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AN EXAMPLE OF A BOUNDED C-CONVEX DOMAIN
WHICH IS NOT BIHOLOMORPHIC TO

A CONVEX DOMAIN

NIKOLAI NIKOLOV, PETER PFLUG and WŁODZIMIERZ ZWONEK∗

Abstract

We show that the symmetrized bidisc is a C-convex domain. This provides an example of a bounded
C-convex domain which cannot be exhausted by domains biholomorphic to convex domains.

1. Introduction

Recall that a domain D in Cn is called C-convex if any non-empty intersection
with a complex line is contractible (cf. [2], [9]). A consequence of the fun-
damental Lempert theorem (see [12]) is the fact that any bounded C-convex
domain D with C2 boundary has the following property (see [8]):

(∗) The Carathéodory distance and the Lempert function of D coincide.

Any convex domain can be exhausted by smooth bounded convex ones (which
are obviously C-convex); therefore, any convex domain satisfies (∗), too. To
extend this phenomenon to bounded C-convex domains (see Problem 4’ in
[14]), it is sufficient to give a positive answer to one of the following questions:

(a) Can any bounded C-convex domain be exhausted by C2-smooth C-con-
vex domains? (See Problem 2 in [14] and Remark 2.5.20 in [2].)

(b) Is any bounded C-convex domain biholomorphic to a convex domain?
(See Problem 4 in [14].)

The main aim of this note is to give a negative answer to the question (b).
Denote by G2 the so-called symmetrized bidisc, that is, the image of the

bidisc under the mapping whose components are the two elementary symmet-
ric functions of two complex variables. G2 serves as the first example of a
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bounded pseudoconvex domain in C2 with the property (∗) which cannot be
exhausted by domains biholomorphic to convex domains (see [3], [6]). We
shall show that G2 is a C-convex domain. This fact gives a counterexample to
the question (b) and simultaneously, it supports the conjecture that (cf. Prob-
lem 4’ in [14]) any bounded C-convex domain has property (∗). Note that the
answer to the question (a) for G2 is not known. The positive answer to this
question would imply an alternative (to that of [4] and [1]) proof of the equality
of the Carathéodory distance and Lempert function on G2 whereas the negative
answer would solve Problem 2 in [14].

Some additional properties of C-convex domains and symmetrized poly-
discs are also given in the paper.

2. Background and results

Recall that a domain D in Cn is called (cf. [9], [2]):

• C-convex if any non-empty intersection with a complex line is contractible
(i.e. D ∩ L is connected and simply connected for any complex affine line
L such that L ∩ D is not empty);

• linearly convex if its complement in Cn is a union of affine complex hyper-
planes;

• weakly linearly convex if for any a ∈ ∂D there exists an affine complex
hyperplane through a which does not intersect D.

Note that the following implications hold:

C-convexity ⇒ linear convexity ⇒ weak linear convexity.

Moreover, these three notions coincide in the case of bounded domains with
C1 boundary (cf. [2], [9]).

Let D denote the unit disc in C. Let πn = (πn,1, . . . , πn,n) : Cn → Cn be
defined as follows:

πn,k(μ) =
∑

1≤j1<···<jk≤n

μj1 . . . , μjk
, 1 ≤ k ≤ n, μ = (μ1, . . . , μn) ∈ Cn.

The set Gn := πn(Dn) is called the symmetrized n-disc (cf. [1], [11]).
Recall that G2 is the first example of a bounded pseudoconvex domain with

the property (∗), which cannot be exhausted by domains biholomorphic to
convex ones (see [3], [6]). On the other hand, Gn, n ≥ 3, does not satisfy
the property (∗) (see [13]). In particular, it cannot be exhausted by domains
biholomorphic to convex domains, either.
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In this note we shall show the following additional properties of domains
Gn, n ≥ 2.

Theorem 1. (i) G2 is a C-convex domain.
(ii) Gn, n ≥ 3, is a linearly convex domain which is not C-convex.

Theorem 1 (i) together with a result of [3] and [6] gives a negative answer
to the following question posed by S. V. Znamenskiĭ (cf. Problem 4 in [14]):

Is any bounded C-convex domain biholomorphic to a convex domain?

Moreover, it seems to us that Theorem 1 (ii) gives the first example of a
linearly convex domain homeomorphic to Cn, n ≥ 3, which is not C-convex,
is not a Cartesian product and does not satisfy property (∗). To see that Gn

is homeomorphic to Cn, observe that ρλ(z) := (λz1, λ
2z2, . . . , λ

nzn) ∈ Gn

if z ∈ Gn and λ ∈ C. Then setting h(z) = max
1≤j≤n

{|μj | : πn(μ) = z} and

g(z) = 1
1−h(z)

, it is easy to see that the function Gn 	 z 
→ ρg(z)(z) ∈ Cn is
the desired homeomorphism.

These remarks also show that Gn is close, in some sense, to a balanced
domain, that is, a domain D in Cn such that λz ∈ D for any z ∈ D and λ ∈ D.
On the other hand, in spite of the properties of Gn, one has the following.

Proposition 2. Any weakly linearly convex balanced domain is convex.

This proposition is a simple extension of Example 2.2.4 in [2], where it is
shown that any C-convex complete Reinhardt domain is convex.

We may also prove some general property of C-convex domains showing
that all non-degenerate C-convex domains, that is, containing no complex lines,
are c-finitely compact. For definitions of the Carathéodory distance cD of the
domain D, c-finite compactness, c-completeness and basic properties of these
notions we refer the Reader to consult [10].

Observe that a degenerate linearly convex domain D is linearly equivalent to
C×D′ (cf. Proposition 4.6.11 in [9]). Indeed, we may assume that D contains
the z1-line. Since the complement cD of D is a union of complex hyperplanes
disjoint from this line, then cD = C × G and hence D = C × cG. On the other
hand, we have

Proposition 3. Any non-degenerate C-convex domain is biholomorphic to
a bounded domain and c-finitely compact. In particular, it is c-complete and
hyperconvex.

Remarks. (i) In virtue of Proposition 3, we claim that one may conjecture
more than the question (a) (see [15]), namely, any C-convex domain containing
no complex hyperplanes can be exhausted by bounded C2-smooth C-convex
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domains (this is not true in general without the above assumption); then the
Carathéodory pseudodistance and Lempert function will coincide on any C-
convex domain.

(ii) The hyperconvexity of Gn is simple and well-known (see [7]). The
above proposition implies more in dimension two. Namely, it implies that the
symmetrized bidisc is c-finitely compact. Although the symmetrized polydiscs
in higher dimensions are not C-convex the conclusion of the above proposition,
that is, the c-finite compactness of the symmetrized n-disc Gn, holds for any
n ≥ 2. In fact, it is a straightforward consequence of Corollary 3.2 in [5].

(iii) Finally, we mention that, for n ≥ 2, Gn is starlike with respect to
the origin if and only if n = 2. This observation gives the next difference in
the geometric shape of the 2-dimensional and higher dimensional symmetrized
discs. Recall that the fact that G2 is starlike is contained in [1]. For the converse
just take the point (3, 3, 1, 0, . . . , 0).

3. Proofs

Proof of Theorem 1 (i). We shall make use of the following description
of C-convex domains. For a ∈ ∂D, denote by �(a) the set of all hyperplanes
through a and disjoint from D. Then a bounded domain D in Cn, n > 1, is C-
convex if and only if for any a ∈ ∂D the set �(a) is non-empty and connected
as a set in CPn (cf. Theorem 2.5.2 in [2]).

So we have to check that �(a) is non-empty and connected for any a ∈ ∂G2.
Let us first consider a regular point of ∂G2, that is, a point of the form π2(μ),

where |μ1| = 1, |μ2| < 1 (or vice versa). Then the complex tangent line to
∂D at a is of the form {π2(μ1, λ) : λ ∈ C}, which is obviously disjoint from
G2. So �(a) is a singleton.

Now we fix a non-regular point of ∂G2, that is, a point of the form π2(μ),
where |μ1| = |μ2| = 1.

After a rotation we may assume that μ1μ2 = 1, that is, μ2 = μ̄1. Then
μ1 + μ2 = 2 Re μ1 =: 2x, where x ∈ [−1, 1].

We shall find all the possible directions of complex lines passing simul-
taneously through π2(μ) and an element of G2. Any such line is of the form
π2(μ) + C(π2(μ) − π2(λ)), where λ ∈ D2. So

A := c�(π2(μ)) =
{

λ1 + λ2 − 2x

λ1λ2 − 1
: λ1, λ2 ∈ D

}
.

In particular, �(π2(μ)) �= ∅.
To show the connectedness of �(π2(μ)), we shall check the simple-con-

nectedness of A. Let us recall that the mapping z−α
z−β

, where |β| > 1, maps the
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unit disc D onto the disc �( 1−αβ̄

1−|β|2 ,
|α−β|
|β|2−1

)
, so

{
λ + λ1 − 2x

λλ1 − 1
: λ ∈ D

}
= �

(
2x − 2 Re λ1

1 − |λ1|2 ,
|2xλ1 − λ2

1 − 1|
1 − |λ1|2

)
=: Aλ1 .

Consequently the set A = ⋃
λ1∈D Aλ1 ⊂ C is simply connected.

Proof of Theorem 1 (ii). For the proof of the linear convexity of Gn

consider the point z = πn(λ) ∈ Cn \ Gn. We may assume that |λ1| ≥ 1. Then
the set

B := {πn(λ1, μ1, . . . , μn−1) : μ1, . . . , μn−1 ∈ C}
is disjoint from Gn. On the other hand, it is easy to see that

B = {(λ1 + z1, λ1z1 + z2, . . . , λ1zn−2 + zn−1, λ1zn−1) : z1, . . . , zn−1 ∈ C},
so B is a complex affine hyperplane. Hence Gn is linearly convex.

To show that Gn is not C-convex for n ≥ 3, consider the points

at := πn(t, t, t, 0, . . . , 0) = (3t, 3t2, t3, 0, . . . , 0),

bt := πn(−t, −t, −t, 0, . . . , 0) = (−3t, 3t2, −t3, 0, . . . , 0), t ∈ (0, 1).

Obviously at , bt ∈ Gn. Denote by Lt the complex line passing through at and
bt , that is,

Lt = {ct,λ := (3t (1 − 2λ), 3t2, t3(1 − 2λ), 0, . . . , 0) : λ ∈ C}.
Assume that the set Gn ∩ Lt is connected. Since at = ct,0 and bt = ct,1, then
ct,λ ∈ Gn for some λ = 1

2 + iτ , τ ∈ R. It follows that

ct,λ = (−6iτ t, 3t2, −2iτ t3, 0, . . . , 0).

We may choose μ ∈ Dn such that μj = 0, j = 4, . . . , n, and ct,λ = πn(μ),
μ ∈ Dn. Then −36τ 2t2 = (μ1 + μ2 + μ3)

2 = μ2
1 + μ2

2 + μ2
3 + 6t2 and hence

t2 = |μ2
1 + μ2

2 + μ2
3|

36τ 2 + 6
<

3

36τ 2 + 6
≤ 1

2
.

Therefore, Gn ∩Lt is not connected if t ∈ [
1√
2
, 1

)
and so Gn is not a C-convex

domain.

Proof of Proposition 2. Set D∗ := {w ∈ Cn :< z, w > �= 1, ∀z ∈
D}. We shall use the fact that a domain D in Cn containing the origin is
weakly linearly convex if and only if D is a connected component of D∗∗ (cf.
Proposition 2.1.4 in [2]).



154 nikolai nikolov, peter pflug and włodzimierz zwonek

Since our domain D is balanced, it is easy to see that D∗ is balanced. We
shall show D∗ is convex. Then, applying this fact to D∗, we conclude that D∗∗
is a convex balanced domain. On the other hand, it follows by our assumption
that D is a component of D∗∗ and hence D∗∗ = D.

To see that D∗ is convex, suppose the contrary. Then we find points w1, w2 ∈
D∗, z ∈ D and a number t ∈ (0, 1) such that 〈z, tw1 + (1 − t)w2〉 = 1. We
may assume that |〈z, w1〉| ≥ 1. Since D is balanced, we get z̃ := z

〈z,w1〉 ∈ D

and 〈z̃, w1〉 = 1, a contradiction.

Proof of Proposition 3. Let D be non-degenerate C-convex domain in
Cn. For any point z ∈ cD consider a hyperplane Lz through z and disjoint
from D. Let lz be the orthogonal line through 0 and orthogonal to Lz. Denote
by πz the orthogonal projection of Cn onto lz and set az = πz(a). Observe
that Dz = πz(D) is biholomorphic to D, since it is connected, simply con-
nected (cf. Theorem 2.3.6 in [2]) and πz(z) �∈ πz(D). Moreover, since D is
a non-degenerate linearly convex domain, it is easy to see that there are n

C-independent lz’s. We may assume that these lz’s are the set C of coordinate
planes. Then D ⊂ G := ∏

lz∈C πz(D) and G is biholomorphic to the poly-
disc Dn. In particular, D is biholomorphic to a bounded domain, hence it is
c-hyperbolic.

Further, we may assume that 0 ∈ D. To see that D is c-finitely compact,
it is enough to show that lima→z cD(0; a) = ∞ for any z ∈ ∂D and, if D is
unbounded, z = ∞. But the last one follows by the fact that G is c-finitely
compact. On the other hand, if a → z ∈ ∂D, then az → πz(z) ∈ ∂Dz and
hence cD(0; a) ≥ cDz

(0; az) → ∞.
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