SEQUENCES FOR COMPLEXES II

LARS WINTHER CHRISTENSEN

1. Introduction and Notation

This short paper elaborates on an example given in [4] to illustrate an application of sequences for complexes:

Let *R* be a local ring with a dualizing complex *D*, and let *M* be a finitely generated *R*-module; then a sequence x_1, \ldots, x_n is part of a system of parameters for *M* if and only if it is a **R**Hom_{*R*}(*M*, *D*)-sequence [4, 5.10].

The final Theorem 3.9 of this paper generalizes the result above in two directions: the dualizing complex is replaced by a Cohen-Macaulay semidualizing complex (see [3, Sec. 2] or 3.8 below for definitions), and the finite module is replaced by a complex with finite homology.

Before we can even state, let alone prove, this generalization of [4, 5.10] we have to introduce and study *parameters* for complexes. For a finite *R*-module *M* every *M*-sequence is part of a system of parameters for *M*, so, loosely speaking, regular elements are just special parameters. For a complex *X*, however, parameters and regular elements are two different things, and kinship between them implies strong relations between two measures of the size of *X*: the *amplitude* and the *Cohen-Macaulay defect* (both defined below). This is described in 3.5, 3.6, and 3.7.

The definition of parameters for complexes is based on a notion of *anchor prime ideals*. These do for complexes what minimal prime ideals do for modules, and the quantitative relations between dimension and depth under dagger duality—studied in [3]—have a qualitative description in terms of anchor and associated prime ideals.

Throughout *R* denotes a commutative, Noetherian local ring with maximal ideal m and residue field k = R/m. We use the same notation as in [4], but for convenience we recall a few basic facts.

The homological position and size of a complex X is captured by the su-

Received May 2, 2000.

premum, infimum, and amplitude:

$$\sup X = \sup\{\ell \in \mathsf{Z} \mid \mathsf{H}_{\ell}(X) \neq 0\},$$

inf $X = \inf\{\ell \in \mathsf{Z} \mid \mathsf{H}_{\ell}(X) \neq 0\},$ and
$$\operatorname{amp} X = \sup X - \inf X.$$

By convention, $\sup X = -\infty$ and $\inf X = \infty$ if H(X) = 0. The *support* of a complex X is the set

$$\operatorname{Supp}_{R} X = \{ \mathfrak{p} \in \operatorname{Spec} R \mid X_{\mathfrak{p}} \not\simeq 0 \} = \bigcup_{\ell} \operatorname{Supp}_{R} \operatorname{H}_{\ell}(X).$$

As usual $Min_R X$ is the subset of minimal elements in the support.

The *depth* and the (*Krull*) *dimension* of an *R*-complex *X* are defined as follows:

$$depth_{R} X = -\sup(\mathbf{R}Hom_{R}(k, X)), \text{ for } X \in \mathcal{D}_{-}(R), \text{ and} \\ \dim_{R} X = \sup\{\dim R/\mathfrak{p} - \inf X_{\mathfrak{p}} \mid \mathfrak{p} \in \operatorname{Supp}_{R} X\},$$

cf. [6, Sec. 3]. For modules these notions agree with the usual ones. It follows from the definition that

(1.1)
$$\dim_R X \ge \dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}} + \dim R/\mathfrak{p}$$

for $X \in \mathcal{D}(R)$ and $\mathfrak{p} \in \operatorname{Spec} R$; and there are always inequalities:

(1.2) $-\inf X \le \dim_R X$ for $X \in \mathcal{D}_+(R)$; and

(1.3)
$$-\sup X \le \operatorname{depth}_R X \quad \text{for} \quad X \in \mathcal{D}_-(R).$$

A complex $X \in \mathscr{D}_{b}^{f}(R)$ is *Cohen-Macaulay* if and only if dim_R $X = \text{depth}_{R} X$, that is, if an only if the *Cohen-Macaulay defect*,

 $\operatorname{cmd}_R X = \dim_R X - \operatorname{depth}_R X$,

is zero. For complexes in $\mathscr{D}_{b}^{f}(R)$ the Cohen-Macaulay defect is always non-negative, cf. [6, Cor. 3.9].

2. Anchor Prime Ideals

In [4] we introduced associated prime ideals for complexes. The analysis of the support of a complex is continued in this section, and the aim is now to identify the prime ideals that do for complexes what the minimal ones do for modules. DEFINITIONS 2.1. Let $X \in \mathscr{D}_+(R)$; we say that $\mathfrak{p} \in \text{Spec } R$ is an *anchor prime ideal* for X if and only if $\dim_{R_\mathfrak{p}} X_\mathfrak{p} = -\inf X_\mathfrak{p} > -\infty$. The set of anchor prime ideals for X is denoted by $\operatorname{Anc}_R X$; that is,

Anc_R
$$X = \{ \mathfrak{p} \in \operatorname{Supp}_R X \mid \dim_{R_\mathfrak{p}} X_\mathfrak{p} + \inf X_\mathfrak{p} = 0 \}.$$

For $n \in N_0$ we set

$$W_n(X) = \{ \mathfrak{p} \in \operatorname{Supp}_R X \mid \dim_R X - \dim R/\mathfrak{p} + \inf X_\mathfrak{p} \le n \}.$$

OBSERVATION 2.2. Let *S* be a multiplicative system in *R*, and let $\mathfrak{p} \in$ Spec *R*. If $\mathfrak{p} \cap S = \emptyset$ then $S^{-1}\mathfrak{p}$ is a prime ideal in $S^{-1}R$, and for $X \in \mathcal{D}(R)$ there is an isomorphism $S^{-1}X_{S^{-1}\mathfrak{p}} \simeq X_{\mathfrak{p}}$ in $\mathcal{D}(R_{\mathfrak{p}})$. In particular, inf $S^{-1}X_{S^{-1}\mathfrak{p}} = \inf X_{\mathfrak{p}}$ and $\dim_{S^{-1}R_{S^{-1}\mathfrak{p}}} S^{-1}X_{S^{-1}\mathfrak{p}} = \dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}}$. Thus, the next biconditional holds for $X \in \mathcal{D}_{+}(R)$ and $\mathfrak{p} \in$ Spec *R* with $\mathfrak{p} \cap S = \emptyset$.

(2.1)
$$\mathfrak{p} \in \operatorname{Anc}_R X \iff S^{-1}\mathfrak{p} \in \operatorname{Anc}_{S^{-1}R} S^{-1}X.$$

THEOREM 2.3. For $X \in \mathcal{D}_+(R)$ there are inclusions:

(a)
$$\operatorname{Min}_R X \subseteq \operatorname{Anc}_R X$$
; and

(b)
$$W_0(X) \subseteq \operatorname{Anc}_R X.$$

Furthermore, if $\operatorname{amp} X = 0$, that is, if X is equivalent to a module up to a shift, then

(c)
$$\operatorname{Anc}_R X = \operatorname{Min}_R X \subseteq \operatorname{Ass}_R X;$$

and if X is Cohen-Macaulay, that is, $X \in \mathscr{D}_{b}^{f}(R)$ and $\dim_{R} X = \operatorname{depth}_{R} X$, then

(d)
$$\operatorname{Ass}_R X \subseteq \operatorname{Anc}_R X = W_0(X).$$

PROOF. In the following *X* belongs to $\mathcal{D}_+(R)$.

(a): If \mathfrak{p} belongs to $\operatorname{Min}_R X$ then $\operatorname{Supp}_{R_\mathfrak{p}} X_\mathfrak{p} = {\mathfrak{p}}$, so $\dim_{R_\mathfrak{p}} X_\mathfrak{p} = -\inf X_\mathfrak{p}$, that is, $\mathfrak{p}_\mathfrak{p} \in \operatorname{Anc}_{R_\mathfrak{p}} X_\mathfrak{p}$ and hence $\mathfrak{p} \in \operatorname{Anc}_R X$ by (2.1).

(b): Assume that \mathfrak{p} belongs to $W_0(X)$, then $\dim_R X = \dim R/\mathfrak{p} - \inf X_{\mathfrak{p}}$, and since $\dim_R X \ge \dim_{R_\mathfrak{p}} X_\mathfrak{p} + \dim R/\mathfrak{p}$ and $\dim_{R_\mathfrak{p}} X_\mathfrak{p} \ge -\inf X_\mathfrak{p}$, cf. (1.1) and (1.2), it follows that $\dim_{R_\mathfrak{p}} X_\mathfrak{p} = -\inf X_\mathfrak{p}$, as desired.

(c): For $M \in \mathcal{D}_0(R)$ we have

$$\operatorname{Anc}_{R} M = \{ \mathfrak{p} \in \operatorname{Supp}_{R} M \mid \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = 0 \} = \operatorname{Min}_{R} M,$$

and the inclusion $\operatorname{Min}_R M \subseteq \operatorname{Ass}_R M$ is well-known.

(d): Assume that $X \in \mathscr{D}_{b}^{f}(R)$ and $\dim_{R} X = \operatorname{depth}_{R} X$, then $\dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}} = \operatorname{depth}_{R_{\mathfrak{p}}} X_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Supp}_{R} X$, cf. [5, (16.17)]. If $\mathfrak{p} \in \operatorname{Ass}_{R} X$ we have

$$\dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}} = \operatorname{depth}_{R_{\mathfrak{p}}} X_{\mathfrak{p}} = -\operatorname{sup} X_{\mathfrak{p}} \le -\inf X_{\mathfrak{p}},$$

cf. [4, Def. 2.3], and it follows by (1.2) that equality must hold, so p belongs to Anc_{*R*} *X*.

For each $\mathfrak{p} \in \operatorname{Supp}_R X$ there is an equality

$$\dim_R X = \dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}} + \dim R/\mathfrak{p},$$

cf. [5, (17.4)(b)], so dim_{*R*} X – dim R/\mathfrak{p} + inf $X_{\mathfrak{p}} = 0$ for \mathfrak{p} with dim_{$R_{\mathfrak{p}}$} $X_{\mathfrak{p}} =$ – inf $X_{\mathfrak{p}}$. This proves the inclusion Anc_{*R*} $X \subseteq W_0(X)$.

COROLLARY 2.4. For $X \in \mathcal{D}_{b}(R)$ there is an inclusion:

(a)
$$\operatorname{Min}_R X \subseteq \operatorname{Ass}_R X \cap \operatorname{Anc}_R X;$$

and for $\mathfrak{p} \in \operatorname{Ass}_R X \cap \operatorname{Anc}_R X$ there is an equality:

(b)
$$\operatorname{cmd}_{R_{\mathfrak{p}}} X_{\mathfrak{p}} = \operatorname{amp} X_{\mathfrak{p}}.$$

PROOF. Part (a) follows by 2.3 (a) and [4, Prop. 2.6]; part (b) is immediate by the definitions of associated and anchor prime ideals, cf. [4, Def. 2.3].

COROLLARY 2.5. If $X \in \mathscr{D}^{\mathrm{f}}_{+}(R)$, then

$$\dim_R X = \sup\{\dim R/\mathfrak{p} + \dim_{R_\mathfrak{p}} X_\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Anc}_R X\}.$$

PROOF. It is immediate by the definitions that

$$\dim_{R} X = \sup\{\dim R/\mathfrak{p} - \inf X_{\mathfrak{p}} \mid \mathfrak{p} \in \operatorname{Supp}_{R} X\}$$

$$\geq \sup\{\dim R/\mathfrak{p} - \inf X_{\mathfrak{p}} \mid \mathfrak{p} \in \operatorname{Anc}_{R} X\}$$

$$= \sup\{\dim R/\mathfrak{p} + \dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}} \mid \mathfrak{p} \in \operatorname{Anc}_{R} X\};$$

and the opposite inequality follows by 2.3 (b).

PROPOSITION 2.6. The following hold:

(a) If
$$X \in \mathcal{D}_+(R)$$
 and \mathfrak{p} belongs to $\operatorname{Anc}_R X$, then $\dim_{R_\mathfrak{p}}(\operatorname{H}_{\inf X_\mathfrak{p}}(X_\mathfrak{p})) = 0$.

(b) If $X \in \mathscr{D}_{b}^{f}(R)$, then $\operatorname{Anc}_{R} X$ is a finite set.

PROOF. (a): Assume that $\mathfrak{p} \in \operatorname{Anc}_R X$; by [6, Prop. 3.5] we have

 $-\inf X_{\mathfrak{p}} = \dim_{R_{\mathfrak{p}}} X_{\mathfrak{p}} \ge \dim_{R_{\mathfrak{p}}} (\mathrm{H}_{\inf X_{\mathfrak{p}}}(X_{\mathfrak{p}})) - \inf X_{\mathfrak{p}},$

and hence $\dim_{R_{\mathfrak{p}}}(\operatorname{H}_{\operatorname{inf} X_{\mathfrak{p}}}(X_{\mathfrak{p}})) = 0.$

(b): By (a) every anchor prime ideal for X is minimal for one of the homology modules of X, and when $X \in \mathscr{D}_{b}^{f}(R)$ each of the finitely many homology modules has a finite number of minimal prime ideals.

OBSERVATION 2.7. By Nakayama's lemma it follows that

 $\inf \mathbf{K}(x_1,\ldots,x_n;Y) = \inf Y,$

for $Y \in \mathscr{D}^{\mathrm{f}}_{+}(R)$ and elements $x_1, \ldots, x_n \in \mathfrak{m}$.

PROPOSITION 2.8 (Dimension of Koszul Complexes). The following hold for a complex $Y \in \mathscr{D}^{\mathrm{f}}_{+}(R)$ and elements $x_1, \ldots, x_n \in \mathfrak{m}$:

- (a) $\dim_R K(x_1, \ldots, x_n; Y)$ = sup{ $\dim R/\mathfrak{p} - \inf Y_\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp}_R Y \cap V(x_1, \ldots, x_n)$ }; and
- (b) $\dim_R Y n \leq \dim_R K(x_1, \dots, x_n; Y) \leq \dim_R Y$.

Furthermore:

- (c) The elements $x_1, ..., x_n$ are contained in a prime ideal $\mathfrak{p} \in W_n(Y)$; and
- (d) $\dim_R K(x_1, \ldots, x_n; Y) = \dim_R Y$ if and only if $x_1, \ldots, x_n \in \mathfrak{p}$ for some $\mathfrak{p} \in W_0(Y)$.

PROOF. Since $\operatorname{Supp}_R K(x_1, \ldots, x_n; Y) = \operatorname{Supp}_R Y \cap V(x_1, \ldots, x_n)$ (see [6, p. 157] and [4, 3.2]) (a) follows by the definition of Krull dimension and 2.7. In (b) the second inequality follows from (a); the first one is established through four steps:

1° Y = R: The second equality below follows from the definition of Krull dimension as $\operatorname{Supp}_R K(x_1, \ldots, x_n) = \operatorname{Supp}_R H_0(K(x_1, \ldots, x_n)) = V(x_1, \ldots, x_n)$, cf. [4, 3.2]; the inequality is a consequence of Krull's Principal Ideal Theorem, see for example [8, Thm. 13.6].

$$\dim_R \mathbf{K}(x_1, \dots, x_n; Y) = \dim_R \mathbf{K} (x_1, \dots, x_n)$$

= sup{ dim $R/\mathfrak{p} \mid \mathfrak{p} \in \mathbf{V}(x_1, \dots, x_n)$ }
= dim $R/(x_1, \dots, x_n)$
 \geq dim $R - n$
= dim_R $Y - n$.

2° Y = B, a cyclic module: By $\bar{x}_1, \ldots, \bar{x}_n$ we denote the residue classes in *B* of the elements x_1, \ldots, x_n ; the inequality below is by 1°.

$$\dim_R K(x_1, \dots, x_n; Y) = \dim_R K(\bar{x}_1, \dots, \bar{x}_n)$$
$$= \dim_B K(\bar{x}_1, \dots, \bar{x}_n)$$
$$\geq \dim B - n$$
$$= \dim_R Y - n.$$

 $3^{\circ} Y = H \in \mathscr{D}_0^{\mathrm{f}}(R)$: We set $B = R / \operatorname{Ann}_R H$; the first equality below follows by [6, Prop. 3.11] and the inequality by 2° .

$$\dim_R \mathcal{K}(x_1, \dots, x_n; Y) = \dim_R \mathcal{K}(x_1, \dots, x_n; B)$$
$$\geq \dim_R B - n$$
$$= \dim_R Y - n.$$

4° *Y* ∈ $\mathscr{D}_{b}^{f}(R)$: The first equality below follows by [6, Prop. 3.12] and the last by [6, Prop. 3.5]; the inequality is by 3°.

$$\dim_R \mathcal{K}(x_1, \dots, x_n; Y) = \sup\{\dim_R \mathcal{K}(x_1, \dots, x_n; \mathcal{H}_{\ell}(Y)) - \ell \mid \ell \in \mathsf{Z}\}$$
$$\geq \sup\{\dim_R \mathcal{H}_{\ell}(Y) - n - \ell \mid \ell \in \mathsf{Z}\}$$
$$= \dim_R Y - n.$$

This proves (b).

In view of (a) it now follows that

$$\dim_R Y - n \leq \dim R/\mathfrak{p} - \inf Y_\mathfrak{p}$$

for some $\mathfrak{p} \in \operatorname{Supp}_R Y \cap V(x_1, \ldots, x_n)$. That is, the elements x_1, \ldots, x_n are contained in a prime ideal $\mathfrak{p} \in \operatorname{Supp}_R Y$ with

$$\dim_R Y - \dim R/\mathfrak{p} + \inf Y_\mathfrak{p} \le n,$$

and this proves (c).

Finally, it is immediate by the definitions that

 $\dim_R Y = \sup\{\dim R/\mathfrak{p} - \inf Y_\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp}_R Y \cap V(x_1, \ldots, x_n)\}$

if and only if $W_0(Y) \cap V(x_1, \ldots, x_n) \neq \emptyset$. This proves (d).

THEOREM 2.9. If $Y \in \mathscr{D}_{\mathbf{b}}^{\mathbf{f}}(R)$, then the next two numbers are equal.

$$d(Y) = \dim_R Y + \inf Y; \quad and$$

$$s(Y) = \inf\{s \in \mathbb{N}_0 \mid \exists x_1, \dots, x_s : \mathfrak{m} \in \operatorname{Anc}_R \mathbb{K}(x_1, \dots, x_s; Y)\}.$$

PROOF. There are two inequalities to prove.

 $d(Y) \le s(Y)$: Let $x_1, \ldots, x_s \in \mathfrak{m}$ be such that $\mathfrak{m} \in \operatorname{Anc}_R K(x_1, \ldots, x_s; Y)$; by 2.8 (b) and 2.7 we then have

 $\dim_R Y - s \leq \dim_R K(x_1, \dots, x_s; Y) = -\inf K(x_1, \dots, x_s; Y) = -\inf Y,$

so $d(Y) \leq s$, and the desired inequality follows.

 $s(Y) \le d(Y)$: We proceed by induction on d(Y). If d(Y) = 0 then $\mathfrak{m} \in$ Anc_R Y so s(Y) = 0. If d(Y) > 0 then $\mathfrak{m} \notin$ Anc_R Y, and since Anc_R Y is a finite set, by 2.6(b), we can choose an element $x \in \mathfrak{m} - \bigcup_{\mathfrak{p} \in \text{Anc}_R Y} \mathfrak{p}$. We set K = K(x; Y); it is cleat that $s(Y) \le s(K) + 1$. Furthermore, it follows by 2.8 (a) and 2.3 (b) that dim_R K < dim_R Y and thereby d(K) < d(Y), cf. 2.7. Thus, by the induction hypothesis we have

$$s(Y) \le s(K) + 1 \le d(K) + 1 \le d(Y);$$

as desired.

3. Parameters

By 2.9 the next definitions extend the classical notions of systems and sequences of parameters for finite modules (e.g., see [8, § 14] and the appendix in [2]).

DEFINITIONS 3.1. Let *Y* belong to $\mathscr{D}_{b}^{f}(R)$ and set $d = \dim_{R} Y + \inf Y$. A set of elements $x_{1}, \ldots, x_{d} \in \mathfrak{m}$ are said to be a *system of parameters* for *Y* if and only if $\mathfrak{m} \in \operatorname{Anc}_{R} K(x_{1}, \ldots, x_{d}; Y)$.

A sequence $x = x_1, ..., x_n$ is said to be a *Y*-parameter sequence if and only if it is part of a system of parameters for *Y*.

LEMMA 3.2. Let Y belong to $\mathscr{D}_{b}^{f}(R)$ and set $d = \dim_{R} Y + \inf Y$. The next two conditions are equivalent for elements $x_{1}, \ldots, x_{d} \in \mathfrak{m}$.

- (i) x_1, \ldots, x_d is a system of parameters for Y.
- (ii) For every $j \in \{0, ..., d\}$ there is an equality:

$$\dim_R \mathbf{K}(x_1,\ldots,x_i;Y) = \dim_R Y - j;$$

and x_{i+1}, \ldots, x_d is a system of parameters for $K(x_1, \ldots, x_i; Y)$.

PROOF. (i) \Rightarrow (ii): Assume that x_1, \ldots, x_d is a system of parameters for *Y*, then

$$-\inf K(x_1, \dots, x_d; Y) = \dim_R K(x_1, \dots, x_d; Y)$$

= dim_R K(x_{j+1}, ..., x_d; K(x₁, ..., x_j; Y)
$$\geq \dim_R K(x_1, \dots, x_j; Y) - (d - j) \quad \text{by 2.8 (b)}$$

$$\geq \dim_R Y - j - (d - j) \qquad \text{by 2.8 (b)}$$

= dim_R Y - d
= - inf Y.

By 2.7 it now follows that $-\inf Y = \dim_R K(x_1, \dots, x_j; Y) - (d - j)$, so

$$\dim_R \mathcal{K}(x_1,\ldots,x_j;Y) = d - j - \inf Y = \dim_R Y - j,$$

as desired. It also follows that $d(K(x_1, \ldots, x_j; Y)) = d - j$, and since

$$\mathfrak{m} \in \operatorname{Anc}_{R} \mathsf{K}(x_{1}, \ldots, x_{d}; Y) = \operatorname{Anc}_{R} \mathsf{K}(x_{j+1}, \ldots, x_{d}; \mathsf{K}(x_{1}, \ldots, x_{j}; Y)),$$

we conclude that x_{j+1}, \ldots, x_d is a system of parameters for $K(x_1, \ldots, x_j; Y)$. (ii) \Rightarrow (i): If dim_R $K(x_1, \ldots, x_j; Y) = \dim_R Y - j$ then $d(K(x_1, \ldots, x_j; Y))$ = d - j; and if x_{j+1}, \ldots, x_d is a system of parameters for $K(x_1, \ldots, x_j; Y)$ then m belongs to

$$\operatorname{Anc}_{R} \operatorname{K}(x_{j+1}, \ldots, x_{d}; \operatorname{K}(x_{1}, \ldots, x_{j}; Y)) = \operatorname{Anc}_{R} \operatorname{K}(x_{1}, \ldots, x_{d}; Y),$$

so x_1, \ldots, x_d must be a system of parameters for *Y*.

PROPOSITION 3.3. Let $Y \in \mathscr{D}_b^f(R)$. The following conditions are equivalent for a sequence $\mathbf{x} = x_1, \ldots, x_n$ in \mathfrak{m} .

- (i) **x** is a Y-parameter sequence.
- (ii) For each $j \in \{0, ..., n\}$ there is an equality:

 $\dim_R \mathcal{K}(x_1,\ldots,x_j;Y) = \dim_R Y - j;$

and x_{j+1}, \ldots, x_n is a K $(x_1, \ldots, x_j; Y)$ -parameter sequence.

(iii) There is an equality:

$$\dim_R \mathcal{K}(x_1,\ldots,x_n;Y) = \dim_R Y - n.$$

PROOF. It follows by 3.2 that (i) implies (ii), and (iii) follows from (ii). Now, set K = K(x; Y) and assume that $\dim_R K = \dim_R Y - n$. Choose, by 2.9,

168

 $s = s(K) = \dim_R K + \inf K$ elements w_1, \ldots, w_s in m such that m belongs to $\operatorname{Anc}_R K(w_1, \ldots, w_s; K) = \operatorname{Anc}_R K(x_1, \ldots, x_n, w_1, \ldots, w_s; Y)$. Then, by 2.7, we have

 $n + s = (\dim_R Y - \dim_R K) + (\dim_R K + \inf K) = \dim_R Y + \inf Y = d,$

so $x_1, \ldots, x_n, w_1, \ldots, w_s$ is a system of parameters for *Y*, whence x_1, \ldots, x_n is a *Y*-parameter sequence.

We now recover a classical result (e.g., see [2, Prop. A.4]):

COROLLARY 3.4. Let M be an R-module. The following conditions are equivalent for a sequence $\mathbf{x} = x_1, \ldots, x_n$ in \mathfrak{m} .

- (i) **x** is an M-parameter sequence.
- (ii) For each $j \in \{0, ..., n\}$ there is an equality:

 $\dim_R M/(x_1,\ldots,x_j)M = \dim_R M - j;$

and x_{i+1}, \ldots, x_n is an $M/(x_1, \ldots, x_i)M$ -parameter sequence.

(iii) There is an equality:

 $\dim_R M/(x_1,\ldots,x_n)M = \dim_R M - n.$

PROOF. By [6, Prop. 3.12] and [5, (16.22)] we have

 $\dim_{R} \mathbf{K}(x_{1}, \dots, x_{j}; M)$ $= \sup\{ \dim_{R}(M \otimes_{R}^{\mathbf{L}} \mathbf{H}_{\ell}(\mathbf{K}(x_{1}, \dots, x_{j}))) - \ell \mid \ell \in \mathbf{Z} \}$ $= \sup\{ \dim_{R}(M \otimes_{R} \mathbf{H}_{\ell}(\mathbf{K}(x_{1}, \dots, x_{j}))) - \ell \mid \ell \in \mathbf{Z} \}$ $= \dim_{R}(M \otimes_{R} R/(x_{1}, \dots, x_{j})).$

THEOREM 3.5. Let $Y \in \mathscr{D}_{b}^{f}(R)$. The following hold for a sequence $\mathbf{x} = x_{1}, \ldots, x_{n}$ in \mathfrak{m} .

(a) There is an inequality:

$$\operatorname{amp} \mathbf{K}(\boldsymbol{x}; Y) \geq \operatorname{amp} Y;$$

and equality holds if and only if x is a Y-sequence.

(b) There is an inequality:

$$\operatorname{cmd}_R \operatorname{K}(\boldsymbol{x}; Y) \ge \operatorname{cmd}_R Y;$$

and equality holds if and only if x is a Y-parameter sequence.

(c) If \mathbf{x} is a maximal Y-sequence, then

amp $Y \leq \operatorname{cmd}_R \operatorname{K}(\boldsymbol{x}; Y)$.

(d) If \mathbf{x} is a system of parameters for Y, then

 $\operatorname{cmd}_{R} Y \leq \operatorname{amp} \operatorname{K}(\boldsymbol{x}; Y).$

PROOF. In the following *K* denotes the Koszul complex K(x; Y).
(a): Immediate by 2.7 and [4, Prop. 5.1].
(b): By [4, Thm. 4.7 (a)] and 2.8 (b) we have

$$\operatorname{cmd}_R K = \dim_R K - \operatorname{depth}_R K = \dim_R K + n - \operatorname{depth}_R Y \ge \operatorname{cmd}_R Y$$
,

and by 3.3 equality holds if and only if x is a Y-parameter sequence.(c): Suppose x is a maximal Y-sequence, then

$\operatorname{amp} Y = \sup Y - \inf K$	by 2.7
$= - \operatorname{depth}_{R} K - \inf K$	by [4, Thm. 5.4]
$\leq \operatorname{cmd}_R K$	by (1.2).

(d): Suppose x is system of parameters for Y, then

$$amp K = \sup K + \dim_R K$$

$$\geq \dim_R K - \operatorname{depth}_R K \qquad by (1.3)$$

$$= \operatorname{cmd}_R Y \qquad by (b).$$

THEOREM 3.6. The following hold for $Y \in \mathscr{D}_{h}^{f}(R)$.

- (a) The next four conditions are equivalent.
 - (i) There is a maximal Y-sequence which is also a Y-parameter sequence.
 - (ii) depth_R $Y + \sup Y \le \dim_R Y + \inf Y$.
 - (ii') amp $Y \leq \operatorname{cmd}_R Y$.
 - (iii) *There is a maximal strong Y-sequence which is also a Y-parameter sequence.*
- (b) The next four conditions are equivalent.
 - (i) There is a system of parameters for Y which is also a Y-sequence.
 - (ii) $\dim_R Y + \inf Y \le \operatorname{depth}_R Y + \sup Y$.
 - (ii') $\operatorname{cmd}_R Y \leq \operatorname{amp} Y$.

- (iii) There is a system of parameters for Y which is also a strong Y-sequence.
- (c) The next four conditions are equivalent.
 - (i) *There is a system of parameters for Y which is also a maximal Y-sequence.*
 - (ii) $\dim_R Y + \inf Y = \operatorname{depth}_R Y + \sup Y$.
 - (ii') $\operatorname{cmd}_R Y = \operatorname{amp} Y$.
 - (iii) There is a system of parameters for Y which is also a maximal strong Y-sequence.

PROOF. Let $Y \in \mathscr{D}_{b}^{f}(R)$, set $n(Y) = \operatorname{depth}_{R} Y + \sup Y$ and $d(Y) = \dim_{R} Y + \inf Y$.

(a): A maximal *Y*-sequence is of length n(Y), cf. [4, Cor. 5.5], and the length of a *Y*-parameter sequence is at most d(Y). Thus, (i) implies (ii) which in turn is equivalent to (ii'). Furthermore, a maximal strong *Y*-sequence is, in particular, a maximal *Y*-sequence, cf. [4, Cor. 5.7], so (iii) is stronger than (i). It is now sufficient to prove the implication (ii) \Rightarrow (iii): We proceed by induction. If n(Y) = 0 then the empty sequence is a maximal strong *Y*-sequence and a *Y*-parameter sequence. Let n(Y) > 0; the two sets Ass_R *Y* and W₀(*Y*) are both finite, and since $0 < n(Y) \le d(Y)$ none of them contain m. We can, therefore, choose an element $x \in \mathfrak{m} - \bigcup_{Ass_R Y \cup W_0(Y)} \mathfrak{p}$, and *x* is then a strong *Y*-sequence, cf. [4, Def. 3.3], and a *Y*-parameter sequence, cf. 3.3 and 2.8. Set K = K(x; Y), by [4, Thm. 4.7 and Prop. 5.1], respectively, 2.8 and 2.7 we have

$$\operatorname{depth}_{R} K + \sup K = \operatorname{n}(Y) - 1 \le \operatorname{d}(Y) - 1 = \operatorname{dim}_{R} K + \inf K.$$

By the induction hypothesis there exists a maximal strong *K*-sequence w_1, \ldots, w_{n-1} which is also a *K*-parameter sequence, and it follows by [4, 3.5] and 3.3 that x, w_1, \ldots, w_{n-1} is a strong *Y*-sequence and a *Y*-parameter sequence, as wanted.

The proof of (b) i similar to the proof of (a), and (c) follows immediately by (a) and (b).

THEOREM 3.7. The following hold for $Y \in \mathscr{D}_{h}^{f}(R)$:

- (a) If $\operatorname{amp} Y = 0$, then any Y-sequence is a Y-parameter sequence.
- (b) If $\operatorname{cmd}_R Y = 0$, then any Y-parameter sequence is a strong Y-sequence.

PROOF. The empty sequence is a Y-parameter sequence as well as a strong Y-sequence, this founds the base for a proof by induction on the length n of

the sequence $x = x_1, ..., x_n$. Let n > 0 and set $K = K(x_1, ..., x_{n-1}; Y)$; by 2.8 (a) we have (*) $\dim_R K(x_1, ..., x_n; Y) = \dim_R K(x_n; K)$

 $= \sup\{\dim R/\mathfrak{p} - \inf K_\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp}_R K \cap \operatorname{V}(x_n)\}.$

Assume that amp Y = 0. If x is a Y-sequence, then amp K = 0 by 3.5 (a) and $x_n \notin z_R K$, cf. [4, Def. 3.3]. As $z_R K = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R K} \mathfrak{p}$, cf. [4, 2.5], it follows by (b) and (c) in 2.3 that x_n is not contained in any prime ideal $\mathfrak{p} \in W_0(K)$; so from (*) we conclude that $\dim_R K(x_n; K) < \dim_R K$, and it follows by 2.8 (b) that $\dim_R K(x_n, K) = \dim_R K - 1$. By the induction hypothesis $\dim_R K = \dim_R Y - (n-1)$, so $\dim_R K(x_1, \ldots, x_n; Y) = \dim_R Y - n$ and it follows by 3.3 that x is a Y-parameter sequence. This proves (a).

We now assume that $\operatorname{cmd}_R Y = 0$. If \mathbf{x} is a *Y*-parameter sequence then, by the induction hypothesis, x_1, \ldots, x_{n-1} is a strong *Y*-sequence, so it is sufficient to prove that $x_n \notin \mathbb{Z}_R K$, cf. [4, 3.5]. By 3.3 it follows that x_n is a *K*-parameter sequence, so $\dim_R K(x_n; K) = \dim_R K - 1$ and we conclude from (*) that $x_n \notin \bigcup_{\mathfrak{p} \in W_0(K)} \mathfrak{p}$. Now, by 3.5 (b) we have $\operatorname{cmd}_R K = 0$, so it follows from 2.3 (d) that $x_n \notin \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R K} \mathfrak{p} = \mathbb{Z}_R K$. This proves (b).

SEMI-DUALIZING COMPLEXES 3.8. We recall two basic definitions from [3]:

A complex $C \in \mathscr{D}_{b}^{f}(R)$ is said to be *semi-dualizing* for *R* if and only if the homothety morphism $\chi_{C}^{R}: R \to \mathbf{R} \operatorname{Hom}_{R}(C, C)$ is an isomorphism [3, (2.1)].

Let *C* be a semi-dualizing complex for *R*. A complex $Y \in \mathscr{D}_{b}^{f}(R)$ is said to be *C*-reflexive if and only if the dagger dual $Y^{\dagger c} = \mathbf{R} \operatorname{Hom}_{R}(Y, C)$ belongs to $\mathscr{D}_{b}^{f}(R)$ and the biduality morphism $\delta_{Y}^{C}: Y \to \mathbf{R} \operatorname{Hom}_{R}(\mathbf{R} \operatorname{Hom}_{R}(Y, C), C)$ is invertible in $\mathscr{D}(R)$ [3, (2.7)].

Relations between dimension and depth for *C*-reflexive complexes are studied in $[3, \sec. 3]$, and the next result is an immediate consequence of [3, (3.1) and (2.10)].

Let *C* be a semi-dualizing complex for *R* and let *Z* be a *C*-reflexive complex. The following holds for $\mathfrak{p} \in \operatorname{Spec} R$: If $\mathfrak{p} \in \operatorname{Anc}_R Z$ then $\mathfrak{p} \in \operatorname{Ass}_R Z^{\dagger_C}$, and the converse holds in *C* is Cohen-Macaulay.

A *dualizing complex*, cf. [7], is a semi-dualizing complex of finite injective dimension, in particular, it is Cohen-Macaulay, cf. [3, (3.5)]. If *D* is a dualizing complex for *R*, then, by [7, Prop. V.2.1], all complexes $Y \in \mathscr{D}_b^f(R)$ are *D*-reflexive; in particular, all finite *R*-modules are *D*-reflexive and, therefore, [4, 5.10] is a special case of the following:

THEOREM 3.9. Let C be a Cohen-Macaulay semi-dualizing complex for R, and let $\mathbf{x} = x_1, \ldots, x_n$ be a sequence in m. If Y is C-reflexive, then \mathbf{x} is a Y-parameter sequence if and only if it is a $\mathbb{R}\text{Hom}_R(Y, C)$ -sequence; that is

x is a Y-parameter sequence \iff **x** is a **R**Hom_R(Y, C)-sequence.

PROOF. We assume that *C* is a Cohen-Macaulay semi-dualizing complex for *R* and that *Y* is *C*-reflexive, cf. 3.8. The desired biconditional follows by the next chain, and each step is explained below (we use the notation $-^{\dagger c}$ introduced in 3.8).

$$\mathbf{x} \text{ is a } Y \text{-parameter sequence} \iff \operatorname{cmd}_R \operatorname{K}(\mathbf{x}; Y) = \operatorname{cmd}_R Y$$
$$\iff \operatorname{amp} \operatorname{K}(\mathbf{x}; Y)^{\dagger_C} = \operatorname{amp} Y^{\dagger_C}$$
$$\iff \operatorname{amp} \operatorname{K}(\mathbf{x}; Y^{\dagger_C}) = \operatorname{amp} Y^{\dagger_C}$$
$$\iff \mathbf{x} \text{ is a } Y^{\dagger_C} \text{-sequence.}$$

The first biconditional follows by 3.5 (b) and the last by 3.5 (a). Since K (x) is a bounded complex of free modules (hence of finite projective dimension), it follows from [3, Thm. (3.17)] that also K(x; Y) is C-reflexive, and the second biconditional is then immediate by the CMD-formula [3, Cor. (3.8)]. The third one is established as follows:

$$\begin{split} \mathrm{K}(\boldsymbol{x}; Y)^{\dagger c} &\simeq \mathbf{R}\mathrm{Hom}_{R}(\mathrm{K}(\boldsymbol{x})\otimes_{R}^{\mathbf{L}}Y, C) \\ &\simeq \mathbf{R}\mathrm{Hom}_{R}(\mathrm{K}(\boldsymbol{x}), Y^{\dagger c}) \\ &\simeq \mathbf{R}\mathrm{Hom}_{R}(\mathrm{K}(\boldsymbol{x}), R\otimes_{R}^{\mathbf{L}}Y^{\dagger c}) \\ &\simeq \mathbf{R}\mathrm{Hom}_{R}(\mathrm{K}(\boldsymbol{x}), R)\otimes_{R}^{\mathbf{L}}Y^{\dagger c} \\ &\sim \mathrm{K}(\boldsymbol{x})\otimes_{R}^{\mathbf{L}}Y^{\dagger c} \\ &\simeq \mathrm{K}(\boldsymbol{x}; Y^{\dagger c}), \end{split}$$

where the second isomorphism is by adjointness and the fourth by, socalled, tensor-evaluation, cf. [1, (1.4.2)]. It is straightforward to check that $\operatorname{Hom}_R(\mathbf{K}(\mathbf{x}), R)$ is isomorphic to the Koszul complex $\mathbf{K}(\mathbf{x})$ shifted *n* degrees to the right, and the symbol ~ denotes isomorphism up to shift.

If *C* is a semi-dualizing complex for *R*, then both *C* and *R* are *C*-reflexive complexes, cf. [3, (2.8)], so we have an immediate corollary to the theorem:

COROLLARY 3.10. If C is a Cohen-Macaulay semi-dualizing complex for R, then the following hold for a sequence $\mathbf{x} = x_1, \dots, x_n$ in \mathfrak{m} .

(a) **x** is a C-parameter sequence if and only if it is an R-sequence.

(b) **x** is an *R*-parameter sequence if and only if it is a *C*-sequence.

ACKNOWLEDGEMENTS. The author would like to thank professor Srikanth Iyengar and professor Hans-Bjørn Foxby for taking the time to discuss the material presented here.

REFERENCES

- Avramov, Luchezar L. and Foxby, Hans-Bjørn, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3) 75 (1997), 241–270.
- Bruns, Winfried and Herzog, Jürgen, *Cohen-Macaulay Rings*, revised ed., Cambridge Stud. Adv. Math. 39 (1998).
- Christensen, Lars Winther, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), 1839–1883.
- 4. Christensen, Lars Winther, Sequences for complexes, Math. Scand. 89 (2001), 1-20.
- 5. Foxby, Hans-Bjørn, Hyperhomological algebra & commutative rings, notes in preparation.
- 6. Foxby, Hans-Bjørn, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), 149–172.
- 7. Hartshorne, Robin, Residues and Duality, Lecture Notes Math. 20 (1966).
- Matsumura, Hideyuki, *Commutative Ring Theory*, second ed., Cambridge Stud. Adv. Math. 8 (1989).

CRYPTOMATHIC A/S CHRISTIANS BRYGGE 28,2 DK-1559 COPENHAGEN V DENMARK *E-mail:* lars.winther@cryptomathic.com