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ON CHORDAL GRAPHS AND THEIR
CHROMATIC POLYNOMIALS

GEIR AGNARSSON

Abstract

We derive a formula for the chromatic polynomial of a chordal or a triangulated graph in terms
of its maximal cliques. As a corollary we obtain a way to write down an explicit formula for
the chromatic polynomial for an arbitrary power of a graph which belongs to any given class of
chordal graphs that are closed under taking powers.

1. Introduction

For a simple graph, recall the following definition.

Definition 1.1. A chord of a cycle C is an edge which is not in C but has
both its endvertices in C. A graph G is chordal if every cycle of length four or
more in G has a chord in G.

In this article we derive a new form of the chromatic polynomial of a
chordal graph and of a graph whose power is chordal, in an elementary way.
Our form of the chromatic polynomial is in terms of the maximal cliques of
the graph in question. This allows us, in a natural way, to present directly a
formula for the chromatic polynomial of any power graph Gk of a graph G

belonging to a class of chordal graphs which is closed under taking arbitrary
powers. These classes include interval graphs and unit interval graphs [8],
strongly chordal graphs [9], m-trapezoid graphs [1], and powers of trees. It
is well known that any power of a tree is chordal [7], [6], so our result here
in particular generalizes Theorem 5.3 in [2]. In fact, any power of a tree is
strongly chordal [6]. A substantial amount of work has been done on chordal
graphs and on these special important subclasses of them. For a brief overview
of recent related results we refer to the introduction of [2].

Chromatic polynomials have been studied extensively. A recent and com-
prehensive bibliography, which contains 472 references on chromatic polyno-
mials, is given in [5]. As mentioned there in the introduction, the intention was
to make the bibliography as complete as possible.

Received December 27, 2001; in revised form July 15, 2002.



on chordal graphs and their chromatic polynomials 241

A considerable part of the articles published are about chromatic polyno-
mials of some very specific graphs. Some other articles have appeared on
chromatic polynomials of chordal graphs and subclasses of them. We mention
two relevant articles: In [4], in which the chromatic polynomial of various
types of chordal graphs is studied, it is shown that chordal graphs are chromat-
ically equivalent to threshold and unit interval graphs. In [11] it is shown that
a graph G without any subgraphs isomorphic to K4, the complete graph on
four vertices, is chordal if, and only if, its chromatic polynomial has the form
t (t − 1)m(t − 2)r , where m ≥ 1 and r ≥ 0 are some integers. It is however
well known that the chromatic polynomial of a chordal graph always takes the
form t (t − 1)j1(t − 2)j2 . . . (t − q + 1)jq−1 , where q is the clique number of
the graph, and the jα’s are integers [3]. Before we state our main results and
proofs of them, we need to define our basic notation and recall some useful
definitions.

The set {1, 2, 3, . . .} of natural numbers will be denoted by N. All graphs
considered in this article are assumed to be simple unless otherwise stated. For
a graph G and a vertex v of G, we denote by N [v] the closed neighborhood of
v in G, that is the set of all neighbors of v in G together with v itself. Likewise,
we denote by N(v) the open neighborhood of v in G, that is the set of all
neighbors of v in G. For k ∈ N, the power graph Gk is a graph with the same
vertex set as G, but where every pair of vertices of distance k or less in G are
connected by an edge in Gk . For m ∈ N we let [m] denote the set {1, . . . , m},
and (t)m = t (t − 1) . . . (t − m + 1) be the falling factorial polynomial in
t of degree m. Denote by χ(G) the chromatic number of the graph G. The
chromatic polynomial of G will be denoted by χG(t). It describes the number
of proper vertex colorings G has using at most t ≥ χ(G) colors.

Recall that a graph G is chordal if, and only if, it has a simplicial elimination
ordering of the vertices, V (G) = {v1, . . . , vn}, such that for each vertex vi the
set N(vi) ∩ {v1, . . . , vi−1} induces a clique in G, see [12, p. 226].

2. The Main Results

In this section we derive our main results. We start with the following useful
fact from [10, Theorem 3]:

Lemma 2.1. For a graph G with subgraphs H and K , such that G = H ∪K

and H ∩ K is a clique, we have

χG(t) = χH (t)χK(t)

χH∩K(t)
.

This can now be generalized as follows:
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Corollary 2.2. For a graph, which is a union of cliques G = Q1 ∪ · · · ∪
Qm, where Qk+1 ∩ (Q1 ∪ · · · ∪ Qk) is a clique for each k ∈ {1, . . . , m − 1},
let qS = | ⋂k∈S Qk| and (t)S = (t)qS

for each S ⊆ [m]. Then

χG(t) =
∏

S⊆[m]

(t)
(−1)|S|−1

S .

Proof. We use induction on m. If G = Q1 is a clique then the formula is
clearly correct.

For m > 1 we have by Lemma 2.1 that

(1) χG(t) = χG′(t)χQm
(t)

χG′∩Qm
(t)

where G′ = Q1 ∪ · · · ∪ Qm−1. By the induction hypothesis we have

(2) χG′(t) =
∏

S ′⊆[m−1]

(t)
(−1)|S′ |−1

S ′ .

We now have G′ ∩ Qm = (Q1 ∩ Qm) ∪ · · · ∪ (Qm−1 ∩ Qm) and moreover

(Qk+1∩Qm)∩[(Q1∩Qm)∪· · ·∪(Qk∩Qm)] = [Qk+1∩(Q1∪· · ·∪Qk)]∩Qm,

which is an intersection of two cliques, and hence a clique itself. Therefore by
induction hypothesis we have

(3) χG′∩Qm
(t) =

∏

∅�=S ′′⊆[m−1]

(t)
(−1)|S′′ |−1

S ′′∪{m} .

Putting (2) and (3) in (1), bearing in mind that Qm is a clique of size q{m}, we
finally get

χG(t) =
∏

S ′⊆[m−1](t)
(−1)|S′ |−1

S ′ · (t){m}
∏

∅�=S ′′⊆[m−1](t)
(−1)|S′′ |−1

S ′′∪{m}

=
∏

S ′⊆[m−1]

(t)
(−1)|S′ |−1

S ′ ·
∏

∅�=S ′′⊆[m−1]

(t)
(−1)|S′′∪{m}|−1

S ′′∪{m} · (t){m}

=
∏

S⊆[m]

(t)
(−1)|S|−1

S ,

proving our corollary.
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The next lemma provides a proof of the fact that our assumption in Co-
rollary 2.2 is valid for every chordal graph. It is a direct consequence of the
fact that a chordal graph has a simplicial elimination ordering. At each step
we establish a clique among the previous neighbors, but only some of these
cliques are maximal.

Lemma 2.3. For a chordal graph G let QG be the set of all the distinct
maximal cliques of G. We have G = ⋃

Q∈QG
Q and if |QG| = m then there is

a labeling
QG = {Q1, . . . , Qm}

such that Qk+1 ∩ (Q1 ∪ · · · ∪ Qk) is a clique for every k ∈ {1, . . . m − 1}.
Proof. We use induction on n = |V (G)|. For n = 1 the statement is clearly

true.
Assume G to be a chordal graph and n ≥ 2. Let V (G) = {v1, . . . , vn} be

a simplicial elimination ordering, and let QG = {Q1, . . . , Qm} be a labeling
where Qm is a maximal clique in G containing the vertex vn. Since G(N [vn])
is a maximal clique containing vn, we must have Qm = G(N [vn]), and hence
Qm is the unique maximal clique containing vn. Since Q1, . . . , Qm−1 are all
maximal cliques in G which do not contain vn, then they are also distinct
maximal cliques in the chordal graph G \ {vn}. Now, Q′

m = Qm ∩ (G \
{vn}) = G(N(vn)) is also a clique in G; this clique is clearly not maximal in
G. However, Q′

m is either maximal clique in G \ {vn} or not.
If Q′

m is a maximal clique in G \ {vn} then

G \ {vn} = Q1 ∪ · · · ∪ Qm−1 ∪ Q′
m

is a distinct union of all the maximal cliques in G \ {vn}. By the induction
hypothesis we can assume Qk+1 ∩ (Q1 ∩ · · · ∩ Qk) is a clique for all i ∈
{1, . . . , m − 2}, and also that Q′

m ∩ (Q1 ∪ · · · ∪ Qm−1) is a clique. Since vn is
not contained in any of Q1, . . . , Qm−1, we have

Qm ∩ (Q1 ∪ · · · ∪ Qm−1) = Q′
m ∩ (Q1 ∪ · · · ∪ Qm−1)

which is therefore a clique in G. Since G = Q1 ∪ · · · ∪ Qm, we have proven
the theorem in this case.

Assume now that Q′
m is not a maximal clique in G\ {vn}. Then Q′

m must be
contained in some maximal clique Q′′ of G \ {vn}. Since Q′′ is a clique in G,
then Q′′ must be contained in one of the maximal cliques Q1, . . . , Qm of G.
If Q′′ ⊆ Qm we have Q′

m ⊂ Q′′ ⊆ Qm and hence Q′′ = Qm, contradicting
the fact that Q′′ is a maximal clique in G \ {vn} which does not contain vn.
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Therefore, Q′′ is contained in one of the maximal cliques Q1, . . . , Qm−1.
Hence Q1, . . . , Qm−1 is the complete list of maximal cliques of G \ {vn} and

G \ {vn} = Q1 ∪ · · · ∪ Qm−1 ∪ Q′
m = Q1 ∪ · · · ∪ Qm−1.

Again by induction hypothesis we can assume the labeling to be such that
Qk+1 ∩ (Q1 ∪ · · · ∪ Qk) is a clique for each i ∈ {1, . . . , m − 2}. But now we
have in addition

Qm ∩ (Q1 ∪ · · · ∪ Qm−1) = Qm ∩ (G \ {vn}) = G(N(vn))

which is indeed a clique in G, and we have the theorem in this case also.

Theorem 2.4. For a chordal graph G with maximal cliques Q1, . . . , Qm

let (t)S be as in Corollary 2.2 for each S ⊆ [m]. Then

χG(t) =
∏

S⊆[m]

(t)
(−1)|S|−1

S .

Proof. By Lemma 2.3 there is a permutation σ : [m] → [m] such that
Qσ(k+1)∩(Qσ(1)∪· · ·∪Qσ(k)) is a clique for each k ∈ {1, . . . , m−1}. Since σ is
bijective it yields a bijection σ̃ : P([m]) → P([m]) by σ̃ (S) = {σ(k) : k ∈ S}
for each S ⊆ [m]. By Corollary 2.2 we therefore have

χG(t) =
∏

S⊆[m]

(t)
(−1)|σ̃ (S)|−1

σ̃ (S)
=

∏

S⊆[m]

(t)
(−1)|S|−1

S ,

proving our theorem.

Remark 2.5. It is well known that a given simplicial elimination ordering
of the vertices {v1, . . . , vn} of a chordal graph G yields the following form for
the chromatic polynomial of G,

χG(t) =
n∏

i=1

(t − d(i)),

where d(i) = |N(vi) ∩ {v1, . . . , vi−1}|. This is a direct consequence of the
product rule for counting the number of ways one can color the first vertex v1,
then the second vertex v2, and so on, finally coloring the last vertex vn, see
[12, p. 224]. This formula however depends on the given simplicial elimination
ordering.

For our last result, we need the definition of a k-ball of a graph.
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Definition 2.6. For a graph G and k ∈ N, we define a k-ball as a set
B ⊆ V (G), such that every two vertices of B are of distance k or less from
each other in G.

Assume now that we have a graph G and a number k ∈ N, such that Gk is
chordal. Clearly a k-ball in G becomes a clique in Gk and vice versa, a clique
in Gk is a k-ball in G. Thus, there is a 1-1 correspondence between k-balls of
G and cliques in Gk . Just as for chordal graphs, if B1, . . . , Bm is the complete
list of all the maximal k-balls of a graph G, which is such that Gk is chordal,
we let bS = | ⋂i∈S Bi | and likewise (t)S = (t)bS

for each S ⊆ [m]. With this in
mind, we get from Theorem 2.4 that we can directly write down the chromatic
polynomial of Gk .

Theorem 2.7. Let G be a graph and k ∈ N such that Gk is chordal. If
B1, . . . , Bm is the complete list of all the maximal k-balls of G then

χGk (t) =
∏

S⊆[m]

(t)
(−1)|S|−1

S .

In particular, since T k is a chordal graph for any tree T and k ∈ N, we see
that Theorem 2.7 here above generalizes Theorem 5.3 in [2].

Corollary 2.8. Let G be a class of chordal graphs which is closed under
taking arbitrary powers. Keeping the notation as in Theorem 2.7 we have for
any G ∈ G and any k ∈ N that

χGk (t) =
∏

S⊆[m]

(t)
(−1)|S|−1

S .
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