitrary submodule N of M, equivalently $\mathfrak{p} = \operatorname{Ann}_R(M/\mathfrak{p}M)$. The set of these prime ideals are denoted by $\operatorname{Coass}_R(M)$ and $\operatorname{Att}_R(M)$ respectively. Thus $\operatorname{Coass}_R(M) \subset \operatorname{Att}_R(M)$ and the two sets are equal when M is an artinian module. The two sets behave well with respect to exact sequences. If $0 \to M' \to M \to M'' \to 0$ is an exact sequence, then

$$\operatorname{Coass}_R(M'') \subset \operatorname{Coass}_R(M) \subset \operatorname{Coass}_R(M') \cup \operatorname{Coass}_R(M'')$$

and

$$\operatorname{Att}_R(M'') \subset \operatorname{Att}_R(M) \subset \operatorname{Att}_R(M') \cup \operatorname{Att}_R(M'').$$

There are equalities $\text{Coass}_R(M \otimes_R N) = \text{Coass}_R(M) \cap \text{Supp}_R(N)$ and $\text{Att}_R(M \otimes_R N) = \text{Att}_R(M) \cap \text{Supp}_R(N)$, whenever the module N is required to be finite. We prove the second equality in Lemma 2.11. In particular $\text{Coass}_R(M/\alpha M) = \text{Coass}_R(M) \cap V(\alpha)$ and $\text{Att}_R(M/\alpha M) = \text{Att}_R(M) \cap V(\alpha)$ for every ideal α . Coassociated and attached prime ideals have been studied in particular by Zöschinger, [17] and [18].

In Corollary 2.13 we give a characterization of certain sets of coassociated primes of the highest nonvanishing local cohomology module $H_{\alpha}^{t}(M)$, where M is a finitely generated module over a complete local ring. In case it happens that $t = \dim M$, the characterization is given in [4, Lemma 3]. In that case the

top local cohomology module is always artinian, but in general the top local cohomology module is not artinian if $t < \dim M$.

2. Main results

First we extend a result by Zöschinger [15, Lemma 1.3] with a much weaker condition. Our method of proof is also quite different.

PROPOSITION 2.1. Let M be a module over the noetherian ring R. The following statements are equivalent:

- (i) *M* is a finite *R*-module.
- (ii) $M_{\mathfrak{m}}$ is a finite $R_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \operatorname{Max} R$ and $\operatorname{Min}_{R}(M/N)$ is a finite set for all finite submodules $N \subset M$.

PROOF. The only nontrivial part is (ii) \Rightarrow (i).

Let \mathscr{F} be the set of finite submodules of M. For each $N \in \mathscr{F}$ the set $\operatorname{Supp}_R(M/N)$ is closed in $\operatorname{Spec}(R)$, since $\operatorname{Min}_R(M/N)$ is a finite set. Also it follows from the hypothesis that, for each $\mathfrak{p} \in \operatorname{Spec}(R)$ there is $N \in \mathscr{F}$ such that $M_{\mathfrak{p}} = N_{\mathfrak{p}}$, that is $\mathfrak{p} \notin \operatorname{Supp}_R(M/N)$. This means that $\bigcap_{N \in \mathscr{F}} \operatorname{Supp}_R(M/N) = \varnothing$. Now $\operatorname{Spec}(R)$ is a quasi-compact topological space. Consequently $\bigcap_{i=1}^r \operatorname{Supp}_R(M/N_i) = \varnothing$ for some $N_1, \ldots, N_r \in \mathscr{F}$. We claim that M = N, where $N = \sum_{i=1}^r N_i$. Just observe that $\operatorname{Supp}_R(M/N) \subset \operatorname{Supp}_R(M/N_i)$ for each i, and therefore $\operatorname{Supp}_R(M/N) = \varnothing$.

COROLLARY 2.2. Let M be an R-module such that $\text{Supp } M \subset V(\mathfrak{a})$ and $M_{\mathfrak{m}}$ is $\mathfrak{a}R_{\mathfrak{m}}$ -cofinite for each maximal ideal \mathfrak{m} . The following statements are equivalent:

- (i) M is α -cofinite.
- (ii) For all j, $\operatorname{Min}_{R}(\operatorname{Ext}_{R}^{j}(R/\alpha, M)/T)$ is a finite set for each finite submodule T of $\operatorname{Ext}_{R}^{j}(R/\alpha, M)$.

PROOF. The only nontrivial part is (ii) \Rightarrow (i).

Suppose in is a maximal ideal of *R*. By hypothesis $M_{\rm m}$ is $\alpha R_{\rm m}$ -cofinite. Therefore $\operatorname{Ext}_{R}^{j}(R/\alpha, M)_{\rm m}$ is a finite $R_{\rm m}$ -module for all *j*. Hence by Proposition 2.1 $\operatorname{Ext}_{R}^{j}(R/\alpha, M)$ is finite for all *j*. Thus *M* is α -cofinite.

COROLLARY 2.3. Let α an ideal of R such that dim $R/\alpha = 1$, M a finite R-module and $i \ge 0$. The following statements are equivalent:

- (i) $\operatorname{H}^{i}_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite.
- (ii) For all j, $\operatorname{Min}_{R}(\operatorname{Ext}_{R}^{j}(R/\alpha, \operatorname{H}_{\alpha}^{i}(M))/T)$ is a finite set for each finite submodule T of $\operatorname{Ext}_{R}^{j}(R/\alpha, \operatorname{H}_{\alpha}^{i}(M))$.

PROOF. For all maximal ideals \mathfrak{m} , $\mathrm{H}^{i}_{\mathfrak{a}}(M)_{\mathfrak{m}} \cong \mathrm{H}^{i}_{\mathfrak{a}R_{\mathfrak{m}}}(M_{\mathfrak{m}})$. By [4, Theorem 1] $\mathrm{H}^{i}_{\mathfrak{a}R_{\mathfrak{m}}}(M_{\mathfrak{m}})$ is $\mathfrak{a}R_{\mathfrak{m}}$ -cofinite.

A module *M* is *weakly Laskerian*, when for each submodule *N* of *M* the quotient M/N has just finitely many associated primes, see [6]. A module *M* is α -weakly cofinite if $\text{Supp}_R(M) \subset V(\alpha)$ and $\text{Ext}_R^i(R/\alpha, M)$ is weakly Laskerian for all *i*. Clearly each α -cofinite module is α -weakly cofinite but the converse is not true in general see [5, Example 3.5(i) and (ii)].

COROLLARY 2.4. If $H^i_{\alpha}(M)$ (with dim $R/\alpha = 1$) is an α -weakly cofinite module, then it is also α -cofinite.

Next we will introduce a subcategory of the category of *R*-modules that has been studied by Zöschinger in [16, Satz 1.6].

THEOREM 2.5 (Zöschinger). For any *R*-module *M* the following are equivalent:

- (i) *M* satisfies the minimal condition for submodules *N* such that *M*/*N* is soclefree.
- (ii) For any descending chain N₁ ⊃ N₂ ⊃ N₃ ⊃ ··· of submodules of M, there is n such that the quotients N_i/N_{i+1} have support in Max R for all i ≥ n.
- (iii) With $L(M) = \bigoplus_{\mathfrak{m}\in \operatorname{Max} R} \Gamma_{\mathfrak{m}}(M)$, the module M/L(M) has finite Goldie dimension, and dim $R/\mathfrak{p} \leq 1$ for all $\mathfrak{p} \in \operatorname{Ass}_R(M)$.

If they are fulfilled, then for each monomorphism $f: M \longrightarrow M$,

$$\operatorname{Supp}_R(\operatorname{Coker} f) \subset \operatorname{Max} R.$$

We will say that *M* is in the class \mathscr{Z} if *M* satisfies the equivalent conditions in Theorem 2.5.

A module *M* is *soclefree* if it has no simple submodules, or in other terms Ass $M \cap \text{Max } R = \emptyset$. For example if *M* is a module over the local ring (R, \mathfrak{m}) then the module $M/\Gamma_{\mathfrak{m}}(M)$, where $\Gamma_{\mathfrak{m}}(M)$ is the submodule of *M* consisting of all elements of *M* annihilated by some high power \mathfrak{m}^n of the maximal ideal \mathfrak{m} , is always soclefree.

PROPOSITION 2.6. The class \mathscr{Z} is a Serre subcategory of the category of *R*-modules, that is \mathscr{Z} is closed under taking submodules, quotients and extensions.

PROOF. The only difficult part is to show that \mathscr{Z} is closed under taking extensions. To this end let $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ be an exact sequence with $M', M'' \in \mathscr{Z}$ and let $N_1 \supset N_2 \supset \cdots$ be a descending chain of submodules of M. Consider the descending chains $f^{-1}(N_1) \supset$

 $f^{-1}(N_2) \supset \cdots$ and $g(N_1) \supset g(N_2) \supset \cdots$ of submodules of M' and M'' respectively. By (ii) there is *n* such that $\operatorname{Supp}_R(f^{-1}(N_i)/f^{-1}(N_{i+1})) \subset \operatorname{Max} R$ and $\operatorname{Supp}_R(g(N_i)/g(N_{i+1})) \subset \operatorname{Max} R$ for all $i \ge n$. We use the exact sequence

$$0 \longrightarrow f^{-1}(N_i)/f^{-1}(N_{i+1}) \longrightarrow N_i/N_{i+1} \longrightarrow g(N_i)/g(N_{i+1}) \longrightarrow 0.$$

to conclude that $\operatorname{Supp}_R(N_i/N_{i+1}) \subset \operatorname{Max} R$ for all $i \geq n$.

THEOREM 2.7. Let N be a module over a noetherian ring R and α an ideal of R such that dim $R/\alpha = 1$. If $N_{\mathfrak{m}}$ is $\alpha R_{\mathfrak{m}}$ -cofinite for all $\mathfrak{m} \in \operatorname{Max} R$, then N is in the class \mathscr{Z} . In particular, if M is a finite R-module, then $\operatorname{H}^{i}_{\alpha}(M)$ is in the class \mathscr{Z} for all i.

PROOF. Let X = N/L(N). Note that $\operatorname{Ass}_R(X) \subset \operatorname{Min} \mathfrak{a}$ and therefore is a finite set. Since

$$\mathsf{E}(X) = \bigoplus_{\mathfrak{p} \in \operatorname{Ass}_R(X)} \mathsf{E}(R/\mathfrak{p})^{\mu^{\prime}(\mathfrak{p},X)}$$

it is enough to prove that $\mu^i(\mathfrak{p}, X)$ is finite for all $\mathfrak{p} \in \operatorname{Ass}_R(X)$. This is clear, since each $\mathfrak{p} \in \operatorname{Ass}_R(X)$ is minimal over \mathfrak{a} and therefore $X_{\mathfrak{p}} \cong N_{\mathfrak{p}}$ which is, $\mathfrak{a}R_{\mathfrak{p}}$ -cofinite, i.e. artinian over $R_{\mathfrak{p}}$.

Given elements x_1, \ldots, x_r in R, we denote by $H^i(x_1, \ldots, x_r; M)$ the *i*'th Koszul cohomology module of the *R*-module *M*. The following lemma is used in the proof of Theorem 2.10.

LEMMA 2.8. Let E be an injective module. If $H^0(x_1, \ldots, x_r; E) = 0$, then $H^i(x_1, \ldots, x_r; E) = 0$ for all i.

PROOF. We may assume that E = E(R/p) for some prime ideal p, since E is a direct sum of modules of this form, and Koszul cohomology preserves (arbitrary) direct sums.

Put $\alpha = (x_1, \ldots, x_r)$. By hypothesis $0 :_E \alpha = 0$, which means that $\alpha \not\subset \mathfrak{p}$. Take an element $s \in \alpha \setminus \mathfrak{p}$. It acts bijectively on *E*, hence also on $\mathrm{H}^i(x_1, \ldots, x_r; E)$ for each *i*. But $\alpha \subset \mathrm{Ann}_R(\mathrm{H}^i(x_1, \ldots, x_r; E))$ for all *i*, so the element *s* therefore acts as the zero homomorphism on each $\mathrm{H}^i(x_1, \ldots, x_r; E)$. The conclusion follows.

First we state the definition, given in [10], of the notion of filter regularity on modules (not necessarily finite) over any noetherian ring. When (R, \mathfrak{m}) is local and M is finite, it yields the ordinary notion of filter-regularity, see [12].

DEFINITION 2.9. Let *M* be a module over the noetherian ring *R*. An element *x* of *R* is called filter-regular on *M* if the module $0 :_M x$ has finite length.

A sequence x_1, \ldots, x_s is said to be filter regular on M if x_j is filter-regular on $M/(x_1, \ldots, x_{j-1})M$ for $j = 1, \ldots, s$.

The following theorem yields a characterization of artinian cofinite local cohomology modules.

THEOREM 2.10. Let $\alpha = (x_1, \ldots, x_r)$ be an ideal of a noetherian ring R and let n be a positive integer. For each R-module M the following conditions are equivalent:

- (i) $H^i_{\alpha}(M)$ is artinian and α -cofinite for all i < n.
- (ii) $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ has finite length for all i < n.
- (iii) The Koszul cohomology module $\operatorname{H}^{i}(x_{1}, \ldots, x_{r}; M)$ has finite length for all i < n.

When M is finite these conditions are also equivalent to:

- (iv) $H^i_{\alpha}(M)$ is artinian for all i < n.
- (v) There is a sequence of length n in α that is filter-regular on M.

PROOF. We use induction on *n*. When n = 1 the conditions (ii) and (iii) both say that $0 :_M \alpha$ has finite length, and they are therefore equivalent to (i) [10, Proposition 4.1].

Let n > 1 and assume that the conditions are equivalent when n is replaced by n - 1. Put $L = \Gamma_{\alpha}(M)$ and $\overline{M} = M/L$ and form the exact sequence $0 \longrightarrow L \longrightarrow M \longrightarrow \overline{M} \longrightarrow 0$. We have $\Gamma_{\alpha}(\overline{M}) = 0$ and $H^{i}_{\alpha}(\overline{M}) \cong H^{i}_{\alpha}(M)$ for all i > 0. There are exact sequences

$$\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, L) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, \overline{M}) \to \operatorname{Ext}^{i+1}_{R}(R/\mathfrak{a}, L)$$

and

$$H^{i}(x_{1}, \ldots, x_{r}; L) \to H^{i}(x_{1}, \ldots, x_{r}; M)$$

$$\to H^{i}(x_{1}, \ldots, x_{r}; \overline{M}) \to H^{i+1}(x_{1}, \ldots, x_{r}; L)$$

Because *L* is artinian and α -cofinite the outer terms of both exact sequences have finite length. Hence *M* satisfies one of the conditions if and only if \overline{M} satisfies the same condition. We may therefore assume that $\Gamma_{\alpha}(M) = 0$.

Let *E* be the injective hull of *M* and put N = E/M. Consider the exact sequence $0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$. We know that $0 :_M \alpha = 0$. Therefore $0 :_E \alpha = 0$ and $\Gamma_{\alpha}(E) = 0$. Consequently there are isomorphisms for all $i \ge 0$:

$$\mathrm{H}^{i+1}_{\mathfrak{a}}(M) \cong \mathrm{H}^{i}_{\mathfrak{a}}(N), \qquad \mathrm{Ext}^{i+1}_{R}(R/\mathfrak{a}, M) \cong \mathrm{Ext}^{i}_{R}(R/\mathfrak{a}, N)$$

and

$$\mathrm{H}^{i+1}(x_1,\ldots,x_r;M)\cong\mathrm{H}^i(x_1,\ldots,x_r;N).$$

In order to get the third isomorphism, we used that $H^i(x_1, ..., x_r; E) = 0$ for all $i \ge 0$ (Lemma 2.8). Hence *M* satisfies one of the three conditions if and only if *N* satisfies the same condition, with *n* replaced by n - 1. By induction, we may therefore conclude that the module *M* satisfies all three conditions if it satisfies one of them.

Let now *M* be a finite module.

(ii) \Leftrightarrow (iv) Use [10, Theorem 5.5(i) \Leftrightarrow (ii)].

 $(v) \Rightarrow (i)$ Use [10, Theorem 6.4].

(i) \Rightarrow (v) We give a proof by induction on *n*. Put $L = \Gamma_{\alpha}(M)$ and $\overline{M} = M/L$. Then $\operatorname{Ass}_R L = \operatorname{Ass}_R M \cap V(\alpha)$ and $\operatorname{Ass}_R \overline{M} = \operatorname{Ass}_R M \setminus V(\alpha)$. The module *L* has finite length and therefore $\operatorname{Ass}_R L \subset \operatorname{Max} R$. By prime avoidance take an element $y_1 \in \alpha \setminus \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R(\overline{M})} \mathfrak{p}$. Then $\operatorname{Ass}_R(0 :_M y_1) = \operatorname{Ass}_R(M) \cap V(y_1) = (\operatorname{Ass}_R L \cap V(y_1)) \cup (\operatorname{Ass}_R \overline{M} \cap V(y_1)) \subset \operatorname{Max} R$. Hence $0 :_M y_1$ has finite length, so the element $y_1 \in \alpha$ is filter regular on *M*.

Suppose n > 1 and take y_1 as above.

Note that $H^i_{\alpha}(M) \cong H^i_{\alpha}(\overline{M})$ for all $i \ge 1$. Thus we may replace M by \overline{M} , [10, Proposition 6.3(b)], and we may assume that y_1 is a non-zerodivisor on M.

The exact sequence $0 \to M \xrightarrow{y_1} M \to M/y_1 M \to 0$ yields the long exact sequence

$$\cdots \longrightarrow \operatorname{H}^{i-1}_{\mathfrak{a}}(M) \longrightarrow \operatorname{H}^{i-1}_{\mathfrak{a}}(M/y_1M) \longrightarrow \operatorname{H}^{i}_{\mathfrak{a}}(M) \longrightarrow \cdots$$

Hence $H^i_{\alpha}(M/y_1M)$ is α -cofinite and artinian for all i < n - 1, by [11, Corollary 1.7]. Therefore by the induction hypothesis there exists y_2, \ldots, y_n in α , which is filter-regular on M/y_1M . Thus y_1, \ldots, y_n is filter-regular on M.

REMARK. In [1] we studied the kernel and cokernel of the natural homomorphism $f : \operatorname{Ext}_{R}^{n}(R/\alpha, M) \to \operatorname{Hom}_{R}(R/\alpha, \operatorname{H}_{\alpha}^{n}(M))$. Applying the criterion of Theorem 2.10 we get that if $\operatorname{Ext}_{R}^{t-j}(R/\alpha, \operatorname{H}_{\alpha}^{j}(M))$ has finite length for t = n, n + 1 and for all j < n, then $\operatorname{Ext}_{R}^{n}(R/\alpha, M)$ has finite length if and only if $\operatorname{H}_{\alpha}^{n}(M)$ is α -cofinite artinian.

Next we will study attached and coassociated prime ideals for the last nonvanishing local cohomology module. First we prove a lemma used in Corollary 2.13

LEMMA 2.11. For all *R*-modules *M* and for every finite *R*-module *N*,

$$\operatorname{Att}_R(M \otimes_R N) = \operatorname{Att}_R(M) \cap \operatorname{Supp}_R(N).$$

PROOF. Let $\mathfrak{p} \in \operatorname{Att}_R(M \otimes_R N)$, so $\mathfrak{p} = \operatorname{Ann}_R((M \otimes_R N) \otimes_R R/\mathfrak{p})$. However this ideal contains both $\operatorname{Ann}_R(M/\mathfrak{p}M)$ and $\operatorname{Ann}_R(N)$ and therefore $\mathfrak{p} = \operatorname{Ann}_R(M/\mathfrak{p}M)$ and $\mathfrak{p} \in \operatorname{Supp}_R(N)$. Conversely let $\mathfrak{p} \in \operatorname{Att}_R(M) \cap \operatorname{Supp}_R(N)$. Then $\mathfrak{p} = \operatorname{Ann} M/\mathfrak{p}M$ and we want to show that $\mathfrak{p} = \operatorname{Ann}_R((M \otimes_R N) \otimes_R R/\mathfrak{p})$. Since

$$(M \otimes_R N) \otimes_R R/\mathfrak{p} \cong M/\mathfrak{p}M \otimes_{R/\mathfrak{p}} N/\mathfrak{p}N,$$

we may assume that *R* is a domain and $\mathfrak{p} = (0)$. Let *K* be the field of fractions of *R*. Then Ann M = 0 and $N \otimes_R K \neq 0$. Therefore the natural homomorphism $f : R \longrightarrow \text{End}_R(M)$ is injective and we have the following exact sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(N, R) \longrightarrow \operatorname{Hom}_{R}(N, \operatorname{End}_{R}(M)).$

But $\operatorname{Hom}_R(N, \operatorname{End}_R(M)) \cong \operatorname{Hom}_R(M \otimes_R N, M)$. Hence we get

 $\operatorname{Ann}_{R}(M \otimes_{R} N) \subset \operatorname{Ann}_{R} \operatorname{Hom}_{R}(M \otimes_{R} N, M)$ $\subset \operatorname{Ann}_{R} \operatorname{Hom}_{R}(N, R) \subset \operatorname{Ann}_{R}(\operatorname{Hom}_{R}(N, R) \otimes_{R} K).$

On the other hand $\operatorname{Hom}_R(N, R) \otimes_R K \cong \operatorname{Hom}_R(N \otimes_R K, K)$, which is a nonzero vector space over K. Consequently $\operatorname{Ann}_R(M \otimes_R N) = 0$.

THEOREM 2.12. Let (R, \mathfrak{m}) be a complete local ring and let \mathfrak{a} be an ideal of R. Let t be a nonnegative integer such that $H^i_{\mathfrak{a}}(R) = 0$ for all i > t.

- (a) If $\mathfrak{p} \in \operatorname{Att}_R(\operatorname{H}^t_{\mathfrak{a}}(R))$ then dim $R/\mathfrak{p} \geq t$.
- (b) If p is a prime ideal such that dim R/p = t, then the following conditions are equivalent:
 - (i) $\mathfrak{p} \in \operatorname{Coass}_R(\operatorname{H}^t_{\mathfrak{q}}(R))$.
 - (ii) $\mathfrak{p} \in \operatorname{Att}_{R}(\operatorname{H}^{t}_{\mathfrak{a}}(R)).$

(iii)
$$\operatorname{H}^{t}_{\mathfrak{a}}(R/\mathfrak{p}) \neq 0.$$

(iv) $\sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}$.

PROOF. (a) By the right exactness of the functor $H^t_{\alpha}(-)$ we have

(1)
$$H^t_{\mathfrak{a}}(R/\mathfrak{p}) \cong H^t_{\mathfrak{a}}(R)/\mathfrak{p} H^t_{\mathfrak{a}}(R)$$

If $\mathfrak{p} \in \operatorname{Att}_{R}(\operatorname{H}_{\mathfrak{a}}^{t}(R))$, then $\operatorname{H}_{\mathfrak{a}}^{t}(R)/\mathfrak{p}\operatorname{H}_{\mathfrak{a}}^{t}(R) \neq 0$. Hence $\operatorname{H}_{\mathfrak{a}}^{t}(R/\mathfrak{p}) \neq 0$ and dim $R/\mathfrak{p} \geq t$.

(b) Since R/\mathfrak{p} is a complete local domain of dimension *t*, the equivalence of (iii) and (iv) follows from the local Lichtenbaum Hartshorne vanishing theorem.

If $H_{\alpha}^{t}(R/\mathfrak{p}) \neq 0$, then by (1) $H_{\alpha}^{t}(R)/\mathfrak{p} H_{\alpha}^{t}(R) \neq 0$. Therefore $\mathfrak{p} \subset \mathfrak{q}$ for some $\mathfrak{q} \in \operatorname{Coass}_{R}(H_{\alpha}^{t}(R)) \subset \operatorname{Att}_{R}(H_{\alpha}^{t}(R))$. By (a) dim $R/\mathfrak{q} \geq t =$ dim R/\mathfrak{p} , so we must have $\mathfrak{p} = \mathfrak{q}$. Thus (iii) implies (i) and since always $\operatorname{Coass}_{R}(H_{\alpha}^{t}(R)) \subset \operatorname{Att}_{R}(H_{\alpha}^{t}(R))$, (i) implies (ii). If (ii) holds then the module $H'_{\alpha}(R)/\mathfrak{p} H'_{\alpha}(R) \neq 0$, since its annihilator is \mathfrak{p} . Hence, using again the isomorphism (1), (ii) implies (iii).

COROLLARY 2.13. Let (R, \mathfrak{m}) be a complete local ring, \mathfrak{a} an ideal of R and M a finite R-module and t a nonnegative integer such that $\operatorname{H}^{i}_{\mathfrak{a}}(M) = 0$ for all i > t.

- (a) If $\mathfrak{p} \in \operatorname{Att}_R(\operatorname{H}^t_{\mathfrak{a}}(M))$ then dim $R/\mathfrak{p} \ge t$.
- (b) If \mathfrak{p} is a prime ideal in $\operatorname{Supp}_R(M)$ such that dim $R/\mathfrak{p} = t$, then the following conditions are equivalent:
 - (i) $\mathfrak{p} \in \operatorname{Coass}_R(\operatorname{H}^t_{\mathfrak{q}}(M)).$
 - (ii) $\mathfrak{p} \in \operatorname{Att}_{R}(\operatorname{H}^{t}_{\mathfrak{a}}(M)).$
 - (iii) $\operatorname{H}^{t}_{\mathfrak{q}}(R/\mathfrak{p}) \neq 0.$
 - (iv) $\sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}$.

PROOF. Passing from *R* to *R* / Ann *M*, we may assume that Ann M = 0 and therefore using Gruson's theorem, see [13, Theorem 4.1], $H^i_{\alpha}(N) = 0$ for all i > t and every *R*-module *N*. Hence the functor $H^t_{\alpha}(-)$ is right exact and therefore, since it preserves direct limits, we get

$$\operatorname{H}^{t}_{\mathfrak{a}}(M) \cong M \otimes_{R} \operatorname{H}^{t}_{\mathfrak{a}}(R).$$

The claims follow from Theorem 2.12 using the following equalities

$$\operatorname{Coass}_{R}(\operatorname{H}^{t}_{\mathfrak{q}}(M)) = \operatorname{Coass}_{R}(\operatorname{H}^{t}_{\mathfrak{q}}(R)) \cap \operatorname{Supp}_{R}(M)$$

by [16, Folgerung 3.2] and

$$\operatorname{Att}_{R}(\operatorname{H}^{t}_{\mathfrak{a}}(M)) = \operatorname{Att}_{R}(\operatorname{H}^{t}_{\mathfrak{a}}(R)) \cap \operatorname{Supp}_{R}(M)$$

by Lemma 2.11.

REFERENCES

- 1. Aghapournahr, M., Melkersson, L., A natural map in local cohomology, preprint.
- Brodmann, M. P., Sharp, R. Y., Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Studies on Advanced Math. 60, Cambridge University Press, Cambridge 1998.
- Bruns, W., Herzog, J., Cohen-Macaulay Rings, revised ed., Cambridge Studies on Advanced Math. 39, Cambridge University Press, Cambridge 1998.
- Delfino, D., and Marley, T., *Cofinite modules and local cohomology*, J. Pure Appl. Algebra 121 (1997), 45–52.
- Divaani-Aazar, K., Mafi, A., Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 (2006), 681–690.

- Divaani-Aazar, K., Mafi, A., Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), 655–660.
- 7. Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam 1968.
- 8. Hartshorne, R., Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164.
- 9. Matsumura, H., *Commutative Ring Theory*, Cambridge Studies on Advanced Math. 8, Cambridge University Press, Cambridge 1986.
- 10. Melkersson, L., Modules cofinite with respect to an ideal, J. Algebra 285 (2005), 649-668.
- 11. Melkersson, L., *Properties of cofinite modules and applications to local cohomology*, Math. Proc. Cambridge Phil. Soc. 125 (1999), 417–423.
- Schenzel, P., Trung, N. V., Cuong, N. T., Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73.
- Vasconcelos, W., *Divisor Theory in Module Categories*, North-Holland Math. Studies 14, North-Holland, Amsterdam 1974.
- Yoshida, K. I., Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191.
- 15. Zöschinger, H., Koatomare Moduln, Math. Z. 170 (1980), 221-232.
- 16. Zöschinger, H., Minimax-Moduln, J. Algebra 102 (1986), 1-32.
- 17. Zöschinger, H., Über koassoziierte Primideale, Math Scand. 63 (1988), 196–211.
- Zöschinger, H., Linear-kompakte Moduln über noetherschen Ringen, Arch. Math. 41 (1983), 121–130.

ARAK UNIVERSITY BEHESHTI ST PO. BOX: 879 ARAK IRAN *E-mail:* m-aghapour@araku.ac.ir m.aghapour@gmail.com DEPARTMENT OF MATHEMATICS LINKÖPING UNIVERSITY SE-581 83 LINKÖPING SWEDEN *E-mail:* lemel@mai.liu.se