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SEMIPERFECT FINITELY GENERATED ABELIAN
SEMIGROUPS WITHOUT INVOLUTION

TORBEN MAACK BISGAARD

1. Introduction

With the possible exception of finite abelian groups, the oldest example of
a semiperfect semigroup is the group Z of integers. Herglotz’ Theorem of
1911 asserts that a two-sided sequence (sn)∞n=−∞ of complex numbers is a
trigonometric moment sequence, in the sense that

sn =
∫

T
zn dµ(z), n ∈ Z

for some measure µ on the complex unit circle T, if and only if (sn) is positive
semidefinite in the sense that

n∑
j,k=0

cj cksj−k ≥ 0

for every choice of n in N0 (the nonnegative integers) and c0, . . . , cn in the
complex field C. When the condition is satisfied, there is only one such measure
µ.

Hamburger’s Theorem [21] asserts that a sequence (sn)∞n=0 of reals is a
moment sequence, in the sense that

(1) sn =
∫

R
xn dµ(x), n ∈ N0

for some measureµ on the real line R, if and only if (sn) is positive semidefinite
in the sense that n∑

j,k=0

cj cksj+k ≥ 0

for every choice of n ∈ N0 and c0, . . . , cn ∈ R.
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Sz.-Nagy [29] showed that a sequence (sn)∞n=0 of self-adjoint bounded linear
operators on a Hilbert space H admits the integral representation (1) for some
measure µ on R with values that are positive operators onH if and only if (sn)
is of positive type in the sense that

n∑
j,k=0

〈sj+kξj , ξk〉 ≥ 0

for every choice of n ∈ N0 and ξ0, . . . , ξn ∈ H where 〈·, ·〉 is the inner product
on H .

The moment problems solved by Herglotz, Hamburger, and Sz.-Nagy can be
generalized to arbitrary abelian ∗-semigroups. Suppose (S,+, ∗) is an abelian
semigroup equipped with an involution, that is, a mapping s �→ s∗: S → S

satisfying (s∗)∗ = s and (s + t)∗ = s∗ + t∗ for all s, t ∈ S. Such a structure
will be called a ∗-semigroup, even abbreviated ‘semigroup’ when confusion is
unlikely, such as when applying an adjective which makes sense only in the
presence of an involution (e.g., ‘semiperfect semigroup’). For subsets X and
Y of S, define X̌ = { x∗ | x ∈ X } and X + Y = { x + y | x ∈ X, y ∈ Y },
abbreviated x + Y in case X = {x} for some x ∈ S. Suppose D is a complex
vector space and denote by S (D) the set of all sesquilinear forms on D. A
function ϕ:X + X̌ → S (D) is of positive type with respect to X if

n∑
j,k=1

ϕ(xj + x∗k )(ξj , ξk) ≥ 0

for every choice of n in N (the natural numbers), x1, . . . , xn ∈ X, and ξ1, . . . ,

ξn ∈ D. The words ‘with respect toX’will be omitted ifX is a ∗-subsemigroup
of S, but are necessary in general since there might be a set Y distinct from X

such that X + X̌ = Y + Y̌ . Denote by P(X,D) the set of all such functions.
Make it a convention that if the symbol ‘D’ is part of the notation for an
entity in the definition of which a complex vector space D occurs then that
symbol is omitted (together with any comma immediately preceding it) in case
D = C. We also identify S (C) with C itself by identifying a ∈ C with the
sesquilinear form (ξ, η) �→ aξη on C. Thus, P(X) is the set of those functions
ϕ:X + X̌ → C which are positive semidefinite with respect to X in the sense
that

(2)
n∑

j,k=1

cj ckϕ(xj + x∗k ) ≥ 0

for every choice of n ∈ N, x1, . . . , xn ∈ X, and c1, . . . , cn ∈ C. Say that ϕ is
positive definite with respect to X if the sum in (2) is positive whenever the xj
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are pairwise distinct and the cj are not all zero. The terms ‘positive definite’
and ‘strictly positive definite’ instead of ‘positive semidefinite’ and ‘positive
definite’ are also in use.

A character on S is a function σ : S → C, not identically zero, such that
σ(s∗) = σ(s) and σ(s + t) = σ(s)σ (t) for all s, t ∈ S. Denote by S∗ the set
of all characters on S.

Suppose X is a subset of S which generates S as a ∗-semigroup. Define
pX: S∗ → CX by pX(σ) = σ |X for σ ∈ S∗. Define X◦ = pX(S

∗) \ {0}.
Elements of X◦ will be called ‘characters on X’. Suppose X′ is a subset of
X◦. Denote by A (X′) the least σ -ring of subsets of X′ rendering measurable
for each x ∈ X the function x̂:X′ → C defined by x̂(σ ) = σ(x) for σ ∈ X′.
For x ∈ X and n ∈ N define Gs,n = { σ ∈ X′ | |σ(x)| > 1/n }. Denote by
A0(X

′) the subring of A (X′) consisting of those sets which are contained in
the union of finitely many Gx,n.

The set of all subsets of X′ which are contained in the union of countably
many Gx,n is a σ -ring of subsets rendering x̂ measurable for each x ∈ X and
so contains A (X′) by the definition of the latter. It follows that the subring
A0(X

′) generates A (X′) as a σ -ring. Hence, every measure µ on A0(X
′)

which is finite in the sense that µ(A) < ∞ for all A ∈ A0(X
′) extends to

a unique measure on A (X′) ([20], Theorem A p. 53). (When nothing else is
said, a measure is positive by definition.)

For every mapping µ: A0(X
′) → S (D) and for each ξ ∈ D, define a

mapping µ(·)(ξ, ξ): A0(X
′) → C by µ(·)(ξ, ξ)(A) = µ(A)(ξ, ξ) for A ∈

A0(X
′). The mapping µ is a measure if µ(·)(ξ, ξ) is a measure for each ξ ∈

D. For p ∈ N denote by Fp
+(X′,D) the set of all measures µ in this sense

such that for each ξ ∈ D the scalar-valued measure µ(·)(ξ, ξ) integrates the
function |̂x|p for each x ∈ X. Denote by Fp(X′,D) the complex linear hull
of Fp

+(X′,D). For µ ∈ F 2+(X′,D) define L 2µ:X + X̌ → S (D) by

L 2µ(x + y∗)(ξ, ξ) =
∫
X′
σ(x)σ (y) dµ(·)(ξ, ξ)(σ )

for x, y ∈ X and ξ ∈ D. The integral is understood as one with respect to
the unique measure on A (X′) to which the finite measure µ(·)(ξ, ξ) extends;
it exists by Hölder’s inequality. For a ∈ X + X̌ and σ ∈ X◦ the value of
σ(x)σ (y) is independent of the choice of x, y ∈ X such that a = x + y∗; this
is because σ is the restriction to X of a character on S. The remaining values
of the sesquilinear form L 2µ(x + y∗) follow by polarization.

A function ϕ:X + X̌ → S (D) is an X′-moment function if there is some
µ ∈ F 2+(X′,D)which representsϕ in the sense thatϕ = L 2µ. AnX′-moment
function is X′-determinate if it is represented by only one measure on X′. The
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prefix ‘X′’ is omitted in case X is a ∗-semigroup and X′ = X∗. Denote by
H (X,X′,D) the set of all X′-moment functions and by HD(X,X

′,D) the
subset ofX′-determinate ones. In these notations we again omit ‘X′’ (together
with the comma) in caseX is a ∗-semigroup andX′ = X∗. Using Lemma 1.1 in
the paper of Schmüdgen [27] one can showH (X,X′,D) ⊂ P(X,D). The set
X isX′-semiperfect of order d if H (X,X′,Cd) = P(X,Cd), completelyX′-
semiperfect if this is so for each d ∈ N, andX′-perfect if HD(X,X

′) = P(X).
The words ‘of order d’ are omitted in case d = 1.

If S is a perfect semigroup then, as observed by Christian Berg in the late
1980’s, we have HD(S,D) = P(S,D) for every complex vector space D.
In particular, S is completely semiperfect. If S is a completely semiperfect
semigroup then H (S,D) = P(S,D) for every complex vector space D
[15]. Every semigroup which has ever (to our knowledge) been shown to be
semiperfect has even been shown to be completely semiperfect. Note added
in proof. We now have a counterexample. Indeed, if G is an infinite binary
vector space with the involution x∗ = −x = x then the ∗-subsemigroup
{(0, 0)} ∪ (

(G \ {0}) × {1}) ∪ (G × {2, 3, . . .}) of the product ∗-semigroup
G × N0 is semiperfect of order 1 but not of order 2. See our paper On the
relation between the scalar moment problem and the matrix moment problem
on ∗-semigroups, submitted to Annals of Math. (2002).

The group Z with the inverse involution (n∗ = −n) is perfect by Herglotz’
Theorem. More generally, every abelian group G carrying the inverse invol-
ution is perfect by the discrete version of the Bochner-Weil Theorem. Even
more generally, S is perfect if S is an abelian inverse semigroup in the sense
that s + s∗ + s = s for all s ∈ S. (Warning: The ‘Bochner-Weil Theorem for
Locally Compact Abelian Inverse Semigroups’ is false, even in the compact
metrizable case. Berg, Christensen, and Ressel ([2], p. 143) write: ‘On the
compact semigroup S = [0, 1] with maximum as semigroup operation there
is only one continuous semicharacter [i.e., character], namely the constant
semicharacter.’ On this semigroup the function ϕ defined by ϕ(s) = 1− s for
s ∈ S is a continuous positive definite function such that the unique measure
µ on S∗ such that ϕ = L 2µ is concentrated on the set of all discontinuous
characters. The same authors continue: ‘Perhaps the right dual object to look at
might be the set of semicharacters that are continuous at zero.’ However, there
exist a compact metrizable semigroup S with zero, such that s = s∗ = s + s

for all s ∈ S, and a continuous positive semidefinite function ϕ on S such that
the unique measure µ on S∗ such that ϕ = L 2µ is concentrated on the set of
those characters which are discontinuous at the zero [10].

The ‘discrete version of the Bochner-Weil Theorem for abelian inverse
semigroups’ has found two generalizations: One stating that a ∗-semigroup S
is perfect if 2(s + s∗) = s + s∗ for all s ∈ S (so far unpublished), and one
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stating that S is perfect if S is ∗-divisible in the sense that for each s ∈ S there
exist t ∈ S and m, n ∈ N0 such that s = mt + nt∗. For the case of semigroups
with zero, see the paper by Ressel and the author [16]; for the general case,
the paper by Sakakibara and the author [17]. We know of no natural result that
generalizes both of these facts.

Note added in proof. We now know such a result, viz., it suffices that
S is semi-∗-divisible in the sense that for each s ∈ S there exist t ∈ S and
m, n ∈ N0 such that s+s∗ = s∗+mt+nt∗. This was shown by N. Sakakibara
and the author in a manuscript that was submitted to Ark. Mat. in September
2001.

The semigroup N0 with its unique involution, the identity, is semiperfect
by Hamburger’s Theorem and completely semiperfect by the result of Sz.-
Nagy cited above. This semigroup is not perfect since there exist indeterminate
moment sequences, such as the example n �→ (4n+3)! given by Stieltjes [28],
26 years prior to the publication of Hamburger’s Theorem.

The group Z, considered with the identical involution, is semiperfect as
shown by Jones, Njåstad, and Thron [23]; see [2], 6.4.1, for a post-1920 proof.
The complete semiperfectness of Z is an easy consequence of the corresponding
property of N0; see, e.g., [5]. This semigroup, like N0, is non-perfect since
there exist indeterminate two-sided moment sequences, such as n �→ en

2/2

([2], 6.4.6).
For k ≥ 2, the semigroups Nk

0 and Zk , considered with the identical involu-
tion, are non-semiperfect. For Nk

0, this was first shown by Berg, Christensen,
and Jensen [1] and independently by Schmüdgen [26]. Each set of authors
appealed to the Hahn-Banach Theorem and thus produced no example of a
function ϕ ∈ P(N2

0)\H (N2
0). The first such example was given by Friedrich

[19]. In his example,

ϕ(0, n) = exp

{[(
n/2 + 2

2

)
+ 1

]
! log

(
n/2 + 2

2

)
!

}

for even n ≥ 8. This raised the question: How fast must |ϕ(m, n)| grow as
m + n → ∞ if ϕ ∈ P(N2

0) \ H (N2
0)? It was shown in [8] by example that

there is a functionϕ ∈ P(N2
0)\H (N2

0) such thatϕ(m, n) = O
(
(m+n)a(m+n))

as n→∞ for each a > 1, and the constant 1 is the best possible. The case of
Zk is an exercise in [2].

The negative results of the preceding paragraph are subsumed in the result
that the only semiperfect subsemigroups of Zk with the identical involution are
{0} and those isomorphic to Z or N0. For semigroups with zero, this was shown
by Sakakibara [25]. The general case is a corollary of a much more general
result which is published for the first time in the present paper.
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A ∗-semigroup H is ∗-archimedean if for all x, y ∈ H there exist z ∈ H

and n ∈ N such that n(x + x∗) = y + z. A ∗-archimedean component of a ∗-
semigroup S is a ∗-archimedean ∗-subsemigroup (i.e., ∗-stable subsemigroup)
of S which is maximal for the inclusion ordering. Every ∗-semigroup is the dis-
joint union of its ∗-archimedean components (see [18], Section 4.3, for the case
of the identical involution). Moreover, every ∗-archimedean ∗-subsemigroup
of a ∗-semigroup S is contained in a unique ∗-archimedean component of S.

An abelian semigroup H equipped with the identical involution is ∗-archi-
medean if and only if it is archimedean in the sense that for all x, y ∈ H

there exist z ∈ H and n ∈ N such that nx = y + z. The ∗-archimedean com-
ponents of an abelian semigroup S equipped with the identical involution are
precisely the archimedean components of S, that is, the maximal archimedean
subsemigroups.

A ∗-homomorphism of a ∗-semigroup S into another ∗-semigroup is a ho-
momorphism h satisfying h(s∗) = h(s)∗ for all s ∈ S. Every ∗-homomorphic
image of a semigroup that is semiperfect of order d has the same property
([16], Proposition 1, for d = 1; see also [5], Proposition 4.)

Given a subset M of C, a ∗-semigroup S is said to be M-separative if the
M-valued characters on S separate points in S. The greatest M-separative
∗-homomorphic image of S is the quotient ∗-semigroup S/∼ where ∼ is the
congruence relation in S defined by the condition that s ∼ t if and only
if σ(s) = σ(t) for every M-valued character σ on S. The term ‘greatest’ is
chosen for the reason that if f is a ∗-homomorphism of S into anM-separative
∗-semigroup T then there is a unique ∗-homomorphism h of S/∼ into T such
that f = h ◦ ψ where ψ is the quotient mapping of S onto S/∼. Thus S/∼
is ‘greatest’ in the sense of corresponding to the smallest congruence relation.
Clifford and Preston [18] use the term ‘maximal’ instead of ‘greatest’.

Every R-separative semigroup carries the identical involution.
For every ∗-semigroup S and for every subset V of S, denote by E(V ) the

set of those v ∈ V such that if s, t ∈ S, s + s∗, t + t∗ ∈ V , and s + t∗ = v

then s = t . For every subset U of S, denote by C(U) the union of all finite
subsets V of S such that E(V ) ⊂ U . The semigroup S is C-finite if C(U) is
a finite set for every finite subset U of S. In [7] we included in the definition
of C-finiteness the condition of R-separativity, but it is better to separate the
conditions. We apologize for being inconsistent.

The main result of [7] states that a countable R-separative C-finite semi-
group S satisfying S = S + S is semiperfect (or equivalently, completely
semiperfect) if and only if the following condition is satisfied:

(B) Each archimedean component of S is isomorphic to the product of a
torsion group of exponent 1 or 2 and one of the semigroups {0}, Z, N.
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The conditions S = S+S and (B) are together sufficient for complete semiper-
fectness of S even if S is not countable and not C-finite. (Note that condition
(B) implies R-separativity.)

Just as [7] was going to press, it turned out that a semiperfect countable
R-separative C-finite semigroup S automatically satisfies S = S + S. The
first main purpose of the present paper is to prove this. We consider it quite
important that in the necessity part of the main result of [7], the condition
S = S + S can be transferred from being among the assumptions to being
among the conclusions. (And in the sufficiency part, it is now clear that the
assumption S = S + S is not an arbitrary one, but a necessary one.)

For every abelian semigroup X we denote by (GX, gX) the pair—uniquely
determined up to isomorphism—consisting of an abelian group GX and a
homomorphism gX:X → GX such that if f is a homomorphism of X into an
abelian group F then there is a unique homomorphism h:GX → F such that
f = h ◦ gX. It is well-known that the semigroup gX(X) generates GX, i.e.,
GX = gX(X)− gX(X), and that for x, y ∈ X we have gX(x) = gX(y) if and
only if a + x = a + y for some a ∈ X.

If X is a ∗-semigroup then we consider GX with the unique involution ren-
dering gX a ∗-homomorphism. WithF , f , and h as in the preceding paragraph,
if f is a ∗-homomorphism then so is h.

An element e of an abelian semigroup is idempotent if e = e+e. A semilat-
tice is an abelian semigroup with all elements idempotent. If I is a semilattice,
we consider I with the canonical partial ordering ≤ defined by the condition
that i ≤ j if and only if i + j = j . For i, j ∈ I the element i + j is the least
upper bound on the set {i, j} in the partially ordered set (I,≤). See Clifford
and Preston [18] around p. 25, or Berg, Christensen, and Ressel [2], Ch. 4.

For every ∗-semigroup S we denote by J (S) the set of all ∗-archimedean
components of S. If H,K ∈ J (S) then the ∗-subsemigroup H + K of S is
easily seen to be ∗-archimedean, hence contained in a unique ∗-archimedean
component of S, which we denote by H ∨K . The pair

(
J (S),∨)

is a semil-
attice and so carries a canonical partial ordering ≤.

A face of a ∗-semigroup S is a ∗-subsemigroupX of S such that if x, y ∈ S
and x + y ∈ X then x, y ∈ X. Every intersection of faces of S, if nonempty,
is a face of S. Hence, for every nonempty subset H of S there is a least face
of S containing H , viz., the intersection of all faces of S containing H , the set
of such faces being nonempty since S itself is such a face. We leave it as an
exercise to verify that if H ∈ J (S) then the least face of S containing H is
the set

XH =
⋃

I∈J (S):I≤H
I,
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which we always denote by this symbol. Note thatXH +H ⊂ H . A main face
of S is a face of S of the formXH for someH ∈ J (S). Saying that a faceX of
S is a main face of S is equivalent to saying that there is someH ∈ J (S) such
that H ⊂ X and X +H ⊂ H . When the condition is satisfied, H is uniquely
determined (being among all ∗-archimedean components of S contained in X
the greatest one with respect to the canonical partial ordering on J (S)), and
X = XH .

If H is a ∗-archimedean component of a ∗-semigroup S then we define
a mapping of XH into GH , at first cautiously denoted by f , by choosing
y ∈ H and setting f (x) = gH (x + y)− gH (y) (difference in the group GH )
for x ∈ XH . The following two facts are easily proved in that order: (i) The
definition of f (x) is independent of the choice of y; (ii) the mapping f so
defined is a ∗-homomorphism. Since f |H = gH , it should cause no confusion
that we henceforth denote the mapping f by gH .

A∗-semigroupS is of class M if for eachH ∈ J (S)we have 0 ∈ gH (XH).
Every R-separative finitely generated semigroup is C-finite as shown near

the end of [7]. Thus, the main result of [7] (augmented by the fact that the con-
dition S = S + S is necessary for semiperfectness) implies a characterization
of semiperfect (or equivalently, completely semiperfect) R-separative finitely
generated semigroups. It is the second main purpose of the present paper to ex-
tend this result to a characterization of semiperfect (or equivalently, completely
semiperfect) finitely generated abelian semigroups with the identical involu-
tion. As the assumption of R-separativity is dropped, an interesting additional
necessary condition crops up. For a sketch, first consider an abelian semigroup
S with arbitrary involution. Denote by χ (or χS , if S has to be specified) the
quotient mapping of S onto its greatest C-separative ∗-homomorphic image.
For each d ∈ N, the semigroup S is semiperfect of order d if and only if χ(S)
so is and moreover, every positive semidefinite function on S factors via χ
([5], proof of Proposition 5). If S carries the identical involution then so does
χ(S). This semigroup being C-separative by definition, it is then R-separative.
Since χ(S), being a homomorphic image of the finitely generated semigroup
S, is finitely generated then the question of whether χ(S) is semiperfect (or
equivalently, completely semiperfect) can be resolved using the main result
of [7] (augmented as above). It remains to settle the question of factoring.
We shall show that in order for a finitely generated abelian semigroup S with
arbitrary involution to be semiperfect it is necessary that S be of class M . The
factoring problem on semigroups of class M was considered in [12]. The main
result states that if S is a semigroup of class M satisfying S = S + S then
every positive semidefinite function on S factors via χ . This is a straightfor-
ward generalization of [4], Theorem 2, which states the same for semigroups
with zero. The main result of [12] is not quite enough for our purposes since a



semiperfect finitely generated abelian semigroups . . . 293

semiperfect finitely generated semigroup with the identical involution does not
necessarily satisfy S = S+S. Fortunately, in [12] we also considered the case
that S is of class M but S �= S + S. The second main result of [12] states the
following: DefineA = { s ∈ S | s+ s∗ ∈ S+S+S }. LetA be the least subset
of S, containing A, such that if s ∈ S and s + s∗ ∈ A+ S then s ∈ A. Define
E = S \ A. Every set that generates S as an abelian semigroup contains E.
In particular, if S is finitely generated then E is finite. Define an equivalence
relation ∼ in the set E2 = E ×E by the condition that (e, f ) ∼ (g, h) if and
only if e + f ∗ = g + h∗. In order that every positive semidefinite function
on S factor via χ , it is necessary that for every nonempty subset A of E2

which is a union of equivalence classes with respect to ∼ and which is itself
an equivalence relation on some subset of E, there should exist (e, f ) ∈ A
such that e + f ∗ ∈ A + S. The condition is sufficient if the set E is finite
(in particular, if S is finitely generated). This is the condition that goes into
the characterization of semiperfect (or equivalently, completely semiperfect)
finitely generated abelian semigroups considered with the identical involution,
in addition to the conditions necessary and sufficient for semiperfectness of
χ(S).

A ∗-semigroup S is facially countable if each main face of S is countable,
and facially C-finite if each main face of S is C-finite. We shall show that in
the characterization of semiperfect (or equivalently, completely semiperfect)
countable R-separative C-finite semigroups one can replace the conditions of
countability and C-finiteness with the weaker conditions of facial countability
and facialC-finiteness, otherwise changing nothing. To see that a proper gener-
alization is involved, for every set A denote by 2(A) the set of all finite subsets
of A. Then the semigroup I = (2(A),∪) is a semilattice. The archimedean
components of an arbitrary semilattice I are the sets {i}, i ∈ I . It easily fol-
lows that the main faces of I are the sets Xi = { j ∈ I | j ≤ i }, i ∈ I .
Now if I = 2(A) then the main faces of I are finite, so I is facially countable,
but I itself can of course be of arbitrarily large cardinality. Also, an arbitrary
semilattice I can be shown to be C-finite if and only if for each i ∈ I the set
[i,∞[ = { j ∈ I | j ≥ i } is finite, whereas for facial C-finiteness it suffices
that the partially ordered set (I,≤) is locally finite in the sense that for all
i, j ∈ I such that i ≤ j the set [i, j ] = { k ∈ I | i ≤ k ≤ j } is finite. Again,
the example of I = 2(A) for an infinite set A shows the inequivalence of the
conditions. From the point of view of the desire to characterize semiperfect
semigroups, semilattices are uninteresting examples since every semilattice
(being, in particular, an abelian inverse semigroup) is a perfect semigroup.
However, note that if I is a semilattice, if (Si)i∈I is a family of ∗-semigroups,
and if (gij ) is a family of ∗-homomorphisms gij : Si → Sj (i, j ∈ I , i ≤ j )
such that gii is the identity on Si and gik = gjk ◦gij for all i, j, k ∈ I such that
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i ≤ j ≤ k then the disjoint union S = ⋃
i∈I Si becomes a ∗-semigroup when

considered with the addition + given by x+y = gi,i+j (x)+gj,i+j (y) (sum in
the semigroup Si+j ) for i, j ∈ I , x ∈ Si , and y ∈ Sj , and the unique involution
which extends the given one on each Si ([18], Theorem 4.11, where it is not
necessary for our present conclusions to assume that each Si is a group).

A ∗-semigroup S is locally countable if each ∗-archimedean component of
S is countable, and locallyC-finite if each ∗-archimedean component of S isC-
finite. In the characterization of semiperfect countable R-separative C-finite
semigroups, it is not possible to replace ‘countable’ by ‘locally countable’.
This is shown by [5], Example 3. In the last section of the present paper, we
shall discuss the question whether in the result referred to in the preceding
paragraph the condition of facial C-finiteness can be replaced by the even
weaker condition of local C-finiteness. It seems likely that this cannot be
done. However, a proof of this would be so complicated that the inclusion of
it would make the paper too long. (Remark added after the rest of this
paper was written. In fact, it cannot be done. See the remark at the end of
the paper.)

We mention one unpublished result that is a generalization of the main result
of [7]. A ∗-group is an abelian group with involution, and a ∗-subgroup is a
∗-stable subgroup. The main result of [14] states that a countable C-separative
C-finite semigroup S is semiperfect (or equivalently, completely semiperfect)
if and only if S = S + S and the following condition is satisfied:

(C) For each ∗-archimedean component H of S there exist a semigroup P ,
which is {0}, Z, or N and carries the identical involution, an abelian
(torsion) group D carrying the inverse involution, and a ∗-subgroup G
of the ∗-group (P−P)×D such thatH is isomorphic to the ∗-semigroup
G ∩ (P ×D).

The conditions S = S + S and (C) are together sufficient for complete semi-
perfectness even if S is not countable and not C-finite.

The intended reading of ‘(torsion)’ is the following. For a ∗-semigroup S
satisfying (C), normalize the groups D occurring in (C) by the requirement
that D = π2(H) where π2 is the projection of P ×D onto the second factor.
(This is just a matter of replacing D, if necessary, with π2(D).) Then, if S
is C-finite then the groups D are automatically torsion groups. However, the
sufficiency part has only been proved under the hypothesis that the groups D
are torsion groups.

Note added in proof. It has now been proved without that hypothesis.
This result, announced in [14], implies that a C-separative finitely generated
abelian∗-semigroupS is semiperfect (or equivalently, completely semiperfect)
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if and only if it satisfies S = S + S and (C). The assumption of C-separativity
can be removed, as above, at the cost of adding a condition more.)

2. The mappings E, C, and Conv

Suppose S is a ∗-semigroup. The mappings E and C of the set of all subsets
of S into itself which were defined in the Introduction will be denoted by ES

and CS if it is necessary to specify S (such as when several semigroups are
involved). We first list some useful combinatorial properties of these mappings.
For every subset U of S define U # = { s + s∗ | s ∈ U }. Note that S# is a
∗-subsemigroup of S which carries the identical involution.

Theorem 2.1. If U and V are subsets of S, (Vα) is a family of subsets of
S, and s, t ∈ S then

(i) if U ⊂ V then U ∩ E(V ) ⊂ E(U);

(ii) U ⊂ C(U);

(iii) if U ⊂ V then C(U) ⊂ C(V );

(iv) every finite subset of C(U) is contained in a finite set W such that
E(W) ⊂ U ;

(v) C
(
C(U)

) = C(U);

(vi) if U is finite then C(U) = C
(
E(U)

)
;

(vii) E
(
C(U)

) ⊂ E(U);

(viii) s + t∗ ∈ C({s + s∗, t + t∗});
(ix) U + Ǔ ⊂ C(U #);

(x) E(
⋃

α Vα) ⊂
⋃

α E(Vα);

(xi) E(V ∩ S#) ⊂ E(V ).

Proof. (i) through (vi): See [6], Lemmas 4.1 through 4.3.
(vii): See [7], Theorem 2.
(viii): As [6], Lemma 4.4, replacing ‘x + y’ with ‘x + y∗’ whenever x, y ∈

{s, t}.
(ix): Immediate from (viii) and (iii).
(x): Writing V = ⋃

α Vα , for each α we have E(V ) ∩ Vα ⊂ E(Vα) by (i).
Since E(V ) ⊂ V , it follows that E(V ) = E(V ) ∩ V = E(V ) ∩ ⋃

α Vα =⋃
α

(
E(V ) ∩ Vα

) ⊂ ⋃
α E(Vα).

(xi): Suppose v ∈ E(V ∩ S#); we have to show v ∈ E(V ). Suppose
s, t ∈ S, s + s∗, t + t∗ ∈ V , and s + t∗ = v; we have to show s = t . We have
s+ s∗, t+ t∗ ∈ V ∩S#. Since v ∈ E(V ∩S#), it follows that s = t , as desired.

Properties (ii), (iii), and (v) are expressed by saying that the mapping C is
a closure operation.
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An abelian semigroup S is torsion-free if the conditions x, y ∈ S, k ∈ N,
and kx = ky imply x = y.

For a finite subset V of a ∗-semigroup S, the set E(V ) is usually easy
to determine. The task of determining C(U) for a subset U of S is harder
since one has, in principle, to check for every finite subset V of S whether
E(V ) ⊂ U . We next introduce another closure operation, Conv, such that
Conv(U) is usually much easier to determine than is C(U), and such that
C(U) ⊂ Conv(U) whenever U is a subset of a C-separative semigroup. For
every subset U of S, denote by Conv(U) the set of those u ∈ S such that there
exist k, n ∈ N and u1, . . . , un ∈ U such that (n+ k)(u+ u∗) = k(u+ u∗)+
u1 + u∗1 + · · ·+ un+ u∗n. Clearly Conv is a closure operation. If the involution
is the identity then Conv(U) is the set of those u ∈ S such that there exist
k, n ∈ N and u1, . . . , un ∈ U such that (n + k)u = ku + u1 + · · · + un. If
furthermore S is cancellative then we can subtract ku from both sides of the
last equation, so that if in addition S is torsion-free then it is clear that Conv(U)
is just the intersection of S with the convex hull of U in the enveloping real
vector space. Hence the notation ‘Conv’.

For every ∗-semigroup S we denote by ρ (or ρS , if S has to be specified) the
quotient mapping of S onto its greatest R+-separative ∗-homomorphic image.
For x, y ∈ S we have

(3) ρ(x) = ρ(y)⇔ ∃n ∈ N: n(x + x∗) = n(y + y∗).

To see this, first supposeS carries the identical involution. We then have to show
that ρ(x) = ρ(y) if and only if kx = ky for some k ∈ N. If S has a zero, this is
the bi-implication (ii)⇔(iii) of [4], Theorem 1. For a semigroupSwithout zero,
it follows by applying the preceding to the semigroup obtained by adjoining
a zero to S. This completes the case of the identical involution. In the general
case, first suppose n(x+x∗) = n(y+y∗) for some n ∈ N. If σ is a nonnegative
character on S then σ(x)2n = σ

(
n(x+ x∗)

) = σ
(
n(y+ y∗)

) = σ(y)2n. Since
σ ≥ 0 then we may take 2n’th roots, to obtain σ(x) = σ(y). This being so for
all such σ , we have ρ(x) = ρ(y) by the definition of ρ. Conversely, suppose
ρ(x) = ρ(y). For clarity, write a = x+x∗ and b = y+y∗. Then a and b are in
the semigroup S#, which carries the identical involution. If τ is a nonnegative
character on S# then the function σ on S defined by σ(s) = τ(s+s∗) for s ∈ S
is obviously a nonnegative character on S, so τ(a) = τ(x + x∗) = σ(x) =
σ(y) = τ(y + y∗) = τ(b). This being so for all such τ , by the case of the
identical involution (dealt with already) it follows that there is some n ∈ N
such that na = nb, that is, n(x + x∗) = n(y + y∗), as desired.

We see from the preceding that a ∗-semigroup S is R+-separative if and
only if the involution is the identity and S is torsion-free. Another equivalent
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condition is that the involution is the identity and each archimedean component
of S is cancellative and torsion-free ([24], Theorem 0.1 p. 135).

For every abelian semigroup A with zero and every set V , we denote by
A[V ] the set of all functions a:V → A which are finitely supported in the
sense that a(v) = 0 for all but finitely many v ∈ V . With pointwise addition,
A[V ] is an abelian semigroup. For every subset U of V we identify A[U ]
with a subsemigroup of A[V ] by identifying each element of A[U ] with its
zero extension which is an element of A[V ]. The preceding definition gives a
sense to the symbol N0[V ] but not to the symbol N[V ]. For each n ∈ N0(V )

and every subset U of V we define n(U) = ∑
u∈U n(u). Now let N[V ] be

the set of those n ∈ N0[V ] such that n(V ) > 0 (i.e., all except the constant
0). For each v ∈ V define δv ∈ N[V ] by δv(u) = δu,v (the Kronecker delta)
for u ∈ V . If V is a subset of an abelian semigroup S, for each n ∈ N[V ]
define π(n) = ∑

v∈V n(v)v. Note that π is a homomorphism of N[V ] into S.
Each element n of N0[V ] is identified with the measure µ on V defined by
µ({v}) = n(v) for v ∈ V .

Theorem 2.2. Suppose S is a torsion-free abelian semigroup, V is a finite
subset of S, and D is a subset of V . Let f :V → R be any function. If for
each v ∈ V \ D there is some nv ∈ N[V ], not supported by {v}, such that
nv(V )v = π(nv) and nv(V )f (v) ≤

∫
f dnv then for each v ∈ V \D there is

such an nv supported by the set D ∪ {v}.
Proof. Let A be the set of all subsetsA of V such that for each v ∈ V \D

there is some nv ∈ N[V ], supported by A ∪ {v} but not by {v}, such that
nv(V )v = π(nv) and nv(V )f (v) ≤

∫
f dnv . By hypothesis, V ∈ A , so A is

nonempty. Since the finite set V has only finitely many subsets, we can choose
A ∈ A minimal with respect to the inclusion ordering. If A ⊂ D, we are
done. Suppose A �⊂ D; we shall derive a contradiction. Choose a ∈ A \ D
and define B = A \ {a}. If we show B ∈ A then we shall have the desired
contradiction.

Since A ∈ A then for each v ∈ V \D there is some nv ∈ N[V ], supported
by A ∪ {v} but not by {v}, such that nv(V )v = π(nv) and nv(V )f (v) ≤∫
f dnv . Now suppose v ∈ V \D; we have to show that there is some mv ∈

N[V ], supported by B ∪ {v} but not by {v}, such that mv(V )v = π(mv) and
mv(v)f (v) ≤

∫
f dmv . If v = a then asmv we can use na . Thus we may (and

do!) assume v �= a.
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Now

na(A)nv(V )v

= na(A)π(nv)

= na(A)
(
π(nv |V \{a})+ nv(a)a

)
= na(A)π(nv |V \{a})+ nv(a)π(na)

= na(B)π(nv |V \{a})+ nv(a)π(na |B)+ na(a)π(nv |V \{a})+ nv(a)na(a)a

= na(B)π(nv |V \{a})+ nv(a)π(na |B)+ na(a)π(nv)

= na(B)π(nv |V \{a})+ nv(a)π(na |B)+ na(a)nv(V )v.

This shows that if as mv we take

(4) mv = na(B)nv |V \{a} + nv(a)na |B + na(a)nv(V )δv

then mv satisfies the requirement mv(V )v = π(mv). A similar computation
shows that the requirementmv(V )f (v) ≤

∫
f dmv is also satisfied. It remains

to be shown that mv is not supported by {v}. Suppose it is; we shall derive a
contradiction. Since na is, by hypothesis, supported by the set A ∪ {a} = A

but not by {a} then na(B) > 0. Since mv is supported by {v} then so is each
term in (4). In particular, so is the first term. Since na(B) > 0 then nv |V \{a} is
supported by {v}. Thus nv is supported by {a, v}. Since nv is, by hypothesis,
not supported by {v} then nv(a) > 0. Since the second term in (4) is supported
by {v} it follows that so is na |B . Since na is supported by the setA = B∪{a} it
follows that na is likewise supported by {a, v}. Since (as we saw) na(B) > 0
then na(v) > 0.

We now have the following facts: The elementsna andnv are both supported
by {a, v}, na(v) > 0, and nv(a) > 0. This means, in more plain language, that
there exist p, q, r, s ∈ N0 such that

(5) (p + q)a = pa + qv and (r + s)v = ra + sv

and moreover, q, r > 0. We now invoke the hypothesis that S is torsion-free,
which means that the nonnegative multiplicative functions on S separate points
in S. For every such function σ , from (5) we get

(6) σ (a)p+q = σ(a)pσ (v)q and σ(v)r+s = σ(a)rσ (v)s.

We wish to infer σ(a) = σ(v). If one of these numbers is 0 then it is immediate
from (6) that so is the other. In particular, they are equal. Thus we may assume
that both are nonzero. Then from, say, the first equation in (6) we get σ(a)q =
σ(v)q . Since q > 0 and since σ is nonnegative then we may take q’th roots,
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to obtain σ(a) = σ(v). Thus this equality holds in every case. This being so
for all such σ , we can infer a = v, the desired contradiction.

Corollary 2.3. Suppose S is a torsion-free abelian semigroup, V is a
finite subset of S, and D is a subset of V . If for each v ∈ V \D there is some
nv ∈ N[V ], not supported by {v}, such that nv(V )v = π(nv) then for each
v ∈ V \D there is such an nv supported by D ∪ {v}.

Proof. Apply the Theorem with f = 0.

Remark. Since the Corollary is all that will be used in the following, one
may ask why in the Theorem we added the complication of the function f .
Now in [3], proof of Lemma 4, we encountered the following situation. We
had a finite subset E of a rational vector space, a function ϕ:E → R, and
a family (πt )t∈E of probability measures on E such that t = ∫

u dπt (u) and
ϕ(t) ≤ ∫

ϕ dϕt for all t ∈ E. A subset S of E was given by t ∈ S ↔
πt = εt where εt is the Dirac measure at t . The problem was to construct a
family of measures with properties analogous to those of the family (πt ), but
concentrated on the set S. In fact, the measures πt were rational-valued, so the
problem could be solved by the above Theorem. (Note that the solution in [3]
was faulty, as pointed out in [11] where a solution similar to the present one
was also indicated.)

It is well-known that a ∗-semigroup S is (T ∪ {0})-separative if and only if
S is an abelian inverse semigroup. See Warne and Williams [30]. For every ∗-
semigroup S, denote by π (or πS if S has to be specified) the quotient mapping
of S onto its greatest (T ∪ {0})-separative ∗-homomorphic image. If G is a
∗-group then π(G) can be identified with the quotient ∗-group G/{ x + x∗ |
x ∈ G }, which is the greatest ∗-homomorphic image of G which carries the
inverse involution. For every ∗-semigroup S, denote by ι (or ιS if S has to be
specified) the mapping x �→ (

π(x), ρ(x)
)
: S → π(S)× ρ(S).

Theorem 2.4. For a ∗-group G, the following three conditions are equi-
valent:

(i) G is C-separative;

(ii) the conditions x ∈ G, k ∈ N, and k(x + x∗) = 0 imply x + x∗ = 0;

(iii) the mapping ι is one-to-one.

Proof. (i)⇒(ii): Suppose x ∈ G, k ∈ N, and k(x + x∗) = 0. For σ ∈ G∗
we have |σ(x)|2k = σ

(
k(x + x∗)

) = σ(0) = 1, hence |σ(x)| = 1, so
σ(x + x∗) = |σ(x)|2 = 1 = σ(0). This being so for all such σ , since G is
C-separative it follows that x + x∗ = 1, as desired.

(ii)⇒(iii): Supposex ∈ G is such that ι(x) = 0; we have to show thatx = 0.
The fact that ι(x) = 0 means that π(x) = 0 and ρ(x) = 0. Since π(x) = 0
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then there is some y ∈ G such that x = y + y∗. Since ρ(x) = 0 then by (3)
there is somen ∈ N such thatn(x+x∗) = 0. Now 0 = n(x+x∗) = 2n(y+y∗).
By the hypothesis it follows that 0 = y + y∗ = x, as desired.

(iii)⇒(i): The mapping ι is an embedding of G into the product of two
C-separative semigroups, so G is C-separative.

Remark. On the strength of the preceding Theorem, it might be thought
that a ∗-semigroup S would be C-separative if and only if the conditions x, y ∈
S, k ∈ N, and k(x+x∗) = k(y+y∗) imply x+x∗ = y+y∗. A counterexample
is afforded by the semigroup S = {u, v} ∪ {2, 3, 4, . . .} where u and v are two
distinct elements, 2u = u+ v = 2v = 2, u+ n = v + n = n+ 1 for n ≥ 2,
and addition of integers is the usual one.

For every abelian semigroup S, define 2S = { 2s | s ∈ S }.
Theorem 2.5. If S is a C-separative semigroup then the mapping ρ is

one-to-one on S#. It follows that S# is isomorphic to ρ(S). In particular, S# is
R+-separative.

Proof. Suppose a, b ∈ S# and ρ(a) = ρ(b); we have to show a = b.
Choose x, y ∈ S such that a = x + x∗ and b = y + y∗. If σ ∈ S∗ then |σ | is
a nonnegative character on S, so |σ(a)| = |σ(b)|. But σ(a) = σ(x + x∗) =
|σ(x)|2 ≥ 0 and similarly for b, so σ(a) = σ(b). This being so for all such
σ , since S is C-separative it follows that a = b, as desired. This proves that
ρ is one-to-one. Now ρ|S# is an isomorphism between S# and the semigroup
ρ(S#) = 2ρ(S), which is isomorphic to ρ(S) since ρ(S), being R+-separative,
is torsion-free.

A ∗-semigroup S is ∗-separative if the conditions x, y ∈ S and x + x∗ =
y + x∗ = x + y∗ = y + y∗ imply x = y. The conditions is equivalent to each
∗-archimedean component of S being cancellative [12]. It is easy to see that
every C-separative semigroup is ∗-separative.

Theorem 2.6. If S is a C-separative semigroup then for every finite subset
V of S we have V ⊂ Conv

(
E(V )

)
. Hence, C(U) ⊂ Conv(U) for every subset

U of S.

Proof. First suppose V is a finite subset of S; we have to show V ⊂
Conv

(
E(V )

)
. If v ∈ E(V ) then trivially v ∈ Conv

(
E(V )

)
. Thus we only

have to show V \ E(V ) ⊂ Conv
(
E(V )

)
. Suppose v ∈ V \ E(V ). By the

definition ofE(V ), there exist s, t ∈ S such that s+s∗, t+ t∗ ∈ V , s+ t∗ = v,
and s �= t . From s + t∗ = v we get v + v∗ = s + s∗ + t + t∗, so writing
x = s+s∗ ∈ V∩S# andy = t+t∗ ∈ V∩S# we have 2(v+v∗) = x+x∗+y+y∗,
which shows v ∈ Conv({x, y}) ⊂ Conv(V ∩ S#). It thus suffices to show
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Conv(V ∩ S#) ⊂ Conv
(
E(V )

)
, and for this it obviously suffices to show

V ∩ S# ⊂ Conv
(
E(V )

)
. If we show V ∩ S# ⊂ Conv

(
E(V ∩ S#)

)
then the

desired inclusion follows since E(V ∩ S#) ⊂ E(V ) (Theorem 2.1 (xi)).
We have reduced the problem concerning V to the corresponding problem

for the subset V ∩ S# of the semigroup S#, which is R+-separative (hence
torsion-free) by the preceding Theorem. Replacing S by S# and V by V ∩ S#,
it might thus seem that we could assume that S is torsion-free. This argument
is not quite correct since the mappings E and C for the semigroup S# may be
different from those for S. Thus we have to be more careful. We have to show
V ∩ S# ⊂ Conv

(
E(V ∩ S#)

)
. Since trivially E(V ∩ S#) ⊂ Conv

(
E(V ∩ S#)

)
,

it suffices to show (V ∩ S#) \E(V ∩ S#) ⊂ Conv
(
E(V ∩ S#)

)
. This amounts

to showing that for each v ∈ (V ∩ S#) \E(V ∩ S#) there is some nv ∈ N[V ],
supported by E(V ∩ S#) ∪ {v} but not by {v}, such that nv(V )v = π(nv).
By Corollary 2.3 it suffices to show that there is such an nv , not necessarily
supported by E(V ∩ S#)∪ {v}. Since v /∈ E(V ∩ S#), there exist s, t ∈ S such
that s + s∗, t + t∗ ∈ V ∩ S#, s + t∗ = v, and s �= t . Writing x = s + s∗ and
y = t+ t∗, we infer v+v∗ = x+y. Since v ∈ S# then v = v∗, so 2v = x+y.
Thus we can use nv = δx + δy , provided that this function is not supported by
{v}. Suppose it is. This means that x = y = v, so s + s∗ = t + t∗ = v. Since
we also have s+ t∗ = v, by ∗-separativity it follows that s = t , a contradiction.

A ∗-semigroup S is normal if C(∅) = ∅.

Corollary 2.7. Every C-separative semigroup is normal.

Proof. C(∅) ⊂ Conv(∅) = ∅.

3. A criterion for semiperfectness

We have already introduced the semigroup A[S] for an abelian semigroup A
with zero and a set S. If A is a group, so is A[S]. If A is a vector space, so is
A[S]. If A is a ring and S is an abelian semigroup then A[S] is made into a
ring by introducing the multiplication ∗ (convolution) defined by

a ∗ b(u) =
∑

s,t∈S:s+t=u
a(s)b(t)

for a, b ∈ A[S] and u ∈ S. The symbol
∑

s,t∈S:s+t=u can be abbreviated∑
s+t=u if S is understood. If the ring A carries an involution, that is, an

involutory anti-automorphism written x �→ x∗, and if S is a ∗-semigroup, then
the ringA[S] is considered with the involutiona �→ ã defined by ã(s) = a(s∗)∗
for a ∈ A[S] and s ∈ S. If A is a ∗-algebra, that is, a complex algebra with
involution, then so is A[S].



302 torben maack bisgaard

We review the generalization to arbitrary semigroups of the criterion of
Haviland [22] for a multisequence to be a moment sequence. Suppose S is a
∗-semigroup. For d ∈ N let Md(C) be the algebra of square complex matrices
of order d with the adjoint operation as involution. For every subset T of S,
define a bilinear form 〈·, ·〉 on Md(C)[T ] ×Md(C)T by

〈a, ϕ〉 =
∑
s∈S

tr
(
a(s)ϕ(s∗)

)

for a ∈ Md(C)[T ] and ϕ ∈ Md(C)T where tr(x) denotes the trace of x ∈
Md(C). Under this bilinear form, the spaces Md(C)[T ] and Md(C)T are in
duality, cf. [2], Ch. 1. The finest locally convex topology on Md(C)[T ], and
the topology of pointwise convergence on Md(C)T , are compatible with the
duality. (We always consider these spaces with these topologies.) For every
subset A of Md(C)[T ] we define a closed convex cone A⊥ in Md(C)T as the
set of those ϕ ∈ Md(C)T such that 〈a, ϕ〉 ≥ 0 for all a ∈ A. For every subset
U of S, define a convex cone Ad(U) in Md(C)[U + Ǔ ] by

Ad(U) = { ã1 ∗ a1 + · · · + ãn ∗ an | a1, . . . , an ∈ Md(C)[U ] }.
Then

(7) P(S,Cd) = Ad(S)
⊥,

cf. [5], Proposition 3 (in which the last statement contains an error, to be
corrected in [9]). For a ∈ Md(C)[S] define â: S∗ → Md(C) by

â(σ ) =
∑
s∈S

σ (s)a(s)

for σ ∈ S∗. Note that (a∗b)̂ = â ·b̂ (pointwise multiplication) and (̃a)̂ = (̂a)∗
(pointwise adjoint operation) for a, b ∈ Md(C)[S]. For every subset A of
Md(C)[S], denote by A+ the set of those a ∈ A such that â(σ ) is a positive
semidefinite matrix for each σ ∈ S∗. Denote by Asa the set of those a ∈ A

such that a = a∗, and write Asa+ = A+ ∩ Asa. Then

(8) H (S,Cd) ⊂ (
Md(C)[S + S]sa

+
)⊥
,

cf. [5], Proposition 3, where the presence of a zero is not used in the proof of
this inclusion. The∗-semigroupS is adapted if for each x ∈ S there existn ∈ N
and y1, . . . , yn+1 ∈ S such that n(x + x∗) = y1 + y∗1 + · · · + yn+1 + y∗n+1.
Every semiperfect semigroup is adapted [15]. In the inclusion (8), equality
holds if and only if S is adapted [15]. Using the Hahn-Banach Theorem and
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(7), one sees that a ∗-semigroup S is semiperfect of order d if and only if S is
adapted and Ad(S) is dense in Md(C)[S + S]sa+ , cf. [15]. (The error in the last
statement of [5], Proposition 3, consisted in writing Md(C)[S + S]+ instead
of Md(C)[S + S]sa+ .) For this reason, it is very interesting if one can show that
Ad(S) is closed in the finest locally convex topology. Our next aim is to show
that this is so if S is a countable normal C-finite semigroup.

For a ∈ Md(C), write a > 0 if a is positive semidefinite and nonzero.
Denote by supp a the set of those s ∈ S such that a(s) �= 0.

Theorem 3.1. If S is a ∗-semigroup, a1, . . . , an ∈ Md(C)[S], and v ∈
E

(
(
⋃n
j=1 supp aj )#

)
then

∑n
j=1 ãj ∗ aj (v) > 0.

Proof. Write T = ⋃n
j=1 supp aj . We have

n∑
j=1

ãj ∗ aj (v) =
n∑

j=1

∑
s,t∈T :s+t∗=v

aj (t)
∗aj (s)

since the terms excluded are zero. Writing V = T #, if s, t ∈ T and s+ t∗ = v

then s + s∗, t + t∗ ∈ V , and since v ∈ E(V ) it follows that s = t . Thus the
above formula reduces to

n∑
j=1

ãj ∗ aj (v) =
n∑

j=1

∑
s∈T :s+s∗=v

aj (s)
∗aj (s).

Each term is positive semidefinite, and since v ∈ E(T #) ⊂ T # then at least
one is nonzero. Since a sum of nonzero positive semidefinite matrices cannot
be zero, the claim follows.

Theorem 3.2. If S is a ∗-semigroup and a1, . . . , an ∈ Md(C)[S] then

C

(
supp

n∑
j=1

ãj ∗ aj
)
= C

[( n⋃
j=1

supp aj

)#]
.

Proof. Write a = ∑n
j=1 ãj ∗ aj and T = ⋃n

j=1 supp aj ; we have to show

C(supp a) = C(T #). We have supp a ⊂ T + Ť ⊂ C(T #) by Theorem 2.1 (ix).
Hence C(supp a) ⊂ C

(
C(T #)

) = C(T #) by Theorem 2.1 (iii) and (v). For
the converse inclusion, note that by the preceding Theorem we have E(T #) ⊂
supp a. Since T # is a finite set then C(T #) = C

(
E(T #)

) ⊂ C(supp a) by
Theorem 2.1 (vi) and (iii).

Theorem 3.3. Every normal semigroup is ∗-separative.
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Proof. Suppose S is a normal semigroup; we have to show that S is ∗-
separative. Suppose s, t ∈ S and s + s∗ = t + s∗ = s + t∗ = t + t∗ = v,
say; we have to show that s = t . Let V be the finite nonempty set {v}. If we
had E(V ) = ∅ then it would follow that V ⊂ C(∅), contradicting normality.
Thus E(V ) �= ∅. Since E(V ) is a subset of V it follows that v ∈ E(V ). Since
s + s∗, t + t∗ ∈ V and s + t∗ = v it follows that s = t , as desired.

A ∗-semigroup S is 2-finite if for each t ∈ S there are only finitely many
s ∈ S such that t = s + s∗.

Theorem 3.4. Every ∗-separative C-finite semigroup is 2-finite.

Proof. Suppose S is a ∗-separative C-finite semigroup; we have to show
that S is 2-finite. Suppose u ∈ S; we have to show that the set A = { s ∈ S |
u = s + s∗ } is finite. If A is empty, we are done. Suppose A is nonempty.
Choose a ∈ A. For s ∈ A we have s + a∗ ∈ C({s + s∗, a + a∗}) = C({u})
by Theorem 2.1 (viii). The right-hand side is a finite set since S is C-finite.
Thus the set A+ a∗ is finite. Let H be the unique ∗-archimedean component
of S containing u. For s ∈ A, if I is the unique ∗-archimedean component
of S containing s then u = s + s∗ ∈ H ∩ I . Since distinct ∗-archimedean
components are disjoint it follows that I = H . Thus A ⊂ H . Since S is ∗-
separative then H is cancellative, so the mapping x �→ x + a∗:H → H is
one-to-one. Since the set A+ a∗ is finite, it follows that so is A.

Theorem 3.5. If S is a countable normal C-finite semigroup and d ∈ N
then the convex cone Ad(S) is closed in the finest locally convex topology on
Md(C)[S + S]. Hence, S is semiperfect of order d if and only if Ad(S) =
Md(C)[S + S]sa+ .

Proof. By [2], 6.3.3, it suffices to show that Ad(S)∩Md(C)[U ] is closed,
in the canonical topology on a finite-dimensional space, for every finite subset
U of S. It even suffices to show that Ad(S) ∩Md(C)[V ] is closed for every
finite subset V of S satisfying V = C(V ). Indeed, every finite subset U of S
is contained in such a set V , viz., the set V = C(U). (Use Theorem 2.1 (ii)
and (v).)

So suppose V is a finite subset of S satisfying V = C(V ); we have to show
that Ad(S) ∩Md(C)[V ] is closed. Let U be the set of those s ∈ S such that
s + s∗ ∈ V . Since S is normal then S is ∗-separative by Theorem 3.3. Since S
is also C-finite, by Theorem 3.4 it follows that S is 2-finite. Thus the set U is
finite. Now

(9) Ad(V ) ∩Md(C)[V ] = Ad(U).

To see this, first note that for a ∈ Ad(U)we have supp a ⊂ U+Ǔ ⊂ C(U #) ⊂
C(V ) = V by Theorem 2.1 (ix) and (iii). For the converse inclusion, suppose
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a ∈ Ad(S) ∩Md(C)[V ]; we have to show a ∈ Ad(U). Choose a1, . . . , an ∈
Md(C)[S] such that a = ã1 ∗ a1 + · · · + ãn ∗ an. Since supp a ⊂ V then,
writing T = ⋃n

j=1 supp aj , we have V = C(V ) ⊃ C(supp a) = C(T #) ⊃ T #

by Theorem 2.1 (iii), Theorem 3.2, and Theorem 2.1 (ii). By the definition of
U it follows that T ⊂ U , that is, the aj are supported by U , so a ∈ Ad(U), as
desired. This proves (9).

It now suffices to show that if U is a finite subset of S then the convex cone
Ad(U) is closed in the canonical topology on the finite-dimensional space
Md(C)[U+Ǔ ]. Choose a compact subsetB ofMd(C)[U ]\{0}which intersects
every ray from the origin. Then the set { b̃ ∗ b | b ∈ B } is again compact, and
so, therefore, is its convex hull K . Now Ad(U) = { λk | k ∈ K, λ ≥ 0 },
so it suffices to show 0 /∈ K . Given c ∈ K , we have to show c �= 0. But
c = c̃1∗c1+· · ·+c̃n∗cn for some c1, . . . , cn ∈ Md(C)[U ]\{0} (n ≥ 1). Writing
T = ⋃n

j=1 supp cj , we have C(supp c) = C(T #) ⊃ T # �= ∅ by Theorem 3.2
and Theorem 2.1 (ii). Since S is normal it follows that supp c �= ∅, that is,
c �= 0, as desired.

4. Semiperfect facially countable R-separative facially C-finite
semigroups

In this section we shall solve the characterization problem indicated in the
title. Indeed, we shall show that a facially countable R-separative facially C-
finite semigroup S is semiperfect (or equivalently, completely semiperfect) if
and only if S = S + S and condition (B) is satisfied. The sufficiency part is
covered by the main result of [7]. Thus we only have to show that if S is a
facially countable R-separative facially C-finite semigroup then S = S + S

and condition (B) is satisfied.
We write A(S) = A1(S) ⊂ C[S + S]+, identifying M1(C) with C by

identifying a square matrix of order 1 with its unique entry.
We first note that it suffices to treat the case that S is countable andC-finite.

Indeed, suppose this case has been dealt with. Suppose S is a semiperfect
facially countable R-separative facially C-finite semigroup; we have to show
that S = S + S and that condition (B) is satisfied. It suffices to verify that if
H ∈ J (S) then H ⊂ S + S and H has the structure specified in (B). Let
X be the least face of S containing H (i.e., X = XH in the notation of the
Introduction). Then X is a main face of S. Since S is facially C-finite then X
is C-finite. Since S is R-separative, so is X. Since S is facially countable then
X is countable. Being a face of the semiperfect semigroup S, X is semiperfect
[25]. By the supposed solution of the special case it follows that X = X +X

and that X satisfies condition (B). Now H ⊂ X = X + X ⊂ S + S. To
see that H has the structure specified in (B), it suffices to verify that H is an
archimedean component of X. But this follows from the following result.
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Lemma 4.1. If H is a ∗-archimedean component of a ∗-semigroup S, and
if H is contained in a ∗-subsemigroup X of S, then H is a ∗-archimedean
component of X.

Proof. Being a ∗-archimedean ∗-subsemigroup of X, H is contained in
a unique ∗-archimedean component of X, say K . Being a ∗-archimedean ∗-
subsemigroup of S, K is contained in a unique ∗-archimedean component of
S, say L. Since H ⊂ L, by the definition of a ∗-archimedean component it
follows that H = L. Now H ⊂ K ⊂ L = H , so H = K , which shows that
H is a ∗-archimedean component of X.

Thus it suffices to show that if S is a semiperfect countable R-separative
C-finite semigroup then S = S + S and condition (B) is satisfied. Since S is
R-separative, it is, in particular, C-separative. By Corollary 2.7 it follows that
S is normal. By Theorem 3.5 it now follows that A(S) = C[S + S]+.

Theorem 4.2. If S is a C-separative semigroup satisfying A(S) = C[S +
S]+ then for every subsetU ofS# we haveC(U)∩(S+S) = Conv(U)∩(S+S).

Proof. One inclusion is immediate from Theorem 2.6. For the converse,
suppose v ∈ Conv(U) ∩ (S + S); we have to show v ∈ C(U). Since v ∈
Conv(U), we can choose n, k ∈ N and u1, . . . , un ∈ U such that

(10) (n+ k)(v + v∗) = k(v + v∗)+ u1 + u∗1 + · · · + un + u∗n.

Note that U ⊂ S# ⊂ S + S. Define a ∈ C[S + S] by

a = δu1 + · · · + δun −
n

2
(δv + δv∗).

We claim that a ∈ C[S + S]+. To see that this is so, suppose σ ∈ S∗; we have
to show 〈a, σ 〉 ≥ 0. We have

〈a, σ 〉 = σ(u1)+ · · · + σ(un)− nRe σ(v).

Thus we have to show

(11) Re σ(v) ≤ 1

n

(
σ(u1)+ · · · + σ(un)

)
.

This is trivial if σ(v) = 0 since we have σ(uj ) ≥ 0 for each j because of
uj ∈ U ⊂ S#. Thus we may assume σ(v) �= 0. From (10) we get |σ(v)|n+k =
|σ(v)|kσ (u1) . . . σ (un). Dividing by the nonzero number |σ(v)|k and taking
n’th roots, we obtain

|σ(v) ≤ n
√
σ(u1) . . . σ (un),
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and (11) follows by the arithmetic-geometric inequality. This proves a ∈ C[S+
S]+. By the hypothesis it follows that a ∈ A(S). Thus we can choose a1, . . . ,

am ∈ C[S] such that a = ã1∗a1+· · ·+ ãm∗am. Define T = ⋃n
j=1 supp aj and

V = T #. By Theorem 3.1, if u ∈ E(V ) then a(u) > 0, so u ∈ {u1, . . . , un} ⊂
U . ThusE(V ) ⊂ U . SinceV is a finite set it follows thatV ⊂ C(U). Therefore
C(V ) ⊂ C

(
C(U)

) = C(U) by Theorem 2.1 (iii) and (v). Thus it suffices to
show v ∈ C(V ). This is trivial if v ∈ {u1, . . . , un}. Otherwise, we have
a(v) < 0, so v ∈ supp a ⊂ T + Ť ⊂ C(T #) = C(V ) by Theorem 2.1 (ix).

In the following, we first consider a torsion-free cancellative C-finite semi-
group S carrying the identical involution and satisfying C(U) ∩ (2S) =
Conv(U) ∩ (2S) for every subset U of the set S# = 2S. Denote by R the
enveloping rational vector space of S. A subset of R consists of equidistant
points if it is a finite, one-sided infinite, or two-sided infinite sequence of
points which are equidistant in the sense that the difference between consecu-
tive points in the sequence is a constant. If Y is a 1-dimensional affine subspace
of R then the set Y ∩ (2S) consists of equidistant points ([7], Lemma 3). If Y
is a 1-dimensional linear subspace of R which intersects S then the semigroup
Y ∩ T is isomorphic to a subsemigroup of Z ([7], Lemma 5). We note that this
semigroup, consisting as it does of equidistant points, must be isomorphic to
{0}, Z, or Np := { n ∈ N0 | n ≥ p } for some p ∈ N0. Now the dimension ofR
is at most 1. The easiest way to see this is to follow the proof of [7], Lemma 6,
making the necessary changes. Note that the result does not follow directly
from [7], Lemma 6, since in that result it was assumed that A(S) = C[S]+.
The first change concerns the space Y introduced in [7] on p. 153 l. 1 from
below. Instead of finding t ∈ S such that

(12) Y ∩ S = {mt | m ∈ M }
with M = Z or M = N, we find some t ∈ S − S such that (12) holds with
M = Z or M = Np for some p ∈ N0. Now in [7], equation (4), N should
be replaced by Nq for some q ∈ N (equal to p if p > 0, but equal to 1 if
p = 0). When it comes to proving that the point y = v+ s is in 2S, we cannot
conclude this immediately from the fact that 2S is a semigroup. This is because
the point s is now not necessarily in 2S. Instead, note that the set v + Y is a
1-dimensional affine subspace ofR which intersects 2S in a setB that contains
the set A = {v, v + (k − 1)s, ks}. Since B consists of equidistant points, it
must also contain the point v+ s which is an affine combination of two points
of A with integer coefficients and at the same time is in the convex hull of A
(i.e., the set of convex combinations of points of A with coefficients that are
rationals). This argument must be repeated once. Otherwise, everything is as
in [7], Lemma 6.
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An ideal of a ∗-semigroup S is a ∗-subsemigroupH such that S+H ⊂ H .

Lemma 4.3. Every cancellative ∗-semigroup which has a C-finite ideal is
C-finite.

Proof. Suppose S is a cancellative ∗-semigroup having a C-finite ideal
H ; we have to show that S is C-finite. Since two semigroups are involved,
the mappings E and C will be given the name of the semigroup as subscript.
Suppose U is a finite subset of S; we have to show that the set CS(U) is finite.
Choose a ∈ H . Since S is cancellative then the mapping x �→ a + a∗ + x is
one-to-one. Thus it suffices to show that the set a+a∗ +CS(U) is finite. Since
the set U is finite, so is the set a + a∗ + U ⊂ H . Since H is C-finite then the
set CH(a + a∗ +U) is finite. Thus it suffices to show that a + a∗ +CS(U) ⊂
CH(a + a∗ +U). Suppose V is a finite subset of S such that ES(V ) ⊂ U ; we
have to show a + a∗ + V ⊂ CH(a + a∗ + U). Since the set a + a∗ + V is a
finite subset ofH , it suffices to showEH(a+a∗ +V ) ⊂ a+a∗ +U . Suppose
z ∈ EH(a+ a∗ +V ); we have to show z ∈ a+ a∗ +U . Since z ∈ a+ a∗ +V

then there is some v ∈ V such that z = a + a∗ + v. (In fact, v is unique, by
cancellativity.) It now suffices to show v ∈ U . Since ES(V ) ⊂ U , it suffices
to show v ∈ ES(V ). Suppose s, t ∈ S, s + s∗, t + t∗ ∈ V , and s + t∗ = v;
we have to show s = t . With x = a + s and y = a + t we have x, y ∈ H ,
x + x∗ = a + a∗ + s + s∗ ∈ a + a∗ + V , y + y∗ ∈ a + a∗ + V (similarly),
and x + y∗ = a+ a∗ + s + t∗ = a+ a∗ + v = z. Since z ∈ EH(a+ a∗ +V ),
it follows that x = y, that is, a + s = a + t . Since S is cancellative it follows
that s = t , as desired.

Theorem 4.4. If S is a semiperfect locally countable torsion-free cancel-
lative locally C-finite semigroup carrying the identical involution then S is
isomorphic to {0}, Z, or N0.

Proof. First suppose S is countable and C-finite. As we have seen, it fol-
lows that A(S) = C[S + S]+, and by Theorem 4.2 it follows that C(U) ∩
(S + S) = Conv(U) ∩ (S + S) for every subset U of 2S. In particular,
C(U) ∩ (2S) = Conv(U) ∩ (2S) for every subset U of 2S. As we just saw,
it follows that the dimension of the space R is at most 1. If the dimension is
0 then S = {0}, and we are done. Suppose the dimension is 1. Applying [7],
Lemma 5, to the 1-dimensional space Y = R, we see that S is isomorphic to a
subsemigroup of Z which, since it consists of equidistant points, must be iso-
morphic to {0}, Z, or Np for some p ∈ N0. The case of {0} is excluded since the
dimension is 1. If S is isomorphic to Z, we are done. Suppose S is isomorphic
to Np for some p ∈ N0. If p = 0, we are done. Thus it suffices to show
that for p ∈ N the semigroup Np is not semiperfect. Since every semiperfect
semigroup is adapted, it suffices to show that Np is not adapted, that is, there
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is some x ∈ Np for which there do not exist n ∈ N and y1, . . . , yn+1 ∈ Np

such that nx = y1 + · · · + yn+1. It obviously suffices to take x = p.
(Though it is not needed, we give a proof of the non-semiperfectness of Np

which is somewhat longer but has the merit of not referring to an unpublished
source. Let ϕ be the indicator function of the set {2p} as a subset of the set
Np + Np = N2p. If n ≥ p and cp, . . . , cn ∈ R then

n∑
j,k=p

cj ckϕ(j + k) = c2
p ≥ 0.

Thus ϕ is positive semidefinite. Supposing that Np is semiperfect, we infer
that ϕ is a moment function, that is, there is a measure µ on N∗

p such that
ϕ(n) = ∫

N∗
p
σ (n) dµ(σ) for n ∈ Np. Now 1 = ϕ(2p) = ∫

σ(p)2 dµ(σ), so

µ({ σ ∈ N∗
p | σ(p) �= 0 }) > 0, hence 0 <

∫
σ(p)4 dµ(σ) = ϕ(4p) = 0, a

contradiction.)
Now consider the general case. If H ∈ J (S) then the semigroup XH is a

semiperfect countable torsion-free cancellative semigroup, which has the C-
finite idealH and therefore isC-finite by the Lemma. HenceXH is isomorphic
to {0}, Z, or N0. If S has only finitely many archimedean components then it has
a greatest one with respect to the canonical ordering on the semilattice J (S)

(the ‘sum’ of all of them with respect to the operation ∨). Assume that S has
infinitely many archimedean components; we shall derive a contradiction. In
fact, a contradiction will follow already from the hypothesis that S has at least
3 archimedean components. Choose 3 distinct elements H,K,L ∈ J (S).
DefineM = H ∨K∨L ∈ J (S). ThenXM is isomorphic to {0}, Z, or N0 and
so has at most 2 archimedean components, contradicting the fact that it has at
least 3 (viz., H , K , and L).

Remark. It is worth contemplating whether in the preceding Theorem one
could omit the words ‘locally countable’. It is unknown whether one can do
so, even if S is assumed to be a group. A countable ∗-group is semiperfect if
and only if the ∗-group (Z2, n∗ = n) is not a ∗-homomorphic image of it (and
perfect if and only if (Z, n∗ = n) is not a ∗-homomorphic image; see [3]).
Suppose G is an abelian group which is countably free in the sense that every
countable subgroup ofG is a free abelian group. ConsiderGwith the identical
involution. If G admits Z2 as a homomorphic image then, since Z2 is non-
semiperfect, it follows that G is not semiperfect. However, as far as we have
been able to ascertain, there exist (uncountable) countably free groups that do
not even admit Z as a homomorphic image. For such groups, the problem of
semiperfectness is unsolved. This question is of interest since an arbitrary ∗-
groupG is perfect if and only if the greatest countably free identical-involution
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∗-homomorphic image of G is perfect [13].

Theorem 4.5. A ∗-semigroup S is of class M if and only if for each x ∈ S
there exist e ∈ S and n ∈ N such that n(x + x∗) = e + n(x + x∗).

Proof. ‘If’: Suppose H is a ∗-archimedean component of S; we have to
show that 0 ∈ gH (XH). Choose x ∈ H . By hypothesis there exist e ∈ S and
n ∈ N such that with y = n(x + x∗) we have y = e + y. Since x is in H ,
so is y. From e + y = y ∈ H ⊂ XH we get e ∈ XH by the definition of a
face. Applying gH to the equation y = e+ y we get gH (y) = gH (e)+ gH (y).
Since GH is a group, we can infer gH (e) = 0, which shows 0 ∈ gH (XH), as
desired.

‘Only if’: Let x ∈ S be given; we have to show that there exist e ∈ S and
n ∈ N such that n(x + x∗) = e + n(x + x∗). Let H be the ∗-archimedean
component of S containing x. Since S is of class M then 0 ∈ gH (XH), so we
can choose e ∈ XH such that gH (e) = 0. It follows that gH (x) = 0+gH (x) =
gH (e) + gH (x) = gH (e + x). Since x and e + x are both in H (because of
XH +H ⊂ H ), this shows that there is some a ∈ H such that with b = a+ x

we have b = b + e. Since H is ∗-archimedean, there exist c ∈ H and n ∈ N
such that n(x + x∗) = b + c. Now n(x + x∗) = b + c = (b + e) + c =
e + (b + c) = e + n(x + x∗), as desired.

Corollary 4.6. Suppose S is a ∗-separative semigroup. Then S is of class
M if and only if for each x ∈ S there is some e ∈ S such that x = e + x. In
particular, if S is of class M then S = S + S.

Proof. If x = e + x then x + x∗ = e + (x + x∗), so the condition of the
Theorem is satisfied with n = 1. Conversely, if n(x + x∗) = e + n(x + x∗)
then the elements x, e + x, and x∗ + (n − 1)(x + x∗) belong to the same
∗-archimedean component of S. That component is cancellative since S is ∗-
separative, so we can infer x = e + x. This proves the first statement. For the
second statement, suppose S is of class M . Given x ∈ S, we have to show
x ∈ S + S. Choose e ∈ S such that x = e + x. Then obviously x ∈ S + S.

A Z-semigroup is a ∗-semigroup S such that each archimedean component
of ρ(S) is isomorphic to a subsemigroup of Z.

Theorem 4.7. For a ∗-separative Z-semigroup S, the following three con-
ditions are equivalent:

(i) S is adapted;

(ii) S is of class M ;

(iii) S = S + S.
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Proof. The implication (iii)⇒(i) is easily seen to be valid for an arbitrary
∗-semigroup S. Thus we only have to verify (i)⇒(ii)⇒(iii).

(ii)⇒(iii): Corollary 4.6. Note that here we do not use the assumption that
S is a Z-semigroup.

(i)⇒(ii): First suppose S is R+-separative. Then S = ρ(S), so each archi-
medean component of S is isomorphic to a subsemigroup of Z. Suppose H
is an archimedean component of S; we have to show 0 ∈ gH (XH), that is,
there is some e ∈ XH such that gH (e) = 0. If H is a group then as e we can
use the zero of H . Suppose H is not a group. By hypothesis, H is isomorphic
to a subsemigroup of Z. Identify H with such a semigroup. If H intersects
both N and the set −N = {−n | n ∈ N } then H is a group, a contradiction.
Thus H ⊂ N0 or H ⊂ −N0. Applying the automorphism n �→ −n of Z, if
necessary, we may assume H ⊂ N0. Since gH (XH) ⊂ GH = H − H ⊂ Z
and N0 ⊃ H ⊃ XH + H = gH (XH) + H then gH (XH) ⊂ N0. Let e be the
least element of gH (XH); we have to show e = 0. Choose x ∈ XH such that
e = gH (x). Since S is adapted, we can choose n ∈ N and y1, . . . , yn+1 ∈ S

such that nx = y1 + · · · + yn+1. Since x is in XH , so is nx, and so, therefore,
are the yj . Applying gH to the last equality, we obtain ne = f1 + · · · + fn+1

where fj = gH (yj ) for j = 1, . . . , n + 1. Since fj ≥ e (by the definition of
e) then ne ≥ (n + 1)e, that is, e ≤ 0. Since e ∈ N0, it follows that e = 0, as
desired.

Theorem 4.8. For a facially countable R-separative faciallyC-finite semig-
roup S, the following three conditions are equivalent:

(i) S is completely semiperfect;

(ii) S is semiperfect;

(iii) S = S + S and condition (B) holds.

Proof. (iii)⇒(i): See [7]. Note that this implication is true without the
assumptions that S is facially countable and facially C-finite.

(i)⇒(ii): Trivial.
(ii)⇒(iii): We noted in the beginning of this section that we may assume

that S is countable and C-finite. If we show that S = S + S then it follows
from the main result of [7] that (B) holds. Thus we only have to show S =
S + S. Since S is semiperfect then S is adapted. By the preceding Theorem,
it now suffices to show that S is a ∗-separative Z-semigroup. Since S is R-
separative, it is, in particular, ∗-separative. Thus it suffices to verify that S is
a Z-semigroup, that is, each archimedean component of ρ(S) is isomorphic
to a subsemigroup of Z. Since S is C-finite, so is its ∗-subsemigroup S#,
and so, therefore, is the isomorphic semigroup ρ(S), cf. Theorem 2.5. The
semigroup ρ(S) is R+-separative by definition. Since S is countable, so is
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ρ(S). Since S is semiperfect, so is its ∗-homomorphic image ρ(S). Thus ρ(S)
is a semiperfect countable R+-separative C-finite semigroup. Suppose H is
an archimedean component of ρ(S); we have to show that H is isomorphic
to a subsemigroup of Z. Let X be the least face of ρ(S) containing H (i.e.,
X = XH in the notation of the Introduction). Being a face of the semiperfect
semigroup ρ(S),X is semiperfect. Since ρ(S) is countable, so isX. ThusX is
a semiperfect countable semigroup. Hence so is its homomorphic image g(X)
where g = gH . (Recall from the Introduction the definition of the mapping
gH .) Being a subsemigroup of the group GH , g(X) is cancellative. Since
ρ(S) is R+-separative, it is torsion-free. Hence so is its subsemigroup H .
Hence so is the group GH = H − H . It follows that g(X) is torsion-free.
Thus g(X) is a semiperfect countable torsion-free cancellative semigroup.
Now g(X) + H = X + H ⊂ H , that is, H is an ideal of g(X). Since the
cancellative semigroup g(X) has a C-finite ideal, it is C-finite by Lemma 4.3.
It now follows from Theorem 4.4 that g(X) is isomorphic to a subsemigroup
of Z. Hence so is its subsemigroup H .

5. Semiperfect finitely generated abelian semigroups with arbitrary
involution: Reduction to the C-separative case

So far, semiperfect (or, presumably equivalently, completely semiperfect) fi-
nitely generated abelian semigroups with arbitrary involution have not been
characterized. As indicated in the Introduction, a necessary condition is known
which for all we know may be sufficient. The sufficiency proof could be com-
pleted if a suitable converse homomorphism theorem could be demonstrated.

In spite of this situation, the problem of characterizing semiperfect finitely
generated abelian semigroups with arbitrary involution can be reduced to the
problem of doing the same for C-separative semigroups. It is the purpose of
the present section to do this. Since semiperfect (or equivalently, completely
semiperfect) R-separative finitely generated semigroups are characterized in
Theorem 4.8 (every R-separative finitely generated semigroup beingC-finite),
a complete characterization of semiperfect (or equivalently, completely semi-
perfect) finitely generated abelian semigroups with the identical involution
(also known as ‘no involution’) follows.

As mentioned in the Introduction, an arbitrary ∗-semigroup S is semiperfect
of order d ∈ N if and only if χ(S) so is and moreover, every positive semi-
definite function on S factors via χ . The semigroup χ(S) is C-separative by
definition. If S is finitely generated, so is χ(S). Thus, if some day in the future
semiperfect C-separative finitely generated semigroups will be characterized
then in order to remove the hypothesis of C-separativity it suffices to solve the
factoring problem. This we can do already. We note that the last Theorem in
[12] is a partial solution of the factoring problem for semigroups S of class
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M , which is complete in case S is finitely generated. Thus, it suffices to show
that every semiperfect finitely generated semigroup is of class M .

For an arbitrary ∗-semigroup S and for H,K ∈ J (S) such that H ≤ K ,
we have H ⊂ XK , hence XH ⊂ XK , so the mapping gK |XH is well-defined.
This mapping being a ∗-homomorphism ofXH into the ∗-groupGK , it has the
form gK |XH = gH,K ◦ gH for a unique ∗-homomorphism gH,K :GH → GK .
The mapping gH,H is the identity on GH , and if H,K,L ∈ J (S) are such
that H ≤ K ≤ L then gH,L = gK,L ◦ gH,K . By [18], Theorem 4.11, it follows
that the disjoint union

G =
⋃

H∈J (S)

GH

becomes a ∗-semigroup when considered with the addition + given by

x + y = gH,H∨K(x)+ gK,H∨K(y) (sum in the group GH∨K)

for H,K ∈ J (S), x ∈ GH , and y ∈ GK , and the unique involution which
extends the given one on each GH . The mapping g: S → G given by g|H =
gH |H forH ∈ J (S) is a ∗-homomorphism. The semigroupG is ∗-separative.
In fact, the semigroup g(S) is the greatest ∗-separative ∗-homomorphic image
of S [12].

Theorem 5.1. A ∗-semigroup S is of class M if and only if g(S) so is.

Proof. Suppose H ∈ J (S). Then the semigroup g(H) = gH (H) is a
∗-archimedean component of g(S). The least face of g(S) containing g(H)
will be denoted by YH . Now

YH =
⋃

I∈J (S):I≤H
I = g(XH).

Since the semigroup g(H) is a generating subsemigroup of the groupGH then
the group Gg(H) can be identified with GH . The mapping gg(H)|g(H) is then
identified with the inclusion mapping of g(H) into GH . In fact, the mapping
gg(H) is the union of the mappings gI,H :GI → GH (I ∈ J (S), I ≤ H ). We
have the chain of bi-implications 0 ∈ gg(H)(YH )⇔ ∃I ∈ J (S): I ≤ H, 0 ∈
gI,H

(
g(I)

) ⇔ 0 ∈ gH (XH).

Theorem 5.2. Every semiperfect finitely generated semigroup is of class
M .

Proof. Suppose S is a semiperfect finitely generated semigroup; we have
to show that S is of class M . First suppose S is ∗-separative. Since S is semi-
perfect then S is adapted. By Theorem 4.7 it now suffices to show that S is
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a Z-semigroup, that is, each archimedean component of ρ(S) is isomorphic
to a subsemigroup of Z. The semigroup ρ(S), being a ∗-homomorphic image
of the semiperfect finitely generated semigroup S, is finitely generated and
semiperfect. By definition, ρ(S) is R+-separative. Being R-separative and fi-
nitely generated, ρ(S) is C-finite. Being finitely generated, ρ(S) is countable.
Thus ρ(S) is a semiperfect countable R+-separative C-finite semigroup. By
Theorem 4.8 it follows, in particular, that condition (B) holds for ρ(S), that
is, each archimedean component H of ρ(S) is isomorphic to F × P for some
torsion group F of exponent 1 or 2 and some semigroup P which is {0}, Z, or
N. It now suffices to verify that F = {0}. But this follows from the fact that
ρ(S), being R+-separative, is torsion-free.

In the general case, by Theorem 5.1 it suffices to verify that the semigroup
g(S) is of class M . Since g(S) is ∗-separative, by what we showed in the
preceding paragraph it suffices to verify that g(S) is a semiperfect finitely
generated semigroup. But both facts follow from the fact that g(S) is a ∗-
homomorphic image of the semiperfect finitely generated semigroup S.

Theorem 5.3. A finitely generated abelian semigroup S with arbitrary in-
volution is semiperfect of order d ∈ N if and only if χ(S) so is and moreover,
the condition in the last Theorem in [12] (cited in italics in the present Intro-
duction) is satisfied.

Proof. First suppose S is semiperfect of order d. As already noted, it fol-
lows that χ(S) is semiperfect of order d and every positive semidefinite func-
tion on S factors via χ . By Theorem 5.2, S is of class M . It now follows that
the condition from [12] must be satisfied.

Conversely, suppose the conditions hold; we have to show that S is semi-
perfect of order d. Since χ(S) is semiperfect of order d, it suffices to verify
that every positive semidefinite function on S factors via χ . Since the con-
dition from [12] is supposed to be satisfied, it suffices to show that S is of
class M . Now the property of being of class M is a property of the greatest
R+-separative ∗-homomorphic image in the sense that a ∗-semigroup T is of
class M if and only if ρ(T ) so is (see [15]). Since every nonnegative character
on S is, in particular, a character on S then ρ(S) and ρ

(
χ(S)

)
are the same

semigroup up to isomorphism. Thus S is of class M if and only if χ(S) so is.
Thus it suffices to show that χ(S) is of class M . Since χ(S) is semiperfect
of order d, it is, in particular, semiperfect, so the desired fact follows from
Theorem 5.2.

The preceding result has the demerit that a solution of the C-separative case
is lacking. The next result has no such demerit.

Corollary 5.4. A finitely generated abelian semigroup S is semiperfect
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(or equivalently, completely semiperfect) if and only if, firstly, the semigroup
T = χ(S) satisfies T = T +T and condition (B), and secondly, the condition
from [12] is satisfied.

Proof. Immediate from Theorems 5.3 and 4.8, recalling that every R-
separative finitely generated semigroup is C-finite.

6. A discussion

The present section is devoted to a discussion—mostly informal—of whether
some of the assumptions in Theorem 4.8 might be weakened or dropped.
Firstly, note that condition (B) implies R-separativity, so that the assumption
of R-separativity cannot be dropped unless every semiperfect semigroup sat-
isfying the other assumptions is R-separative—which is obviously false, cf.
the example of the semigroup {a, 2a} where 3a = 2a—which is a perfect
semigroup. Next, we note that the assumption of facial countability cannot be
replaced with local countability. Indeed, in [5], Example 3, we associated with
every set E with at least 2 elements a semigroup SE such that all archimedean
components of SE except two are isomorphic to N while the remaining two are
isomorphic to {0} and N2, respectively. If E is uncountable then S is semiper-
fect. Obviously, S is R-separative (even R+-separative) and locally countable.
It was shown in [7], Remark 1, that S isC-finite. Since SE has an archimedean
component isomorphic to N2 then it does not satisfy condition (B). It follows
from [7], Remark 1, that in the present Theorem 4.8 the assumption of facial
C-finiteness cannot simply be dropped. It remains to investigate whether it can
be replaced by some weaker condition, such as local C-finiteness. Since even
the R+-separative case is hard, we may as well restrict attention to this case.

Theorem 6.1. If S is a semiperfect locally countable R+-separative locally
C-finite semigroup then S = S + S and each archimedean component of S is
isomorphic to {0}, Z, or Np for some p ∈ N.

Proof. Suppose H is an archimedean component of S. Let X be the least
face of S containing H (i.e., X = XH in the notation of the Introduction).
Being a face of the semiperfect semigroup S, X is semiperfect. Hence so is its
homomorphic image g(X) where g = gH . Since S is R+-separative then H
is cancellative and torsion-free. Being cancellative, H can be identified with
a subsemigroup of GH such that GH = H − H . Since H is torsion-free, so
is GH . Since S is locally C-finite then H is C-finite. The semigroup g(X),
which has theC-finite idealH , isC-finite. Since S is locally countable thenH
is countable and so, therefore, are GH and g(X). Thus g(X) is a semiperfect
countable torsion-free cancellative C-finite semigroup, hence isomorphic to
{0}, Z, or N0. Now H is an ideal of g(X). If g(X) is a group, it follows that
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H = g(X), so H is isomorphic to {0} or Z. Assume that g(X) is not a group.
Then g(X) is isomorphic to N0, and it follows that H , being an ideal of g(X),
is isomorphic to Np for some p ∈ N0. The case of p = 0 is excluded since N0

is not archimedean.
It remains to be shown that S = S+S. We have seen thatS is a Z-semigroup.

Being R+-separative, S is ∗-separative. Being semiperfect, S is adapted. Now
the desired conclusion follows from Theorem 4.7.

Suppose S is a semiperfect countable R+-separative locally C-finite semi-
group. Let H be an archimedean component of S. By the preceding Theorem,
H is isomorphic to {0}, Z, or Np for some p ∈ N. If H is isomorphic to Np

for some p ∈ N, is it possible that p ≥ 2? Suppose p = 2. Let X be the least
face of S containing H . Then X, being a face of the semiperfect semigroup S,
is semiperfect. Obviously X is countable, R+-separative, and locally C-finite.
Moreover, H is the greatest element of J (X) with respect to the canonical
partial ordering. In other words, we may assume thatH is the greatest element
of J (S) with respect to the canonical partial ordering. Let (Si)i∈I be the
family of all archimedean components of S, with the index set I made into a
semilattice (isomorphic to J (S)) by the requirement that Si + Sj ⊂ Si+j for
all i, j ∈ I . Then I has a greatest element k, and Sk = N2. For definiteness,
assume that for i < k the semigroup Si is isomorphic to {0}, Z, or N.

Theorem 6.2. We may assume that S is a subsemigroup of the product
semigroup I × N0.

Proof. Let g be the mapping gSk : S = XSk → GSk = Sk−Sk = N2−N2 =
Z. Since g(S)+Sk = S+Sk ⊂ Sk then g(S) ⊂ N0. Define f : S → I ×N0 by
f (s) = (

i, g(s)
)

for s ∈ Si . We leave it as an easy exercise to verify that f is
a homomorphism. Being a homomorphic image of the semiperfect semigroup
S, the semigroup T = f (S) is semiperfect. Since S is countable, so is T .
The archimedean components of T are the sets Ti = f (Si) (i ∈ I ), which
are isomorphic to subsemigroups of N0, hence C-finite. Thus T is locally C-
finite. Since g is the identity on Sk then the archimedean component Tk of T
is isomorphic to N2. Thus T satisfies all the assumptions on S and in addition
is a subsemigroup of I × N0.

In the following, we assume that I is a countable semilattice with greatest
element k and that S is a subsemigroup of I × N0. For i ∈ I we define
Si = { n | (i, n) ∈ S }. We assume that Sk = N2 while if i < k then Si is {0}
or N. Assume that S is semiperfect.

Theorem 6.3. The semilattice I is infinite.

Proof. Suppose I is finite. Then S isC-finite. In fact, for every finite subset
U of S the set C(U) is contained in the set given by [7], equation (8). Thus
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S is a semiperfect countable R+-separative C-finite semigroup. Hence each
archimedean component of S is isomorphic to {0}, Z, or N, contradicting the
fact that S has an archimedean component isomorphic to N2.

For every set A, denote by 2A the set of all subsets of A.

Theorem 6.4. We may assume that I is a subsemilattice of the semilattice
(2N,∩).

Proof. Choose an enumeration (i1, i2, . . .) of the set I \{k}, i.e., a sequence
in which each element of that set occurs exactly once. Define a mappingf : I →
2N by f (i) = { n | i ≤ in }. Then f is a homomorphism of I into (2N,∩).
Indeed, for i, j ∈ I , since i + j is the least upper bound on the set {i, j}
then f (i + j) is the set of those n such that both i ≤ in and j ≤ in, i.e.,
f (i + j) = f (i) ∩ f (j). Define a homomorphism F : I × N0 → 2N × N0 by
F(i, n) = (

f (i), n
)
. Now replace S by F(S).

We discontinue the discussion at this point in order that the paper will not
become too long.

Remark. After the rest of this paper was written, we discovered that there is
a semiperfect countable R+-separative locallyC-finite semigroup S which has
an archimedean component isomorphic to N2. The semigroup S is constructed
as follows: Choose a sequence (Ap)∞p=1 of pairwise disjoint infinite subsets of
N with union N. Let I be the semilattice(

{N} ∪
{ ⋃
p∈P

Ap

∣∣∣∣ P ∈ 2(N)
}
∪ 2(N),∩

)
,

define J = I \ {∅}, and let S be the semigroup obtained by adjoining a neutral
element to the subsemigroup (J × N) ∪ ({∅} × N2) of I × N. The proof is
rather complicated.
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