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ABSOLUTELY CONVERGENT FOURIER SERIES
AND GENERALIZED ZYGMUND CLASSES

OF FUNCTIONS

FERENC MÓRICZ∗

Abstract

We investigate the order of magnitude of the modulus of smoothness of a function f with absolutely
convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order
that f belongs to one of the generalized Zygmund classes Zyg(α, L) and Zyg(α, 1/L), where
0 ≤ α ≤ 2 and L = L(x) is a positive, nondecreasing, slowly varying function and such that
L(x) → ∞ as x → ∞. A continuous periodic function f with period 2π is said to belong to the
class Zyg(α, L) if

|f (x + h) − 2f (x) + f (x − h)| ≤ ChαL

(
1

h

)
for all x ∈ T and h > 0,

where the constant C does not depend on x and h; and the class Zyg(α, 1/L) is defined analogously.
The above sufficient conditions are also necessary in case the Fourier coefficients of f are all
nonnegative.

1. Introduction

Let {ck : k ∈ Z} be a sequence of complex numbers, in symbols: {ck} ⊂ C,
such that

(1.1)
∑
k∈Z

|ck| < ∞.

Then the trigonometric sereies

(1.2)
∑
k∈Z

cke
ikx =: f (x)

converges uniformly; consequently, it is the Fourier series of its sum f .
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We recall (see, e.g., [1, p. 6]) that a positive measurable function L defined
on some neighborhood [a, ∞) of infinity is said to be slowly varying (in Kara-
mata’s sense) if

(1.3)
L(λx)

L(x)
→ 1 as x → ∞ for every λ > 0.

The neighborhood [a, ∞) is of little importance. One may suppose that L is
defined on (0, ∞), for instance, by setting L(x) := L(a) on (0, a). A typical
slowly varying function is

L(x) :=
{

1 for 0 < x < 2,

log x for x ≥ 2.

In this paper, we consider positive, nondecreasing, slowly varying functions.
In this case, it is enough to require the fulfillment of (1.3) only for a single
value of λ, say λ := 2. To be more specific, the following condition (∗) will
be required in our theorems and lemmas.

Condition (∗). L is a positive, nondecreasing function defined on (0, ∞)

and satisfies the limit relations

L(x) → ∞ and
L(2x)

L(x)
→ 1 as x → ∞.

Given α > 0 and a function L satisfying condition (∗), a continuous periodic
function f is said to belong to the generalized Zygmund class Zyg(α, L) if for
all h > 0,

(1.4) ω2(f ; h) := sup
x∈T

|f (x + h) − 2f (x) + f (x − h)| ≤ ChαL

(
1

h

)
,

where the constant C = C(f ) does not depend on h, and ω2(f ; h) is the
modulus of smoothness of the function f .

Furthermore, given α ≥ 0 and L with condition (∗), f is said to belong to
the generalized Zygmund class Zyg(α, 1/L) if for all h > 0,

(1.5) ω2(f ; h) ≤ Chα 1

L
(

1
h

) .

It is worth observing that if f ∈ Zyg(α, L) for some α > 2, or if f ∈
Zyg(α, 1/L) for some α ≥ 2, then f ≡ constant (cf. [2, Ch. 2]). Clearly, we
have
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Lip(α, L ⊂ Zyg(α, L) for 0 < α ≤ 1;

Lip(α, 1/L) ⊂ Zyg(α, 1/L) for 0 ≤ α ≤ 1.

We note that the generalized Lipschitz classes Lip(α, L) and Lip(α, 1/L) were
defined analogously in [6] where ω2(f ; h) is replaced in (1.4) and (1.5) by

ω(f ; h) = ω1(f ; h) := sup
x∈T

|f (x + h) − f (x)|, h > 0,

the ordinary modulus of continuity of the function f .
Various kinds of generalized Lipschitz and/or Zygmund classes of periodic

functions were introduced in [3], [4], [7], [8], in which necessary and/or suffi-
cient conditions were given in order that the sum of an absolutely convergent
sine or cosine series with nonnegative coefficients belong to one of those gen-
eralized classes of order α for some 0 < α ≤ 1. However, the case 1 < α ≤ 2
was not considered at all in the papers indicated above.

2. New results

Theorem 1. Suppose {ck} ⊂ C with (1.1), f is defined in (1.2), and L satisfies
condition (∗).

(i) If for some 0 < α ≤ 2,

(2.1)
∑
|k|≤n

k2|ck| = O(n2−αL(n)), n ∈ N,

then f ∈ Zyg(α, L).
(ii) Conversely, if {ck} is a sequence of nonnegative real numbers, in sym-

bols: {ck} ⊂ R+, and f ∈ Zyg(α, L) for some 0 < α ≤ 2, then (2.1) holds.

We note that in case 0 < α < 2 condition (2.1) is equivalent to the following
condition:

(2.2)
∑
|k|≥n

|ck| = O(n−αL(n)), n ∈ N.

This claim is a straightforward consequence of Lemma 1 in Section 3.
We also note that, in case α = 1 and L ≡ 1, Theorem 1 was proved in [5,

Theorem 3].
The next Theorem 2 is a natural counterpart of Theorem 1.

Theorem 2. Suppose {ck} ⊂ C with (1.1), f is defined in (1.2), and L

satisfies condition (∗).
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(i) If for some 0 ≤ α < 2,

(2.3)
∑
|k|≥n

|ck| = O

(
n−α

L(n)

)
, n ∈ N,

then f ∈ Zyg(α, 1/L).
(ii) Conversely, if {ck} ⊂ R+ and f ∈ Zyg(α, 1/L) for some 0 ≤ α < 2,

then (2.3) holds.

We note that in case 0 < α < 2 condition (2.3) is equivalent to the following
condition:

(2.4)
∑
|k|≤n

k2|ck| = O

(
n2−α

L(n)

)
, n ∈ N.

This claim is a straightforward consequence of Lemma 2 in Section 3.

3. Auxiliary results

We recall three lemmas from [6, Lemmas 3, 4 and 6].

Lemma 1. Suppose {ak : k ∈ N} ⊂ R+ with
∑

ak < ∞ and L satisfies
condition (∗).

(i) If for some δ > γ ≥ 0,

(3.1)

n∑
k=1

kδak = O(nγ L(n)),

then

(3.2)

∞∑
k=n

ak = O(nγ−δL(n)), n ∈ N.

(ii) Conversely, if (3.2) holds for some δ ≥ γ > 0, then (3.1) also holds.

Consequently, in case δ > γ > 0 conditions (3.1) and (3.2) are equivalent.

Lemma 2. Suppose {ak} ⊂ R+ with
∑

ak < ∞ and L satisfies condition
(∗).

(i) If for some δ > γ > 0,

(3.3)

n∑
k=1

kδak = O

(
nγ

L(n)

)
,
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then

(3.4)

∞∑
k=n

ak = O

(
nγ−δ

L(n)

)
, n ∈ N.

(ii) Conversely, if (3.4) holds for some δ ≥ γ > 0, then (3.3) also holds.

Consequently, in case δ > γ > 0 conditions (3.3) and (3.4) are equivalent.

Lemma 3. If L satisfies condition (∗) and η > −1, then∫ h

0

xη

L
(

1
x

)dx = O

(
hη+1

L
(

1
h

))
, h > 0.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. (i) Suppose (2.1) is satisfied for some 0 < α ≤ 2. By
(1.1) and (1.2), we may write that
(4.1)

|f (x + h) − 2f (x) + f (x − h)| =
∣∣∣∣∑
k∈Z

cke
ikx(eikh − 2 + e−ikh)

∣∣∣∣
≤

{∑
|k|≤n

+
∑
|k|>n

}
|ck||eikh − 2 + e−ikh|

=: An + Bn,

say, where n is defined by

(4.2) n := [1/h], h > 0,

and [·] means the integer part.
We will use the inequality

(4.3) |eikh − 2 + e−ikh| = |2 cos kh − 2|
= 4 sin2 kh

2
≤ min{4, k2h2}, k ∈ Z.

By (2.1) and (4.2), we obtain

(4.4) |An| ≤ h2
∑
|k|≤n

k2|ck| = h2O(n2−αL(n))

= h2O

(
hα−2L

(
1

h

))
= O

(
hαL

(
1

h

))
.
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Due to Lemma 1, Part (i) (applied with γ := 2 − α and δ := 2), condition
(2.1) implies (2.2). Now, by (2.2) and (4.2), we find that

(4.5) |Bn| ≤ 4
∑
|k|>n

|ck| = 4O(n−αL(n)) = O

(
hαL

(
1

h

))
.

Combining (4.1), (4.4) and (4.5) yields f ∈ Zyg(α, L).
(ii) Conversely, suppose ck ≥ 0 for all k and that f ∈ Zyg(α, L) for some

0 < α ≤ 2. Then there exists a constant C such that
(4.6)

|f (h) − 2f (0) + f (−h)| =
∣∣∣∣∑
k∈Z

ck(e
ikh − 2 + e−ikh)

∣∣∣∣
=

∣∣∣∣∑
k∈Z

ck(2 cos kh − 2)

∣∣∣∣ =
∑
k∈Z

ck(2 − 2 cos kh)

= 4
∑
k∈Z

ck sin2 kh

2
≤ ChαL

(
1

h

)
, h > 0

(cf. (4.3)). Making use of the well-known inequality

sin t ≥ 2

π
t for 0 ≤ t ≤ π

2
,

from (4.6) we conclude that

4
∑
|k|≤n

k2ck

h2

π2
≤ 4

∑
k∈Z

ck sin2 kh

2
≤ ChαL

(
1

h

)
, h > 0,

where n is defined in (4.2). Now, hence it follows that

∑
|k|≤n

k2ck ≤ Cπ2

4
hα−2L

(
1

h

)
= O(n2−αL(n)),

which is (2.1) to be proved.

Proof of Theorem 2. (i) Suppose (2.3) is satisfied for some 0 ≤ α < 2.
We start with (4.1), where n is defined in (4.2). Making use of the first inequality
in (4.4) and applying Lemma 2, Part (ii) (with γ := 2 − α and δ := 2) yield

(4.7) |An| ≤ h2
∑
|k|≤n

k2|ck| = h2O

(
n2−α

L(n)

)
= O

(
hα

L
(

1
h

))
.
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On the other hand, by (2.3), (4.2) and (4.3), we find that

(4.8) |Bn| ≤ 4
∑
|k|>n

|ck| = O

(
n−α

L(n)

)
= O

(
hα

L
(

1
h

))
.

Combining (4.1), (4.7) and (4.8) gives f ∈ Zyg(α, 1/L).
(ii) Conversely, suppose that ck ≥ 0 for all k and that f ∈ Zyg(α, 1/L) for

some 0 ≤ α < 2. Similarly to (4.6), this time we have
(4.9)

|f (x) − 2f (0) + f (−x)| = ∣∣ ∑
k∈Z

ck(2 cos kx − 2
∣∣ = 2

∑
k∈Z

ck(1 − cos kx)

= O

(
xα

L
(

1
x

))
, x > 0.

By uniform convergence, due to (1.1), the series
∑

ck(1 − cos kx) may be
integrated term by term on any interval (0, h), h > 0. By Lemma 3, we
conclude from (4.9) that

∑
|k|≥1

ck

(
h − sin kh

k

)
≤ Chα+1

L
(

1
h

) , h > 0,

where C is a constant. Setting h := 1/n and perhaps neglecting a finite number
of nonnegative terms, we even have

(4.10)
∑

|k|≥2n

ck

(
1

n
− sin k

n

k

)
≤ Cn−α−1

L(n)
, n ∈ N.

Since
1

n
− sin k

n

k
≥ 1

2n
for all |k| ≥ 2n,

it follows from (4.10) that

1

2
n−1

∑
|k|≥2n

ck ≤ Cn−α−1

L(n)
, n ∈ N.

Due to (1.3), this inequality is equivalent to (2.3) to be proved.
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