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COFINITENESS AND COASSOCIATED PRIMES
OF LOCAL COHOMOLOGY MODULES

MOHARRAM AGHAPOURNAHR and LEIF MELKERSSON

Abstract
Let R be a noetherian ring, � an ideal of R such that dim R/� = 1 and M a finite R-module. We
will study cofiniteness and some other properties of the local cohomology modules Hi

�(M). For
an arbitrary ideal � and an R-module M (not necessarily finite), we will characterize �-cofinite
artinian local cohomology modules. Certain sets of coassociated primes of top local cohomology
modules over local rings are characterized.

1. Introduction

Throughout R is a commutative noetherian ring. By a finite module we mean
a finitely generated module. For basic facts about commutative algebra see [3]
and [9] and for local cohomology we refer to [2].

Grothendieck [7] made the following conjecture:

Conjecture. For every ideal � and every finite R-module M , the module
HomR(R/�, Hn

�(M)) is finite for all n.

Hartshorne [8] showed that this is false in general. However, he defined an
R-module M to be �-cofinite if SuppR(M) ⊂ V(�) and ExtiR(R/�, M) is finite
(finitely generated) for each i and he asked the following question:

Question. If � is an ideal of R and M is a finite R-module. When is
ExtiR(R/�, H

j
�(M)) finite for every i and j?

Hartshorne [8] showed that if (R, �) is a complete regular local ring and
M a finite R-module, then Hi

�(M) is �-cofinite in two cases:

(a) If � is a nonzero principal ideal, and

(b) If � is a prime ideal with dim R/� = 1.

Yoshida [14] and Delfino and Marley [4] extended (b) to all dimension one
ideals � of an arbitrary local ring R.

In Corollary 2.3, we give a characterization of the �-cofiniteness of these
local cohomology modules when � is a one-dimensional ideal in a non-local
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ring. In this situation we also prove in Theorem 2.7, that these local cohohomo-
logy modules always belong to a class introduced by Zöschinger in [16].

Our main result in this paper is Theorem 2.10, where we for an arbitrary
ideal � and an R-module M (not necessarily finite), characterize the artinian
�-cofinite local cohomology modules (in the range i < n). With the additional
assumption that M is finitely generated, the characterization is also given by
the existence of certain filter-regular sequences.

The second author has in [10, Theorem 5.5] previously characterized arti-
nian local cohomology modules (in the same range). In case the module M is
not supposed to be finite, the two notions differ. For example let � be an ideal
of a local ring R, such that dim(R/�) > 0 and let M be the injective hull of
the residue field of R. The module H0

�(M), which is equal to M , is artinian.
However it is not �-cofinite, since 0 :

M
� does not have finite length.

An R-module M has finite Goldie dimension if M contains no infinite direct
sum of submodules. For a commutative noetherian ring this can be expressed
in two other ways, namely that the injective hull E(M) of M decomposes as a
finite direct sum of indecomposable injective modules or that M is an essential
extension of a finite submodule.

A prime ideal � is said to be coassociated to M if � = AnnR(M/N) for
some N ⊂ M such that M/N is artinian and is said to be attached to M

if � = AnnR(M/N) for some arbitrary submodule N of M , equivalently
� = AnnR(M/�M). The set of these prime ideals are denoted by CoassR(M)

and AttR(M) respectively. Thus CoassR(M) ⊂ AttR(M) and the two sets are
equal when M is an artinian module. The two sets behave well with respect to
exact sequences. If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then

CoassR(M ′′) ⊂ CoassR(M) ⊂ CoassR(M ′) ∪ CoassR(M ′′)

and
AttR(M ′′) ⊂ AttR(M) ⊂ AttR(M ′) ∪ AttR(M ′′).

There are equalities CoassR(M ⊗R N) = CoassR(M) ∩ SuppR(N) and
AttR(M ⊗R N) = AttR(M) ∩ SuppR(N), whenever the module N is re-
quired to be finite. We prove the second equality in Lemma 2.11. In particular
CoassR(M/�M) = CoassR(M)∩V(�) and AttR(M/�M) = AttR(M)∩V(�)

for every ideal �. Coassociated and attached prime ideals have been studied in
particular by Zöschinger, [17] and [18].

In Corollary 2.13 we give a characterization of certain sets of coassociated
primes of the highest nonvanishing local cohomology module Ht

�(M), where
M is a finitely generated module over a complete local ring. In case it happens
that t = dim M , the characterization is given in [4, Lemma 3]. In that case the
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top local cohomology module is always artinian, but in general the top local
cohomology module is not artinian if t < dim M .

2. Main results

First we extend a result by Zöschinger [15, Lemma 1.3] with a much weaker
condition. Our method of proof is also quite different.

Proposition 2.1. Let M be a module over the noetherian ring R. The
following statements are equivalent:

(i) M is a finite R-module.

(ii) M� is a finite R�-module for all �∈ Max R and MinR(M/N) is a finite
set for all finite submodules N ⊂ M .

Proof. The only nontrivial part is (ii) ⇒ (i).
Let F be the set of finite submodules of M . For each N ∈ F the set

SuppR(M/N) is closed in Spec(R), since MinR(M/N) is a finite set. Also it
follows from the hypothesis that, for each � ∈ Spec(R) there is N ∈ F such
that M� = N�, that is � /∈ SuppR(M/N). This means that⋂

N∈F SuppR(M/N) = ∅. Now Spec(R) is a quasi-compact topological
space. Consequently

⋂r
i=1 SuppR(M/Ni) = ∅ for some N1, . . . , Nr ∈ F . We

claim that M = N , where N = ∑r
i=1 Ni . Just observe that SuppR(M/N) ⊂

SuppR(M/Ni) for each i, and therefore SuppR(M/N) = ∅.

Corollary 2.2. Let M be an R-module such that Supp M ⊂ V(�) and
M� is �R�-cofinite for each maximal ideal �. The following statements are
equivalent:

(i) M is �-cofinite.

(ii) For all j , MinR(ExtjR(R/�, M)/T ) is a finite set for each finite submod-
ule T of ExtjR(R/�, M).

Proof. The only nontrivial part is (ii) ⇒ (i).
Suppose � is a maximal ideal of R. By hypothesis M� is �R�-cofinite.

Therefore ExtjR(R/�, M)� is a finite R�-module for all j . Hence by Proposi-
tion 2.1 ExtjR(R/�, M) is finite for all j . Thus M is �-cofinite.

Corollary 2.3. Let � an ideal of R such that dim R/� = 1, M a finite
R-module and i ≥ 0. The following statements are equivalent:

(i) Hi
�(M) is �-cofinite.

(ii) For all j , MinR(ExtjR(R/�, Hi
�(M))/T ) is a finite set for each finite

submodule T of ExtjR(R/�, Hi
�(M)).
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Proof. For all maximal ideals �, Hi
�(M)�

∼= Hi
�R�

(M�). By [4, The-
orem 1] Hi

�R�
(M�) is �R�-cofinite.

A module M is weakly Laskerian, when for each submodule N of M the
quotient M/N has just finitely many associated primes, see [6]. A module
M is �-weakly cofinite if SuppR(M) ⊂ V(�) and ExtiR(R/�, M) is weakly
Laskerian for all i. Clearly each �-cofinite module is �-weakly cofinite but the
converse is not true in general see [5, Example 3.5(i) and (ii)].

Corollary 2.4. If Hi
�(M) (with dim R/� = 1) is an �-weakly cofinite

module, then it is also �-cofinite.

Next we will introduce a subcategory of the category of R-modules that has
been studied by Zöschinger in [16, Satz 1.6].

Theorem 2.5 (Zöschinger). For any R-module M the following are equi-
valent:

(i) M satisfies the minimal condition for submodules N such that M/N is
soclefree.

(ii) For any descending chain N1 ⊃ N2 ⊃ N3 ⊃ · · · of submodules of M ,
there is n such that the quotients Ni/Ni+1 have support in Max R for all
i ≥ n.

(iii) With L(M) = ⊕
�∈Max R ��(M), the module M/L(M) has finite Goldie

dimension, and dim R/� ≤ 1 for all � ∈ AssR(M).

If they are fulfilled, then for each monomorphism f : M −→ M ,

SuppR(Coker f ) ⊂ Max R.

We will say that M is in the class Z if M satisfies the equivalent conditions
in Theorem 2.5.

A module M is soclefree if it has no simple submodules, or in other terms
Ass M ∩Max R = ∅. For example if M is a module over the local ring (R, �)

then the module M/��(M), where ��(M) is the submodule of M consisting
of all elements of M annihilated by some high power �n of the maximal ideal
�, is always soclefree.

Proposition 2.6. The class Z is a Serre subcategory of the category
of R-modules, that is Z is closed under taking submodules, quotients and
extensions.

Proof. The only difficult part is to show that Z is closed under taking

extensions. To this end let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be an ex-

act sequence with M ′, M ′′ ∈ Z and let N1 ⊃ N2 ⊃ · · · be a descend-
ing chain of submodules of M . Consider the descending chains f −1(N1) ⊃
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f −1(N2) ⊃ · · · and g(N1) ⊃ g(N2) ⊃ · · · of submodules of M ′ and M ′′ re-
spectively. By (ii) there is n such that SuppR(f −1(Ni)/f

−1(Ni+1)) ⊂ Max R

and SuppR(g(Ni)/g(Ni+1)) ⊂ Max R for all i ≥ n. We use the exact sequence

0 −→ f −1(Ni)/f
−1(Ni+1) −→ Ni/Ni+1 −→ g(Ni)/g(Ni+1) −→ 0.

to conclude that SuppR(Ni/Ni+1) ⊂ Max R for all i ≥ n.

Theorem 2.7. Let N be a module over a noetherian ring R and � an ideal
of R such that dim R/� = 1. If N� is �R�-cofinite for all � ∈ Max R, then
N is in the class Z . In particular, if M is a finite R-module, then Hi

�(M) is in
the class Z for all i.

Proof. Let X = N/L(N). Note that AssR(X) ⊂ Min � and therefore is a
finite set. Since

E(X) =
⊕

�∈AssR(X)

E(R/�)μ
i(�,X),

it is enough to prove that μi(�, X) is finite for all � ∈ AssR(X). This is clear,
since each � ∈ AssR(X) is minimal over � and therefore X�

∼= N� which is,
�R�-cofinite, i.e. artinian over R�.

Given elements x1, . . . , xr in R, we denote by Hi (x1, . . . , xr; M) the i’th
Koszul cohomology module of the R-module M . The following lemma is used
in the proof of Theorem 2.10.

Lemma 2.8. Let E be an injective module. If H0(x1, . . . , xr; E) = 0, then
Hi (x1, . . . , xr; E) = 0 for all i.

Proof. We may assume that E = E(R/�) for some prime ideal �, since
E is a direct sum of modules of this form, and Koszul cohomology preserves
(arbitrary) direct sums.

Put � = (x1, . . . , xr). By hypothesis 0 :E � = 0, which means that
� �⊂ �. Take an element s ∈ � \ �. It acts bijectively on E, hence also on
Hi (x1, . . . , xr; E) for each i. But � ⊂ AnnR(Hi (x1, . . . , xr; E)) for all i, so the
element s therefore acts as the zero homomorphism on each Hi (x1, . . . , xr; E).
The conclusion follows.

First we state the definition, given in [10], of the notion of filter regularity
on modules (not necessarily finite) over any noetherian ring. When (R, �) is
local and M is finite, it yields the ordinary notion of filter-regularity, see [12].

Definition 2.9. Let M be a module over the noetherian ring R. An element
x of R is called filter-regular on M if the module 0 :M x has finite length.

A sequence x1, . . . , xs is said to be filter regular on M if xj is filter-regular
on M/(x1, . . . , xj−1)M for j = 1, . . . , s.
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The following theorem yields a characterization of artinian cofinite local
cohomology modules.

Theorem 2.10. Let � = (x1, . . . , xr) be an ideal of a noetherian ring R

and let n be a positive integer. For each R-module M the following conditions
are equivalent:

(i) Hi
�(M) is artinian and �-cofinite for all i < n.

(ii) ExtiR(R/�, M) has finite length for all i < n.

(iii) The Koszul cohomology module Hi (x1, . . . , xr; M) has finite length for
all i < n.

When M is finite these conditions are also equivalent to:

(iv) Hi
�(M) is artinian for all i < n.

(v) There is a sequence of length n in � that is filter-regular on M .

Proof. We use induction on n. When n = 1 the conditions (ii) and (iii)
both say that 0 :M � has finite length, and they are therefore equivalent to (i)
[10, Proposition 4.1].

Let n > 1 and assume that the conditions are equivalent when n is replaced
by n − 1. Put L = ��(M) and M = M/L and form the exact sequence
0 −→ L −→ M −→ M −→ 0. We have ��(M) = 0 and Hi

�(M) ∼= Hi
�(M)

for all i > 0. There are exact sequences

ExtiR(R/�, L) → ExtiR(R/�, M) → ExtiR(R/�, M) → Exti+1
R (R/�, L)

and

Hi (x1, . . . , xr; L) → Hi (x1, . . . , xr; M)

→ Hi (x1, . . . , xr; M) → Hi+1(x1, . . . , xr; L)

Because L is artinian and �-cofinite the outer terms of both exact sequences
have finite length. Hence M satisfies one of the conditions if and only if M

satisfies the same condition. We may therefore assume that ��(M) = 0.
Let E be the injective hull of M and put N = E/M . Consider the exact

sequence 0 −→ M −→ E −→ N −→ 0. We know that 0 :M � = 0.
Therefore 0 :E � = 0 and ��(E) = 0. Consequently there are isomorphisms
for all i ≥ 0:

Hi+1
� (M) ∼= Hi

�(N), Exti+1
R (R/�, M) ∼= ExtiR(R/�, N)

and
Hi+1(x1, . . . , xr; M) ∼= Hi (x1, . . . , xr; N).
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In order to get the third isomorphism, we used that Hi (x1, . . . , xr; E) = 0 for
all i ≥ 0 (Lemma 2.8). Hence M satisfies one of the three conditions if and
only if N satisfies the same condition, with n replaced by n− 1. By induction,
we may therefore conclude that the module M satisfies all three conditions if
it satisfies one of them.

Let now M be a finite module.
(ii) ⇔ (iv) Use [10, Theorem 5.5(i) ⇔ (ii)].
(v) ⇒ (i) Use [10, Theorem 6.4].
(i) ⇒ (v)We give a proof by induction onn. PutL = ��(M) andM = M/L.

Then AssR L = AssR M ∩ V(�) and AssR M = AssR M \ V(�). The module
L has finite length and therefore AssR L ⊂ Max R. By prime avoidance take
an element y1 ∈ �\⋃

�∈AssR(M) �. Then AssR(0 :M y1) = AssR(M)∩V(y1) =
(AssR L ∩ V(y1)) ∪ (AssR M ∩ V(y1)) ⊂ Max R. Hence 0 :M y1 has finite
length, so the element y1 ∈ � is filter regular on M .

Suppose n > 1 and take y1 as above.
Note that Hi

�(M) ∼= Hi
�(M) for all i ≥ 1. Thus we may replace M by M ,

[10, Proposition 6.3(b)], and we may assume that y1 is a non-zerodivisor on
M .

The exact sequence 0 → M
y1→ M → M/y1M → 0 yields the long exact

sequence

· · · −→ Hi−1
� (M) −→ Hi−1

� (M/y1M) −→ Hi
�(M) −→ · · · .

Hence Hi
�(M/y1M) is �-cofinite and artinian for all i < n − 1, by [11, Corol-

lary 1.7]. Therefore by the induction hypothesis there exists y2, . . . , yn in �,
which is filter-regular on M/y1M . Thus y1, . . . , yn is filter-regular on M .

Remark. In [1] we studied the kernel and cokernel of the natural homo-
morphism f : ExtnR(R/�, M) → HomR(R/�, Hn

�(M)). Applying the cri-
terion of Theorem 2.10 we get that if Extt−j

R (R/�, H
j
�(M)) has finite length

for t = n, n + 1 and for all j < n, then ExtnR(R/�, M) has finite length if and
only if Hn

�(M) is �-cofinite artinian.

Next we will study attached and coassociated prime ideals for the last non-
vanishing local cohomology module. First we prove a lemma used in Corol-
lary 2.13

Lemma 2.11. For all R-modules M and for every finite R-module N ,

AttR(M ⊗R N) = AttR(M) ∩ SuppR(N).

Proof. Let � ∈ AttR(M ⊗R N), so � = AnnR((M ⊗R N) ⊗R R/�).
However this ideal contains both AnnR(M/�M) and AnnR(N) and therefore
� = AnnR(M/�M) and � ∈ SuppR(N).
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Conversely let � ∈ AttR(M) ∩ SuppR(N). Then � = Ann M/�M and we
want to show that � = AnnR((M ⊗R N) ⊗R R/�). Since

(M ⊗R N) ⊗R R/� ∼= M/�M ⊗R/� N/�N,

we may assume that R is a domain and � = (0). Let K be the field of fractions of
R. Then Ann M = 0 and N ⊗R K �= 0. Therefore the natural homomorphism
f : R −→ EndR(M) is injective and we have the following exact sequence

0 −→ HomR(N, R) −→ HomR(N, EndR(M)).

But HomR(N, EndR(M)) ∼= HomR(M ⊗R N, M). Hence we get

AnnR(M ⊗R N) ⊂ AnnR HomR(M ⊗R N, M)

⊂ AnnR HomR(N, R) ⊂ AnnR(HomR(N, R) ⊗R K).

On the other hand HomR(N, R) ⊗R K ∼= HomR(N ⊗R K, K), which is a
nonzero vector space over K . Consequently AnnR(M ⊗R N) = 0.

Theorem 2.12. Let (R, �) be a complete local ring and let � be an ideal
of R. Let t be a nonnegative integer such that Hi

�(R) = 0 for all i > t .

(a) If � ∈ AttR(Ht
�(R)) then dim R/� ≥ t.

(b) If � is a prime ideal such that dim R/� = t , then the following conditions
are equivalent:

(i) � ∈ CoassR(Ht
�(R)).

(ii) � ∈ AttR(Ht
�(R)).

(iii) Ht
�(R/�) �= 0.

(iv)
√

� + � = �.

Proof. (a) By the right exactness of the functor Ht
�(−) we have

(1) Ht
�(R/�) ∼= Ht

�(R)/� Ht
�(R)

If � ∈ AttR(Ht
�(R)), then Ht

�(R)/� Ht
�(R) �= 0. Hence Ht

�(R/�) �= 0 and
dim R/� ≥ t.

(b) Since R/� is a complete local domain of dimension t , the equivalence
of (iii) and (iv) follows from the local Lichtenbaum Hartshorne vanishing
theorem.

If Ht
�(R/�) �= 0, then by (1) Ht

�(R)/� Ht
�(R) �= 0. Therefore � ⊂ �

for some � ∈ CoassR(Ht
�(R)) ⊂ AttR(Ht

�(R)). By (a) dim R/� ≥ t =
dim R/�, so we must have � = �. Thus (iii) implies (i) and since always
CoassR(Ht

�(R)) ⊂ AttR(Ht
�(R)), (i) implies (ii).
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If (ii) holds then the module Ht
�(R)/� Ht

�(R) �= 0, since its annihilator is
�. Hence, using again the isomorphism (1), (ii) implies (iii).

Corollary 2.13. Let (R, �) be a complete local ring, � an ideal of R and
M a finite R-module and t a nonnegative integer such that Hi

�(M) = 0 for all
i > t .

(a) If � ∈ AttR(Ht
�(M)) then dim R/� ≥ t.

(b) If � is a prime ideal in SuppR(M) such that dim R/� = t , then the
following conditions are equivalent:

(i) � ∈ CoassR(Ht
�(M)).

(ii) � ∈ AttR(Ht
�(M)).

(iii) Ht
�(R/�) �= 0.

(iv)
√

� + � = �.

Proof. Passing from R to R/ Ann M , we may assume that Ann M = 0
and therefore using Gruson’s theorem, see [13, Theorem 4.1], Hi

�(N) = 0 for
all i > t and every R-module N . Hence the functor Ht

�(−) is right exact and
therefore, since it preserves direct limits, we get

Ht
�(M) ∼= M ⊗R Ht

�(R).

The claims follow from Theorem 2.12 using the following equalities

CoassR(Ht
�(M)) = CoassR(Ht

�(R)) ∩ SuppR(M)

by [16, Folgerung 3.2] and

AttR(Ht
�(M)) = AttR(Ht

�(R)) ∩ SuppR(M)

by Lemma 2.11.
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