ABSOLUTELY CONVERGENT FOURIER SERIES AND GENERALIZED ZYGMUND CLASSES OF FUNCTIONS

FERENC MÓRICZ*

Abstract

We investigate the order of magnitude of the modulus of smoothness of a function f with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that f belongs to one of the generalized $\operatorname{Zygmund}$ classes $\operatorname{Zyg}(\alpha, L)$ and $\operatorname{Zyg}(\alpha, 1 / L)$, where $0 \leq \alpha \leq 2$ and $L=L(x)$ is a positive, nondecreasing, slowly varying function and such that $L(x) \rightarrow \infty$ as $x \rightarrow \infty$. A continuous periodic function f with period 2π is said to belong to the class $\operatorname{Zyg}(\alpha, L)$ if $$
|f(x+h)-2 f(x)+f(x-h)| \leq C h^{\alpha} L\left(\frac{1}{h}\right) \quad \text { for all } x \in \mathrm{~T} \text { and } h>0,
$$ where the constant C does not depend on x and h; and the class $\operatorname{Zyg}(\alpha, 1 / L)$ is defined analogously. The above sufficient conditions are also necessary in case the Fourier coefficients of f are all nonnegative.

1. Introduction

Let $\left\{c_{k}: k \in \mathbf{Z}\right\}$ be a sequence of complex numbers, in symbols: $\left\{c_{k}\right\} \subset \mathbf{C}$, such that

$$
\begin{equation*}
\sum_{k \in Z}\left|c_{k}\right|<\infty \tag{1.1}
\end{equation*}
$$

Then the trigonometric sereies

$$
\begin{equation*}
\sum_{k \in \mathrm{Z}} c_{k} e^{i k x}=: f(x) \tag{1.2}
\end{equation*}
$$

converges uniformly; consequently, it is the Fourier series of its sum f.

[^0]We recall (see, e.g., $[1$, p. 6]) that a positive measurable function L defined on some neighborhood $[a, \infty)$ of infinity is said to be slowly varying (in Karamata's sense) if

$$
\begin{equation*}
\frac{L(\lambda x)}{L(x)} \rightarrow 1 \quad \text { as } \quad x \rightarrow \infty \quad \text { for every } \quad \lambda>0 \tag{1.3}
\end{equation*}
$$

The neighborhood $[a, \infty)$ is of little importance. One may suppose that L is defined on $(0, \infty)$, for instance, by setting $L(x):=L(a)$ on $(0, a)$. A typical slowly varying function is

$$
L(x):= \begin{cases}1 & \text { for } 0<x<2 \\ \log x & \text { for } x \geq 2\end{cases}
$$

In this paper, we consider positive, nondecreasing, slowly varying functions. In this case, it is enough to require the fulfillment of (1.3) only for a single value of λ, say $\lambda:=2$. To be more specific, the following condition $(*)$ will be required in our theorems and lemmas.

Condition $(*) . \quad L$ is a positive, nondecreasing function defined on $(0, \infty)$ and satisfies the limit relations

$$
L(x) \rightarrow \infty \quad \text { and } \quad \frac{L(2 x)}{L(x)} \rightarrow 1 \quad \text { as } \quad x \rightarrow \infty
$$

Given $\alpha>0$ and a function L satisfying condition $(*)$, a continuous periodic function f is said to belong to the generalized $\operatorname{Zygmund}$ class $\operatorname{Zyg}(\alpha, L)$ if for all $h>0$,

$$
\begin{equation*}
\omega_{2}(f ; h):=\sup _{x \in \mathrm{~T}}|f(x+h)-2 f(x)+f(x-h)| \leq C h^{\alpha} L\left(\frac{1}{h}\right) \tag{1.4}
\end{equation*}
$$

where the constant $C=C(f)$ does not depend on h, and $\omega_{2}(f ; h)$ is the modulus of smoothness of the function f.

Furthermore, given $\alpha \geq 0$ and L with condition $(*), f$ is said to belong to the generalized Zygmund class $\operatorname{Zyg}(\alpha, 1 / L)$ if for all $h>0$,

$$
\begin{equation*}
\omega_{2}(f ; h) \leq C h^{\alpha} \frac{1}{L\left(\frac{1}{h}\right)} \tag{1.5}
\end{equation*}
$$

It is worth observing that if $f \in \operatorname{Zyg}(\alpha, L)$ for some $\alpha>2$, or if $f \in$ $\operatorname{Zyg}(\alpha, 1 / L)$ for some $\alpha \geq 2$, then $f \equiv$ constant (cf. [2, Ch. 2]). Clearly, we have

$$
\begin{aligned}
& \operatorname{Lip}(\alpha, L \subset \operatorname{Zyg}(\alpha, L) \text { for } 0<\alpha \leq 1 \\
& \operatorname{Lip}(\alpha, 1 / L) \subset \operatorname{Zyg}(\alpha, 1 / L) \text { for } 0 \leq \alpha \leq 1
\end{aligned}
$$

We note that the generalized Lipschitz classes $\operatorname{Lip}(\alpha, L)$ and $\operatorname{Lip}(\alpha, 1 / L)$ were defined analogously in [6] where $\omega_{2}(f ; h)$ is replaced in (1.4) and (1.5) by

$$
\omega(f ; h)=\omega_{1}(f ; h):=\sup _{x \in \mathrm{~T}}|f(x+h)-f(x)|, \quad h>0,
$$

the ordinary modulus of continuity of the function f.
Various kinds of generalized Lipschitz and/or Zygmund classes of periodic functions were introduced in [3], [4], [7], [8], in which necessary and/or sufficient conditions were given in order that the sum of an absolutely convergent sine or cosine series with nonnegative coefficients belong to one of those generalized classes of order α for some $0<\alpha \leq 1$. However, the case $1<\alpha \leq 2$ was not considered at all in the papers indicated above.

2. New results

Theorem 1. Suppose $\left\{c_{k}\right\} \subset C$ with (1.1), f is defined in (1.2), and L satisfies condition (*).
(i) Iffor some $0<\alpha \leq 2$,

$$
\begin{equation*}
\sum_{|k| \leq n} k^{2}\left|c_{k}\right|=O\left(n^{2-\alpha} L(n)\right), \quad n \in \mathbf{N} \tag{2.1}
\end{equation*}
$$

then $f \in \operatorname{Zyg}(\alpha, L)$.
(ii) Conversely, if $\left\{c_{k}\right\}$ is a sequence of nonnegative real numbers, in symbols: $\left\{c_{k}\right\} \subset \mathbf{R}_{+}$, and $f \in \operatorname{Zyg}(\alpha, L)$ for some $0<\alpha \leq 2$, then (2.1) holds.

We note that in case $0<\alpha<2$ condition (2.1) is equivalent to the following condition:

$$
\begin{equation*}
\sum_{|k| \geq n}\left|c_{k}\right|=O\left(n^{-\alpha} L(n)\right), \quad n \in \mathrm{~N} \tag{2.2}
\end{equation*}
$$

This claim is a straightforward consequence of Lemma 1 in Section 3.
We also note that, in case $\alpha=1$ and $L \equiv 1$, Theorem 1 was proved in [5, Theorem 3].

The next Theorem 2 is a natural counterpart of Theorem 1.
Theorem 2. Suppose $\left\{c_{k}\right\} \subset C$ with (1.1), f is defined in (1.2), and L satisfies condition (*).
(i) If for some $0 \leq \alpha<2$,

$$
\begin{equation*}
\sum_{|k| \geq n}\left|c_{k}\right|=O\left(\frac{n^{-\alpha}}{L(n)}\right), \quad n \in \mathrm{~N} \tag{2.3}
\end{equation*}
$$

then $f \in \operatorname{Zyg}(\alpha, 1 / L)$.
(ii) Conversely, if $\left\{c_{k}\right\} \subset \mathrm{R}_{+}$and $f \in \operatorname{Zyg}(\alpha, 1 / L)$ for some $0 \leq \alpha<2$, then (2.3) holds.

We note that in case $0<\alpha<2$ condition (2.3) is equivalent to the following condition:

$$
\begin{equation*}
\sum_{|k| \leq n} k^{2}\left|c_{k}\right|=O\left(\frac{n^{2-\alpha}}{L(n)}\right), \quad n \in \mathrm{~N} \tag{2.4}
\end{equation*}
$$

This claim is a straightforward consequence of Lemma 2 in Section 3.

3. Auxiliary results

We recall three lemmas from [6, Lemmas 3, 4 and 6].
Lemma 1. Suppose $\left\{a_{k}: k \in \mathbf{N}\right\} \subset \mathbf{R}_{+}$with $\sum a_{k}<\infty$ and L satisfies condition $(*)$.
(i) If for some $\delta>\gamma \geq 0$,

$$
\begin{equation*}
\sum_{k=1}^{n} k^{\delta} a_{k}=O\left(n^{\gamma} L(n)\right) \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(n^{\gamma-\delta} L(n)\right), \quad n \in \mathrm{~N} \tag{3.2}
\end{equation*}
$$

(ii) Conversely, if (3.2) holds for some $\delta \geq \gamma>0$, then (3.1) also holds.

Consequently, in case $\delta>\gamma>0$ conditions (3.1) and (3.2) are equivalent.
Lemma 2. Suppose $\left\{a_{k}\right\} \subset \mathbf{R}_{+}$with $\sum a_{k}<\infty$ and L satisfies condition (*).
(i) If for some $\delta>\gamma>0$,

$$
\begin{equation*}
\sum_{k=1}^{n} k^{\delta} a_{k}=O\left(\frac{n^{\gamma}}{L(n)}\right) \tag{3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\frac{n^{\gamma-\delta}}{L(n)}\right), \quad n \in \mathrm{~N} \tag{3.4}
\end{equation*}
$$

(ii) Conversely, if (3.4) holds for some $\delta \geq \gamma>0$, then (3.3) also holds.

Consequently, in case $\delta>\gamma>0$ conditions (3.3) and (3.4) are equivalent.
Lemma 3. If L satisfies condition ($*$) and $\eta>-1$, then

$$
\int_{0}^{h} \frac{x^{\eta}}{L\left(\frac{1}{x}\right)} d x=O\left(\frac{h^{\eta+1}}{L\left(\frac{1}{h}\right)}\right), \quad h>0
$$

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. (i) Suppose (2.1) is satisfied for some $0<\alpha \leq 2$. By (1.1) and (1.2), we may write that

$$
\begin{align*}
|f(x+h)-2 f(x)+f(x-h)| & =\left|\sum_{k \in Z} c_{k} e^{i k x}\left(e^{i k h}-2+e^{-i k h}\right)\right| \tag{4.1}\\
& \leq\left\{\sum_{|k| \leq n}+\sum_{|k|>n}\right\}\left|c_{k}\right|\left|e^{i k h}-2+e^{-i k h}\right| \\
& =: A_{n}+B_{n}
\end{align*}
$$

say, where n is defined by

$$
\begin{equation*}
n:=[1 / h], \quad h>0 \tag{4.2}
\end{equation*}
$$

and $[\cdot]$ means the integer part.
We will use the inequality
(4.3) $\quad\left|e^{i k h}-2+e^{-i k h}\right|=|2 \cos k h-2|$

$$
=4 \sin ^{2} \frac{k h}{2} \leq \min \left\{4, k^{2} h^{2}\right\}, \quad k \in Z
$$

By (2.1) and (4.2), we obtain

$$
\begin{array}{rl}
\left|A_{n}\right| \leq h^{2} \sum_{|k| \leq n} k^{2}\left|c_{k}\right|=h^{2} O & O\left(n^{2-\alpha} L(n)\right) \tag{4.4}\\
& =h^{2} O\left(h^{\alpha-2} L\left(\frac{1}{h}\right)\right)=O\left(h^{\alpha} L\left(\frac{1}{h}\right)\right)
\end{array}
$$

Due to Lemma 1, Part (i) (applied with $\gamma:=2-\alpha$ and $\delta:=2$), condition (2.1) implies (2.2). Now, by (2.2) and (4.2), we find that

$$
\begin{equation*}
\left|B_{n}\right| \leq 4 \sum_{|k|>n}\left|c_{k}\right|=4 O\left(n^{-\alpha} L(n)\right)=O\left(h^{\alpha} L\left(\frac{1}{h}\right)\right) \tag{4.5}
\end{equation*}
$$

Combining (4.1), (4.4) and (4.5) yields $f \in \operatorname{Zyg}(\alpha, L)$.
(ii) Conversely, suppose $c_{k} \geq 0$ for all k and that $f \in \operatorname{Zyg}(\alpha, L)$ for some $0<\alpha \leq 2$. Then there exists a constant C such that

$$
\begin{align*}
|f(h)-2 f(0)+f(-h)| & =\left|\sum_{k \in Z} c_{k}\left(e^{i k h}-2+e^{-i k h}\right)\right| \tag{4.6}\\
& =\left|\sum_{k \in Z} c_{k}(2 \cos k h-2)\right|=\sum_{k \in \mathbb{Z}} c_{k}(2-2 \cos k h) \\
& =4 \sum_{k \in Z} c_{k} \sin ^{2} \frac{k h}{2} \leq C h^{\alpha} L\left(\frac{1}{h}\right), \quad h>0
\end{align*}
$$

(cf. (4.3)). Making use of the well-known inequality

$$
\sin t \geq \frac{2}{\pi} t \quad \text { for } \quad 0 \leq t \leq \frac{\pi}{2}
$$

from (4.6) we conclude that

$$
4 \sum_{|k| \leq n} k^{2} c_{k} \frac{h^{2}}{\pi^{2}} \leq 4 \sum_{k \in Z} c_{k} \sin ^{2} \frac{k h}{2} \leq C h^{\alpha} L\left(\frac{1}{h}\right), \quad h>0
$$

where n is defined in (4.2). Now, hence it follows that

$$
\sum_{|k| \leq n} k^{2} c_{k} \leq \frac{C \pi^{2}}{4} h^{\alpha-2} L\left(\frac{1}{h}\right)=O\left(n^{2-\alpha} L(n)\right)
$$

which is (2.1) to be proved.
Proof of Theorem 2. (i) Suppose (2.3) is satisfied for some $0 \leq \alpha<2$. We start with (4.1), where n is defined in (4.2). Making use of the first inequality in (4.4) and applying Lemma 2, Part (ii) (with $\gamma:=2-\alpha$ and $\delta:=2$) yield

$$
\begin{equation*}
\left|A_{n}\right| \leq h^{2} \sum_{|k| \leq n} k^{2}\left|c_{k}\right|=h^{2} O\left(\frac{n^{2-\alpha}}{L(n)}\right)=O\left(\frac{h^{\alpha}}{L\left(\frac{1}{h}\right)}\right) \tag{4.7}
\end{equation*}
$$

On the other hand, by (2.3), (4.2) and (4.3), we find that

$$
\begin{equation*}
\left|B_{n}\right| \leq 4 \sum_{|k|>n}\left|c_{k}\right|=O\left(\frac{n^{-\alpha}}{L(n)}\right)=O\left(\frac{h^{\alpha}}{L\left(\frac{1}{h}\right)}\right) \tag{4.8}
\end{equation*}
$$

Combining (4.1), (4.7) and (4.8) gives $f \in \operatorname{Zyg}(\alpha, 1 / L)$.
(ii) Conversely, suppose that $c_{k} \geq 0$ for all k and that $f \in \operatorname{Zyg}(\alpha, 1 / L)$ for some $0 \leq \alpha<2$. Similarly to (4.6), this time we have

$$
\begin{align*}
|f(x)-2 f(0)+f(-x)| & =\mid \sum_{k \in Z} c_{k}\left(2 \cos k x-2 \mid=2 \sum_{k \in Z} c_{k}(1-\cos k x)\right. \tag{4.9}\\
& =O\left(\frac{x^{\alpha}}{L\left(\frac{1}{x}\right)}\right), \quad x>0
\end{align*}
$$

By uniform convergence, due to (1.1), the series $\sum c_{k}(1-\cos k x)$ may be integrated term by term on any interval $(0, h), h>0$. By Lemma 3, we conclude from (4.9) that

$$
\sum_{|k| \geq 1} c_{k}\left(h-\frac{\sin k h}{k}\right) \leq \frac{C h^{\alpha+1}}{L\left(\frac{1}{h}\right)}, \quad h>0
$$

where C is a constant. Setting $h:=1 / n$ and perhaps neglecting a finite number of nonnegative terms, we even have

$$
\begin{equation*}
\sum_{|k| \geq 2 n} c_{k}\left(\frac{1}{n}-\frac{\sin \frac{k}{n}}{k}\right) \leq \frac{C n^{-\alpha-1}}{L(n)}, \quad n \in \mathrm{~N} \tag{4.10}
\end{equation*}
$$

Since

$$
\frac{1}{n}-\frac{\sin \frac{k}{n}}{k} \geq \frac{1}{2 n} \quad \text { for all } \quad|k| \geq 2 n
$$

it follows from (4.10) that

$$
\frac{1}{2} n^{-1} \sum_{|k| \geq 2 n} c_{k} \leq \frac{C n^{-\alpha-1}}{L(n)}, \quad n \in \mathrm{~N}
$$

Due to (1.3), this inequality is equivalent to (2.3) to be proved.

REFERENCES

1. Bingham, N. H., Goldie, C. M., and Teugels, J. L., Regular Variation, Cambridge Univ. Press, 1987.
2. DeVore, R., and Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
3. Izumi, M., and Izumi, S., Lipschitz classes and Fourier coefficients, J. Math. Mech. 18 (1969), 857-870.
4. Leindler, L., Strong approximation and generalized Zygmund class, Acta Sci. Math. (Szeged) 43 (1981), 301-309.
5. Móricz, F., Absolutely convergent Fourier series and function classes, J. Math. Anal. Appl. 324 (2006), 1168-1177.
6. Móricz, F., Absolutely convergent Fourier series and generalized Lipschitz classes of functions, Colloq. Math. 113 (2008), 105-117.
7. Németh, J., Fourier series with positive coefficients and generalized Lipschitz classes, Acta Sci. Math. (Szeged) 54 (1990), 291-304.
8. Németh, J., Strong approximation and classes of functions, Acta Sci. Math. (Szeged) 57 (1993), 453-461.

BOLYAI INSTITUTE
UNIVERSITY OF SZEGED
ARADI VÉRTANÚK TERE 1
6720 SZEGED
HUNGARY
E-mail: moricz@math.u-szeged.hu

[^0]: * This research was supported by the Hungarian National Foundation for Scientific Research under Grant T 046192.

 Received August 10, 2007.

