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VECTOR-VALUED POSITIVE DEFINITE FUNCTIONS,
THE BERG-MASERICK THEOREM, AND

APPLICATIONS

P. RESSEL and W. J. RICKER∗

1. Introduction

The theory of positive definite functions is an important and extensive area
of modern mathematics, having many and varied applications. One of the
fundamental results is the integral representation theorem for exponentially
bounded, positive definite functions due to C. Berg and P. H. Maserick; see
[4, Ch. 4, Section 2] and [5]. In order to formulate this result we require some
terminology.

Let S be a commutative semigroup with identity element (always denoted by
e) and equipped with an involution s �→ s− (i.e. (s−)− = s and (st)− = s−t−
for all s, t ∈ S). A character of S is any function ρ : S → C satisfying
ρ(e) = 1 and ρ(st−) = ρ(s)ρ(t) for all s, t ∈ S. The set of all characters of S
is denoted by S∗; it is a completely regular topological space when equipped
with the topology of pointwise convergence inherited from CS . Given s ∈ S,
the continuous function ŝ : S∗ → C is defined by ŝ(ρ) := ρ(s) for ρ ∈ S∗.

A scalar functionf : S → C is called positive definite if
∑n

j,k=1 cj ckf (sj s
−
k )≥ 0 for all choices of n ∈ N, and sets {sj }nj=1 ⊆ S and {cj }nj=1 ⊆ C. In

particular, every character ρ ∈ S∗ is positive definite. A function α : S →
[0,∞) satisfying α(e) = 1 is called an absolute value if α(s−) = α(s) and
α(st) ≤ α(s)α(t) for all s, t ∈ S. Then a scalar function f : S → C is called
α-bounded if there exists a constant C ≥ 0 such that |f (s)| ≤ Cα(s) for all
s ∈ S. If, in addition, f happens to be positive definite, then it is possible to
choose C = f (e). We say that f is exponentially bounded if it is α-bounded
for some absolute value α on S. A character ρ ∈ S∗ is α-bounded if and only
if |ρ| ≤ α. Hence, the set Sα of all α-bounded characters is a compact subset
of S∗. For all of these notions and further properties we refer to [4, Ch. 4].
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Finally, the set of all non-negative Radon measures defined on the Borel sets
B(S∗) of S∗ is denoted byM+(S∗). Given any absolute value α on S the subset
of M+(S∗) consisting of all elements µ whose support supp(µ) is contained in
the compact subset Sα ⊆ S∗ is denoted by M+(Sα). The generalized Laplace
transform µ̂ : S → C of such a measure µ is then defined by s �→ ∫

S∗ ŝ dµ

for each s ∈ S.

Theorem 1.1 (Berg-Maserick Theorem). Let S be a unital, commutative
semigroup with an involution and α : S → [0,∞) be an absolute value. Given
a positive definite and α-bounded function f : S → C there exists a unique
measure µ ∈ M+(Sα) such that f = µ̂, that is

f (s) =
∫
S∗
ŝ dµ, s ∈ S.

It is a well established “principle” that most integral representation for-
mulae for scalar-valued functions have a vector-valued analogue if suitably
formulated; see [33] and the references therein, for example. The aim of this
paper is to provide a vector analogue of the Berg-Maserick theorem. What then
should be the essential ingredients of such a generalization?

There is already an extensive literature on many aspects of vector-valued
positive definite functions; the crucial point is that the quadratic form naturally
associated with the function should take its values in a positive cone. In this
regard we follow the approach adopted in the Banach space setting by P. L.
Falb and U. Haussmann, [12]. Since we have in mind applying our results to
the integral representation of certain semigroups of linear operators acting in a
Banach space, but with respect to the strong operator topology (see Section 3),
our setting is more general than that of [12] and allows for functions with values
in a locally convex Hausdorff space (briefly, lcHs). The corresponding vector
measure will also be required to assume its values in the same positive cone in
which the quadratic form associated with the given function takes its values. It
is the notion of α-boundedness in the vector setting which is somewhat more
subtle to identify. Eventually it should “somehow” lead to the existence of an
appropriate vector measure whose generalized Laplace transform is the given
function. According to the theory of vector measures, this suggests that weak
compactness must enter in some format or other; this is indeed the case and is
suitably formulated via Definition 2.4.

So, with the notions of positive definiteness, positive vector measure and
α-boundedness suitably extended to the setting of a lcHs we establish, in Sec-
tion 2, a vector-valued Berg-Maserick theorem; see Propositions 2.6 and 2.7.
Since the α-boundedness of a vector-valued function is the most difficult prop-
erty to verify in practice, we also present a few relevant criteria which can
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sometimes be used in this regard; see Propositions 2.10, 2.12 and 2.13. An
application to additively correlated stochastic processes whose time parameter
varies in a semigroup with involution is given at the end of Section 1. The final
section, as indicated above, is devoted to establishing an integral representation
formula for positive, exponentially bounded semigroups of scalar operators
(in the sense of N. Dunford) acting in Banach spaces; see Propositions 3.1
and 3.7. Indeed, it is this result (generalizing the integral representation of
∗-representations of normal operators in Hilbert space, [30]) which is one of
the main motivations for establishing a vector-valued Berg-Maserick theorem.

2. A vector-valued Berg-Maserick theorem

Let X be a (complex) lcHs and X′ be the continuous dual space of X. Given a
subset � ⊆ X′ we let

C� := {x ∈ X : 〈x, ϕ〉 ≥ 0 for all ϕ ∈ �}
be the positive cone determined by �. In order to avoid trivialities we al-
ways assume that � contains at least one non-zero element. Let S be a unital,
commutative semigroup with an involution.

Definition 2.1. A function f : S → X is called �-positive defin-
ite if

∑n
j,k=1 cj ckf (sj s

−
k ) ∈ C� for all choices of finitely many elements

{c1, . . . , cn} ⊆ C and {s1, . . . , sn} ⊆ S.

This definition is equivalent with the requirement that each C-valued scalar
function 〈f, ϕ〉 : s �→ 〈f (s), ϕ〉, for s ∈ S, is positive definite in the usual
sense of scalar functions, for every ϕ ∈ �. In the case when X is a Banach
space and S is an abelian group with involution the inverse function s �→ s−1

on S, Definition 2.1 agrees with that in [12, p. 605].
Definition 2.1 also accommodates the best known classical example in the

vector-valued setting. According to B. Sz.-Nagy [38, Section 6], if H is a Hil-
bert space, then a function f on S with values in the Banach space B(H) of all
continuous linear operators onH is positive definite if

∑n
j,k=1〈f (sj s−

k )hj , hk〉≥
0 for all choices of finite subsets {hj }nj=1 ⊆ H and {sj }nj=1 ⊆ S. Such a function
f is �-positive definite in the sense of Definition 2.1 when � is taken to be the
set of all continuous linear functionals of the form T �→ 〈T u, u〉, T ∈ B(H),
for each u ∈ H . On the other hand, if f happens to take its values in an
abelian C∗-algebra and is �-positive definite in the sense of Definition 2.1
(with � as above), then f is also positive definite in Sz.-Nagy’s sense. How-
ever, this is not the case for general f ; see [2]. As a final comment in relation
to Definition 2.1 let us consider the simplest of cases, namely when X = C,
in which case also X′ � C. If �+ := {z ∈ X′ : Re (z) ≥ 0, Im (z) = 0},
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then a function f : S → C is �+-positive definite if and only if it is positive
definite in the classical sense. However, other choices of � are also possible
within the scope of Definition 2.1. For example, fix any w ∈ C \ [0,∞) and
define �w := {γw : γ ≥ 0} ⊆ X′. Then it is routine to check that a function
f : S → C is �w-positive definite if and only if wf is �+-positive definite.
This illustrates that the “positive definiteness” of a function f : S → X is
very much dependent on the set of functionals � ⊆ X′.

Let α : S → [0,∞) be an absolute value. Let DS denote the linear span of
{ŝ : s ∈ S} in CS

∗
and let

D
(α)
S := {g|α : g ∈ DS},

where g|α denotes the restriction of g to Sα . Of course, both DS and D
(α)
S are

also algebras under pointwise multiplication. It will always be assumed that
D

(α)
S is equipped with the supremum norm inherited from the Banach space

C(Sα).

Lemma 2.2. Let S be a unital, commutative semigroup with an involution
and α : S → [0,∞) be an absolute value. Let X be a lcHs and f : S → X

be a �-positive definite function which is �-scalarly α-bounded, that is, each
C-valued function 〈f, ϕ〉, for ϕ ∈ �, is α-bounded. If � is a total set (i.e.
separates the points of X), then !f : D

(α)
S → X specified by

(1) !f

( n∑
j=1

βj ŝj

∣∣∣∣
α

)
=

n∑
j=1

βjf (sj )

is a well defined linear map.

Proof. Suppose that
∑n

j=1 βj ŝj |α = ∑m
k=1 γkt̂k|α , where βj , γk ∈ C and

sj , tk ∈ S. Fix ϕ ∈ �. Since the scalar function 〈f, ϕ〉 is α-bounded and
positive definite, the classical Berg-Maserick theorem guarantees that there
exists a unique regular measure µϕ ≥ 0 with support in Sα such that

〈f (s), ϕ〉 =
∫
Sα

ŝ dµϕ, s ∈ S.

Since
∑n

j=1 βj ŝj and
∑m

k=1 γkt̂k agree on Sα , it follows easily from the previ-
ous formula that

〈∑n
j=1 βjf (sj ), ϕ

〉 = 〈∑m
k=1 γkf (tk), ϕ

〉
. Since � is total we

deduce that
∑n

j=1 βjf (sj ) = ∑m
k=1 γkf (tk) and hence, that!f is well defined.

The linearity of !f is routine to verify.

Remark 2.3. (a) Without the requirement that f is �-positive definite the
“map” !f in (1) may fail to be well defined, even when X = C! The difficulty
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lies with the fact that {ŝ|α : s ∈ S} may not be a linearly independent subset
of D

(α)
S ; see Remark 6.9.(1) on p. 133 and Proposition 6.1.8 in [4].

(b) An examination of the proof of Lemma 2.2 shows that in order for !f

to be well defined it actually suffices for � to separate the points of the closed
subspace X[f ] of X generated by the range f (S) := {f (s) : s ∈ S} of f . This
will turn out to be an important point in Section 3. Of course, X[f ] is always
equipped with the relative topology from X. Actually, a close examination of
the various proofs shows that in some cases it even suffices for � to separate
the points of the linear span of f (S).

There are also other conditions which imply that !f is well defined. For
instance, if {ŝ|α : s ∈ S} happens to be a linearly independent subset of D

(α)
S ,

which is often the case, then !f is well defined irrespective of any separating
properties of �. There may be still other reasons, particular to the special
features of f or � or X (or all of them) in a given situation, which also imply
that!f is well defined; see the proof of Proposition 2.17, for instance. We note
that the results of this paper, although all formulated in terms of � separating
the points ofX[f ], remain valid whenever this (sufficient) condition is replaced
with any other property which ensures that !f is well defined.

(c) The condition that � is total in X[f ] is satisfied in many cases. We note
that a large class of spaces X with a natural set � ⊆ X′ for which � is total
for X and such that the positive cone C� is non-trivial (i.e. C� �= {0}) is the
Banach lattices (over R or C). For, in this case X′ is an order complete Banach
lattice, [35, Proposition II.5.5]. Hence, if � ⊆ X′ is the family of all positive
functionals, then certainly � separates the points of X [35, p. 137, Corollary].
Moreover, C� = X+ is then the cone of positive elements in X.

In view of Remark 2.3(a) we will only consider the notion ofα-boundedness
for vector-valued functions which are also �-positive definite. This is no re-
striction since the Berg-Maserick theorem (even in the scalar setting) requires
the function to have both of these properties anyway.

Definition 2.4. Let S be a unital, commutative semigroup with an involu-
tion and α : S → [0,∞) be an absolute value. LetX be a lcHs and f : S → X

be a function. Suppose that!f is well defined and that f is�-positive definite.
Thenf is calledα-bounded if it is�-scalarlyα-bounded and the linear operator
!f : D

(α)
S → X given by (1) is weakly compact (i.e. !f maps the closed unit

ball of the normed space D
(α)
S into a relatively weakly compact subset of X).

At a first glance, Definition 2.4 may not seem like a particularly natural
extension from the case of scalar-valued functions to vector-valued functions.
However, the basic idea should be that α-boundedness and�-positive definite-
ness together “somehow” imply that f has a suitable integral representation.
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The following particular example (hopefully) illustrates that Definition 2.4 is
indeed quite natural.

Let X be a Banach lattice. To simplify the discussion we assume that X
is defined over R, although a similar line of argument applies to the complex
case. Let � ⊆ X′ be the family of all positive functionals, in which case �

separates the points of X as X′ = � − �. Accordingly, !f is certainly well
defined; see Lemma 2.2. Suppose that a function f : S → X is �-positive
definite and �-scalarly α-bounded. By the classical Berg-Maserick theorem
applied to 〈f, ϕ〉, for each ϕ ∈ �, there exists a unique regular, finite Borel
measure µϕ ≥ 0 supported in Sα such that

(2) 〈f (s), ϕ〉 =
∫
Sα

ŝ dµϕ, s ∈ S.

Let Mr(S
α) denote the space of all regular, R-valued Borel measures on Sα

equipped with the total variation norm. Then Mr(S
α) is also a Banach lattice;

it is the dual Banach lattice of CR(S
α). The uniqueness of µϕ , for each ϕ ∈ �,

implies that the map T : � → Mr(S
α) defined by ϕ �→ µϕ is additive (i.e.

T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2) for all ϕj ∈ �). By the extension theorem
of L. V. Kantorovic, [1, p. 7], for example, T extends uniquely to a positive
linear operator from the Banach lattice X′ into Mr(S

α). By a classical result
for Banach lattices it follows that T is automatically continuous, [1, p. 175].
Moreover, for this particular setting, it turns out that !f : D

(α)
S → X as given

by (1) is necessarily continuous (c.f. Proposition 2.13(i) below); its continuous
linear extension toCR(S

α), possible by virtue of the Stone-Weierstrass theorem
which implies that D

(α)
S is dense in CR(S

α), [4, p. 95], is again denoted by !f .
It follows from (2) that

〈!f (g), ϕ〉 = 〈g, T (ϕ)〉, g ∈ D
(α)
S , ϕ ∈ �,

and hence, also for all ϕ ∈ X′ as X′ = � − �. Accordingly, T = !′
f is the

dual operator of !f : CR(S
α) → X. For each fixed set E ∈ B(Sα) define a

linear map m(E) : X′ → R by x ′ �→ T (x ′)(E). Then the inequality

|T (x ′)(E)| ≤ ‖T (x ′)‖ ≤ ‖T ‖.‖x ′‖, x ′ ∈ X′,

where ‖T (x ′)‖ denotes the total variation of the measure T (x ′), shows that
m(E) ∈ X′′. The finitely additive set function m : B(Sα) → X′′ so defined
has the property that 〈x ′,m〉 : E �→ 〈x ′,m(E)〉 is regular and σ -additive for
all x ′ ∈ X′, has range m(B(Sα)) := {m(E) : E ∈ B(Sα)} a bounded subset
of Mr(S

α) and satisfies

〈f (s), x ′〉 =
∫
Sα

ŝ d〈x ′,m〉, s ∈ S,
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for each x ′ ∈ X′. The crucial point is to ensure that m actually assumes its
values in X rather than in X′′, that is, to ensure for each E ∈ B(Sα) that
the norm continuous linear functional m(E) : X′ → R is actually weak-∗
continuous on X′. Because !′

f = T , by Gantmacher’s theorem, [1, p. 284],
this is equivalent with !f being a weakly compact operator, which is precisely
the condition required in Definition 2.4. This example, although somewhat
special, hopefully gives some insight as to why Definition 2.4 is “reasonable”.

Getting back to Definition 2.4 in general, some further comments are in
order. Note that !f : D

(α)
S → X is weakly compact if and only if it is weakly

compact when also interpreted as being X[f ]-valued. This follows from the
fact that X[f ] is a weakly closed subset of X and that the natural injection
of X[f ] into X, being obviously continuous is also weakly continuous, [34,
p. 158]. So, it is irrelevant whether we consider !f as being X-valued or X[f ]-
valued. Moreover, whenever α(s) �= 0 for each s ∈ S (which is no restriction
in practice) the function f

α
necessarily has relatively weakly compact range.

This is a simple consequence of the weak compactness of the mapping !f and
the fact that ŝ

α(s)
is in the unit ball of D

(α)
S for each s ∈ S.

Still considering Definition 2.4, let q be a continuous seminorm onX. Since
!f is weakly compact, the image of the unit ball in D

(α)
S is relatively weakly

compact in X and hence, is a bounded subset of X. That is, there is Mq > 0
such that q(!f (g)) ≤ Mq for all g ∈ D

(α)
S with ‖g‖∞ ≤ 1. If follows that

q(!f (g)) ≤ Mq‖g‖∞, g ∈ D
(α)
S .

Accordingly, !f is necessarily continuous. Suppose that the lcHs X[f ] is se-
quentially complete. Since D

(α)
S is sequentially dense in C(Sα), it follows that

!f has a unique extension to a continuous linear map from C(Sα) into X[f ]

and hence, also into X (even though X may not be sequentially complete).
This extension, again denoted by !f , is also weakly compact.

Let X be a lcHs. A σ -additive map m : ) → X, where ) is a σ -algebra of
sets, is called a vector measure. The Orlicz-Pettis theorem [18, p. 4] implies
that m is σ -additive if and only if the C-valued set function 〈m, x ′〉 defined
by E �→ 〈m(E), x ′〉, for E ∈ ), is σ -additive for each x ′ ∈ X′. If ) is the
σ -algebra of Borel sets of some compact Hausdorff space, then m is called
regular if each complex measure 〈m, x ′〉, for x ′ ∈ X′, is regular, [17, p. 4]. The
support supp(m) ofm is defined to be ∪x ′∈X′ supp(|〈m, x ′〉|), where |ν| denotes
the total variation measure of a complex measure ν on ). For the definition
of a C-valued, )-measurable function being m-integrable with respect to a
vector measure m : ) → X we refer to [19, Chapter II]. In particular, if
X[m] is sequentially complete, then every bounded )-measurable function is
necessarily m-integrable, [19, p. 26]. Here X[m] denotes the closed subspace
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of X generated by the range m()) := {m(E) : E ∈ )} of m, and equipped
with the relative topology from X.

Definition 2.5. A vector measure m : ) → X is called �-positive if its
range m()) is contained in the positive cone C�, that is, if and only if, 〈m,ϕ〉
is a non-negative measure on ) for each ϕ ∈ �.

In the case when X is a Banach space this agrees with the definition given
in [12, p. 606].

A similar comment as made after Definition 2.1 is also relevant to Defini-
tion 2.5. Namely, the “positiveness” of a given vector measure is very much
dependent on the set of functionals � ⊆ X′. Moreover, there exist meas-
ures which are not �-positive for any non-trivial �, already in the simplest
case when X = C. To see this let ) := B(C) and define m : ) → X by
m := δ1 − δ−1, where δw denotes the Dirac point mass at w ∈ C. Then the
only functional ϕ ∈ X′ � C for which 〈m,ϕ〉 ≥ 0 on ) is ϕ = 0 and so
there is no non-trivial set � ⊆ X′ for which m is �-positive. Since C � S∗
(for the semigroup S = N0 × N0 defined in the Example in Section 3) and
m is regular and compactly supported, we note that the generalized Laplace
transform m̂ : S → X (see (3) below) can be �-scalarly α-bounded for some
absolute value α on S, but fail to be �-positive definite for every non-trivial
set � ⊆ X′

Recall that a lcHs is called quasicomplete if each closed, bounded subset is
complete.

Proposition 2.6. Let X be a sequentially complete lcHs. Let S be a unital,
commutative semigroup with an involution, m : B(S∗) → X be a regular,
compactly suppported vector measure and m̂ : S → X be the generalized
Laplace transform of m, that is,

(3) m̂(s) :=
∫
S∗
ŝ dm, s ∈ S.

Let α : S → [0,∞) be the absolute value

α(s) := sup{|ŝ(ρ)| : ρ ∈ supp(m)}, s ∈ S.

Suppose that � ⊆ X′ separates the points of X[m], that X[m] is quasicomplete
and that m is �-positive. Then m̂ takes its values in X[m] and m̂ is both �-
positive definite and α-bounded.

Proof. It is routine to check that α is an absolute value and that supp(m) ⊆
Sα . Since ŝ is continuous on the compact set K := supp(m) it follows that ŝ
is bounded and Borel measurable on K , for each s ∈ S. According to earlier
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remarks, since m can be interpreted as being X[m]-valued, it follows that the
vector integrals (3) are well defined elements of X[m]. A direct calculation
yields

〈 n∑
j,k=1

cj ckm̂(sj s
−
k ), x

′
〉
=

∫
K

∣∣∣
n∑

j=1

cj ŝj

∣∣∣2
d〈m, x ′〉, x ′ ∈ X′,

for all choices of finitely many elements {c1, . . . , cn} ⊆ C and {s1, . . . , sn} ⊆ S,
where we have used the general formula 〈∫

K
g dm, x ′〉 = ∫

K
g d〈m, x ′〉 valid

for all x ′ ∈ X′ and all m-integrable functions g, [19, p. 21]. So, if ϕ ∈ �, then
〈m,ϕ〉 ≥ 0 and we see that m̂ is �-positive definite.

Fix ϕ ∈ �. Then it follows from (3) that 〈m̂(s), ϕ〉 = ∫
K
ŝ d〈m,ϕ〉 and

hence, since 〈m,ϕ〉 ≥ 0, that

|〈m̂(s), ϕ〉| ≤
∫
K

|ŝ| d〈m,ϕ〉
≤ 〈m(K), ϕ〉 sup{|ŝ(ρ)| : ρ ∈ K} = 〈m(K), ϕ〉.α(s)

for each s ∈ S. This shows that m̂ is �-scalarly α-bounded.
A direct calculation via (1) and (3) establishes that

(4) !m̂

( n∑
j=1

βj ŝj

∣∣∣∣
α

)
=

∫
K

( n∑
j=1

βj ŝj

)
dm.

Since all integrals of the form
∫
K
g dm with ‖g‖∞ ≤ 1 ( on Sα hence also on

K) belong to the balanced convex hull in X[m] of the range of m, [19, p. 75,
Lemma 1], and the range of m is a relatively weakly compact set in X[m],
[39], it follows from the quasicompleteness of X[m], that the closed balanced
convex hull of the range of m is weakly compact in X[m], [34, p. 189], [39].
Accordingly, !m̂ is a weakly compact map from D

(α)
S into X[m]. That is, m̂ is

α-bounded.

It is the following converse of Proposition 2.6 which can be interpreted as
a vector-valued analogue of the classical Berg-Maserick theorem.

Proposition 2.7. Let S be a unital, commutative semigroup with an in-
volution and α : S → [0,∞) be an absolute value. Let X be a lcHs and
f : S → X be a function. Suppose that X[f ] is quasicomplete and � ⊆ X′
separates the points of X[f ]. If f is α-bounded and �-positive definite, then
there exists a unique regular vector measure m : B(Sα) → X which takes its
values in X[f ], is �-positive and satisfies

(5) f (s) =
∫
Sα

ŝ dm, s ∈ S.
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Proof. By hypothesis the linear map !f : C(Sα) → X[f ], which is the
unique extension of (1) from D

(α)
S to C(Sα), is weakly compact. By the vector-

valued Riesz representation theorem, [18, Proposition 1], there exists a unique
regular vector measure m : B(Sα) → X[f ] such that

!f (g) =
∫
Sα

g dm, g ∈ C(Sα).

Since (1) implies that !f (ŝ|α) = f (s), the formula (5) follows.
Let ϕ ∈ �. Then 〈f, ϕ〉 is positive definite and α-bounded and so there is

a unique regular measure µϕ ≥ 0 with support in Sα such that 〈f (s), ϕ〉 =∫
Sα ŝ dµϕ for each s ∈ S. But, (5) implies that also 〈f (s), ϕ〉 = ∫

Sα ŝ d〈m,ϕ〉,
for all s ∈ S, with 〈m,ϕ〉 regular and supported in Sα . Accordingly,

(6)
∫
Sα

g d〈m,ϕ〉 =
∫
Sα

g dµϕ, g ∈ D
(α)
S .

Then the density of D
(α)
S in C(Sα) and an approximation argument via the

dominated convergence theorem implies that (6) is valid for all g ∈ C(Sα).
Consequently, the classical Riesz representation theorem ensures that 〈m,ϕ〉 =
µϕ as measures. In particular, 〈m,ϕ〉 ≥ 0. Since ϕ ∈ � is arbitrary it follows
that m is �-positive.

Given a�-positive definite and�-scalarlyα-bounded function f : S → X,
with � a total set of functionals for X[f ], we say that f is α-dominated if there
exists a finite regular measure µ : B(Sα) → [0,∞) such that

(7) ‖!f (g)‖ ≤
∫
Sα

|g| dµ, g ∈ D
(α)
S .

Suppose now that X[f ] is a Banach space, in which case the unique continuous
extension of !f from D

(α)
S to C(Sα) still fulfills (7). It is known that there

exists a unique regular vector measure m : B(Sα) → X[f ] of finite variation
(see [7, Ch. 1] for the definition) such that

!f (g) =
∫
Sα

g dm, g ∈ C(Sα).

Indeed, this follows from [8, p. 380] and the fact that (7) actually holds for
all g ∈ C(Sα). An argument as in the proof of Proposition 2.6 then shows
that !f is also weakly compact. Accordingly, if f is α-dominated, then it
is also α-bounded. So, we have the following more specialized version of
Proposition 2.7.
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Proposition 2.8. Let S be a unital, commutative semigroup with an in-
volution and α : S → [0,∞) be an absolute value. Let X be a lcHs and
f : S → X be a function such that X[f ] is a Banach space. If � ⊆ X′ is
total for X[f ] and f is �-positive definite and α-dominated, then there exists
a unique regular vector measure m : B(Sα) → X[f ] of finite variation which
is �-positive and satisfies (5).

Remark 2.9. Let X be a lcHs and m : B(S∗) → X be a regular, compactly
supported vector measure such that X[m] is a Banach space and m has finite
variation when interpreted as being X[m]-valued. If � ⊆ X′ is total for X[m]

and m is �-positive, then the generalized Laplace transform m̂ : S → X as
given by (3) takes its values in X[m], is �-positive definite and is α-dominated
for the absolute value

α(s) := sup{|ŝ(ρ)| : ρ ∈ supp(m)}, s ∈ S.

Indeed, that m̂ takes its values in X[m], is �-positive definite and �-scalarly α-
bounded follows as for Proposition 2.6. Let |m| denote the variation measure
of m. Then it follows from (4) that

‖!m̂(g)‖ =
∥∥∥∥
∫
Sα

g dm

∥∥∥∥ ≤
∫
Sα

|g| d|m|, g ∈ D
(α)
S ,

where the stated inequality is a basic fact for vector measures of finite variation,
[8, Ch. II, §8]. Accordingly, (7) is satisfied, that is, m̂ is α-dominated.

The α-boundedness of a vector-valued function is not always easy to verify
in practice. We now present a criterion in this direction which will be useful
in the next section.

LetX be a lcHs. A set� ⊆ X′ is called full if for every continuous seminorm
q on X there exists a seminorm p : X′ → [0,∞) such that

(8) q(x) ≤ sup{|〈x, ϕ〉| / p(ϕ) : ϕ ∈ �\p−1({0})} < ∞, x ∈ X.

IfX is a Banach space, then this is satisfied (for instance) whenever there exists
a constant M > 0 such that

(9) ‖x‖ ≤ M sup{|〈x, ϕ〉| / ‖ϕ‖X′ : ϕ ∈ �\{0}} < ∞, x ∈ X.

The inequality (9) is taken as a definition of full in [12]. Moreover, examples
in [12, Section 5] show that this condition is often satisfied. It is clear from (8)
that any full family of functionals � ⊆ X′ is also total for X.

Proposition 2.10. Let S be a unital, commutative semigroup with an in-
volution and α : S → [0,∞) be an absolute value. Let X be a lcHs and
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f : S → X be a function. Suppose that � ⊆ X′ is a full space of functionals
for X[f ] and that f is �-positive definite.

(i) If f is �-scalarly α-bounded, then the linear map !f : D
(α)
S → X as

given by (1) is continuous.

(ii) Suppose that X[f ] is a Banach space which does not contain an iso-
morphic copy of the sequence space c0. If f is �-scalarly α-bounded,
then f is α-bounded.

Proof. (i) For each ϕ ∈ � the classical Berg-Maserick theorem guarantees
a unique regular measure µϕ ≥ 0 supported in Sα such that

〈f (s), ϕ〉 =
∫
Sα

ŝ dµϕ, s ∈ S.

It is routine to verify that

〈!f (g), ϕ〉 =
∫
Sα

g dµϕ, g ∈ D
(α)
S .

Given a continuous seminorm q on X[f ] let p : (X[f ])
′ → [0,∞) be any

seminorm satisfying (8). Then

q(!f (g)) ≤ sup

{∣∣∣∣
∫
Sα

g dµϕ

∣∣∣∣ / p(ϕ) : ϕ ∈ �\p−1({0})
}

≤ ‖g‖∞ sup{µϕ(S
α) / p(ϕ) : ϕ ∈ �\p−1({0})}

= ‖g‖∞ sup{〈f (e), ϕ〉 / p(ϕ) : ϕ ∈ �\p−1({0})}.
Hence, with Mq := sup{〈f (e), ϕ〉 / p(ϕ) : ϕ ∈ �\p−1({0})} < ∞ (see (8))
we have

(10) q(!f (g)) ≤ Mq‖g‖∞, g ∈ D
(α)
S .

This shows that !f is continuous.
Part (ii) follows from (i) and a result of A. Pelczyński which states that

every continuous linear map from C(K), where K is any compact Hausdorff
space, into a Banach space not containing a copy of c0 is necessarily weakly
compact; see Theorem 15 on p. 159 of [7] and [7, p. 180].

It is worth noting that all weakly sequentially complete Banach spaces
(hence, all reflexive ones) cannot contain a copy of c0.

Remark 2.11. For the case of X[f ] a Banach space and � ⊆ X′ a full set
of functionals for X[f ] satisfying (9), the calculation in the proof of part (i) of
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Proposition 2.10 which leads to (10) yields the inequality

‖f (s)‖ ≤ M‖f (e)‖α(s), s ∈ S,

where we have substitutedg = ŝ|α and used the estimate‖ŝ|α‖∞ = sup{|ρ(s)| :
ρ ∈ Sα} ≤ α(s). This is a vector analogue of the well known inequality

|h(s)| ≤ h(e)α(s), s ∈ S,

valid for any scalar-valued positive definite function h : S → C which is
α-bounded, [4, p. 90, Proposition 1.12].

The following result illustrates that there is an important class of Banach
spaces in which there always exists a natural family of functionals � ⊆ X′
which is full and such that C� is non-trivial.

Proposition 2.12. Let X be a Banach lattice (over R or C) and let � ⊆ X′
be the cone of all positive functionals. Then � is full.

Proof. For a standard reference to Banach lattices we refer to [35], for
example. Suppose first that X is a real Banach lattice. For each x ∈ X, we
have ‖x‖ = sup{|〈x, x ′〉| : x ′ ∈ X′, ‖x ′‖ ≤ 1}. So, choose any x ′ satisfying
‖x ′‖ ≤ 1. Then x ′ = (x ′)+ − (x ′)− with both (x ′)+, (x ′)− ∈ �, and so

|〈x, x ′〉| ≤ |〈x, (x ′)+〉| + |〈x, (x ′)−〉|.
But, 0 ≤ (x ′)+ ≤ |x ′| and so ‖(x ′)+‖ ≤ ‖|x ′|‖ = ‖x ′‖ ≤ 1. Similarly
‖(x ′)−‖ ≤ 1 and it follows that

|〈x, x ′〉| ≤ 2 sup{|〈x, ϕ〉| : ϕ ∈ �, ‖ϕ‖ ≤ 1}.
Since this is valid for every x ′ satisfying ‖x ′‖ ≤ 1 we have

‖x‖ ≤ 2 sup{|〈x, ϕ〉| / ‖ϕ‖ : ϕ ∈ �\{0}}, x ∈ X.

Accordingly, � is a full family of functionals.
Suppose thatX is a complex Banach lattice. ThenX is the complexification

of a real Banach lattice Y and the norm in X is defined by

‖x‖ := ‖|x|‖, x ∈ X,

where |x| is a suitably defined element of the positive cone ofY , [35, Chapter II,
§11]. The conclusion then follows from the definition of positive functionals in
a complex Banach lattice [35, p. 135] combined with the result for real Banach
lattices.
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Combining Propositions 2.7, 2.10 and 2.12 yields the following useful res-
ult.

Proposition 2.13. Let S be a unital, commutative semigroup with an in-
volution and α : S → [0,∞) be an absolute value. Let X be a Banach lattice
and � ⊆ X′ be the cone of all positive functionals. Let f : S → X be a
function which is �-positive definite and �-scalarly α-bounded. Then,

(i) the linear map !f : D
(α)
S → X is continuous.

Suppose, in addition, that X does not contain a copy of c0. Then,

(ii) the linear map !f : D
(α)
S → X is weakly compact and hence, f is

necessarily α-bounded. In particular, there exists a unique regular, �-
positive vector measure m : B(Sα) → X such that

f (s) =
∫
Sα

ŝ dm, s ∈ S.

There is a partial converse to Proposition 2.12 which shows that the exist-
ence of a full set of functionals � for a Banach space X implies some rather
strong order properties on X. For ease of presentation we again suppose that
X is a real Banach space.

So, suppose that� ⊆ X′ is a full set of functionals, that is, (9) is satisfied for
some constant M > 0. It is routine to check that C� satisfies both C� +C� ⊆
C� and βC� ⊆ C�, for all β ≥ 0, and that C� is weakly (hence, also norm)
closed in X. Accordingly, X is an ordered Banach space in the sense of [34,
p. 222]. Moreover, it is clear from (9) that the formula

(11) |||x||| := sup{|〈x, ϕ〉| / ‖ϕ‖ : ϕ ∈ �\{0}}, x ∈ X,

defines an equivalent norm on X which satisfies |||x||| ≤ |||x + y||| for all
x, y ∈ C�. In particular, this inequality implies that |||y||| ≤ |||x||| whenever
x, y ∈ C� satisfy 0 ≤ y ≤ x, and that C� is a normal cone in (X, ||| · |||),
[34, p. 215]. Since � clearly separates the points of X we see that C� is also
a proper cone, i.e. (−C�) ∩ C� = {0}. The normality of C� implies that the
dual cone �̂ ⊆ X′ of C�, defined by

�̂ := {x ′ ∈ X′ : 〈x, x ′〉 ≥ 0 for all x ∈ C�},
satisfies � ⊆ �̂ (obviously) and X′ = �̂ − �̂, [34, p. 220]. Moreover, �̂
is a strict �-cone, [34, p. 221] which is easily verified to be norm closed
in X′. Accordingly, X′ is also an ordered Banach space, with respect to the
cone �̂, [34, p. 222], and has the property that every positive linear functional
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ψ : X′ → R (i.e. ψ(�̂) ⊆ [0,∞)) is necessarily norm continuous, [34,
p. 228]. The following result summarizes the previous discussion.

Proposition 2.14. Let X be a (real) Banach space and � ⊆ X′ be a full
space of functionals. Then (11) defines an equivalent norm in X with respect
to which

C� := {x ∈ X : 〈x, ϕ〉 ≥ 0 for all ϕ ∈ �}
is a (closed) normal cone andX is an ordered Banach space. Moreover, |||y||| ≤
|||x||| whenever x, y ∈ C� satisfy 0 ≤ y ≤ x.

The dual cone �̂ ⊆ X′ given by

�̂ := {x ′ ∈ X′ : 〈x, x ′〉 ≥ 0 for all x ∈ C�}
contains �, is a norm closed, strict �-cone satisfying X′ = �̂−�̂, and makes
X′ an ordered Banach space with the property that every R-valued, positive
linear functional on X′ is automatically norm continuous on X′.

Now for an application. On semigroups “without” involution (i.e. the iden-
tity function is taken to be the involution) there is an interesting subclass of
the positive definite functions, namely the completely monotone functions, [4,
Ch. 4, §6]. In the scalar case (i.e. for R-valued functions) these turn out to be
mixtures of [0, 1]-valued characters. So, let us formulate a vector analogue.

Let X be a real lcHs, � ⊆ X′ be a non-empty subset and C� ⊆ X be
the corresponding positive cone. Let S be a unital, commutative semigroup
“without” involution. For each t ∈ S define Et : XS → XS by

Etf : s �→ f (s + t), s ∈ S,

for each f ∈ XS, and ∇t : XS → XS by

∇t f : s �→ f (s) − f (s + t), s ∈ S,

for each f ∈ XS . Note that ∇t = I − Et . Since {Et : t ∈ S} is a commuting
family of operators on XS , so is {∇t : t ∈ S}. A function f : S → X is called
�-completely monotone if,

(i) f (S) ⊆ C�, and
(ii) (∇t1∇t2 · · · ∇tnf )(S) ⊆ C� for every finite set {tj }nj=1 ⊆ S.

This is equivalent with each scalar function 〈f, ϕ〉 : S → R, for ϕ ∈ �, being
completely monotone. In particular, 〈f, ϕ〉 is bounded for each ϕ ∈ �, [4,
p. 130]. Let Ŝ := {ρ ∈ S∗ : |ρ(s)| ≤ 1 for all s ∈ S}. Then Ŝ is a compact
subsemigroup of S∗, [4, p. 96], and Ŝ is the set of all bounded characters on
S. A famous result, originally due to G. Choquet, states that any (R-valued)
completely monotone function on S is the generalized Laplace transform of
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some (unique) Radon measure µ ≥ 0, concentrated on the set Ŝ+ of non-
negative bounded characters on S (which are then obviously [0, 1]-valued), [4,
Theorem 4.6.4]. So, 〈f, ϕ〉 = µ̂ϕ with µϕ ∈ M+(Ŝ+), for each ϕ ∈ �.

Proposition 2.15. Let S be a unital, commutative semigroup without in-
volution, X be a real lcHs and f : S → X be a function. Suppose that X[f ] is
quasicomplete and� ⊆ X′ separates the points ofX[f ]. Letf be�-completely
monotone and 1l-bounded, where 1l is the absolute value which constantly takes
the value 1 on S. Then there exists a unique regular, �-positive vector measure
m : B(Ŝ+) → X with values in X[f ] such that

f (s) =
∫
Ŝ+
ŝ dm, s ∈ S.

Moreover, the range f (S) of f is a relatively weakly compact subset of X[f ].

Proof. As noted above, 〈f, ϕ〉 = µ̂ϕ for some unique µϕ ∈ M+(Ŝ+). In
particular, 〈f, ϕ〉 is positive definite and so f is �-positive definite as ϕ ∈ �

is arbitrary. Note that S1l = Ŝ. By Proposition 2.7 there is a unique regular,
�-positive vector measure m : B(Ŝ) → X[f ] such that f = m̂. We need to
check that supp(m) ⊆ Ŝ+. Let A ⊆ Ŝ\Ŝ+ be measurable. Then

〈m(A), ϕ〉 = µϕ(A) = 0, ϕ ∈ �,

(argue as in the proof of Proposition 2.7) and so m(A) = 0 as � separates the
points of X[f ]. It follows that supp(m) ⊆ Ŝ+.

Since 0 ≤ ŝ ≤ 1l, for each ŝ restricted to Ŝ+ and each s ∈ S, it follows that

f (S) ⊆
{∫

Ŝ+
g dm : g measurable and 0 ≤ g ≤ 1l

}
.

Accordingly, f (S) is relatively weakly compact; see the proof of Proposi-
tion 2.6.

We point out that this is the only result in the paper where the totality of �
is genuinely needed, i.e. other than as a sufficient condition ensuring that !f

is well defined.
The following consequence of Proposition 2.15 is of interest in its own

right.

Corollary 2.16. Let X be a real Banach space not containing a copy
of c0 and � ⊆ X′ be a full set of functionals. Given any �-completely mono-
tone function f : S → X, where S is a unital, commutative semigroup
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“without” involution, there exists a unique regular, �-positive vector measure
m : B(Ŝ+) → X such that

f (s) =
∫
Ŝ+
ŝ dm, s ∈ S.

Proof. An examination of the proof of Proposition 2.15 shows that f is
both �-positive definite and �-scalarly 1l-bounded. By Proposition 2.10(ii)
the function f is necessarily 1l-bounded. The conclusion then follows from
Proposition 2.15.

We note that the assumption on � in the above Corollary is always fulfilled
when X is a real Banach lattice and � is taken to be the positive cone of X′;
see Proposition 2.12.

We end this section with a further application of the above results to certain
kinds of stochastic processes. As is traditional in this subject, we will write
the semigroup operation additively. The well developed theory of weakly sta-
tionary random processes is concerned with stochastic processes having fi-
nite second moments whose time parameter varies in an abelian group G.
Such a process can be succinctly described as a Hilbert space valued map
X : G → H, where H = L2(µ) for some probability measure µ for
which the expectation (= correlation in case X is centered, which is no re-
striction) E[X(g)X(k)] = 〈X(g),X(k)〉 depends only on g − k. It is well
known (and has been widely used) that such a process admits an integral
representation in the form X(g) = ∫

Ĝ
ĝ dm for some unique, regular meas-

ure m : B(Ĝ) → H (defined on the dual group Ĝ) which is orthogonally
scattered, i.e. m(E) ⊥ m(F) whenever E,F ∈ B(Ĝ) are disjoint. In many
instances the time parameter may only vary in a commutative semigroup S

with an involution. In this case we call a function f : S → H additively cor-
related if 〈f (s), f (t)〉 is purely a function of s+t−. For the case of the identity
function as involution and with S = N0 this terminology was introduced in
[25]. A natural question is to decide under which additional conditions such
a function f possesses an integral representation similar to the one just men-
tioned for abelian groups. This was answered in [29, Theorem 1] for the case
when f is bounded and the involution is the identity function. The following
proposition can be interpreted as a natural extension of this result.

Proposition 2.17. Let S be a unital, commutative semigroup with an in-
volution and α : S → [0,∞) be an absolute value. Let H be a (complex)
Hilbert space and f : S → H be an additively correlated function such that
‖f (·)‖ is α-bounded as a scalar function on S. Then there exists a unique
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regular, orthogonally scattered measure m : B(Sα) → H such that

f (s) =
∫
Sα

ŝ dm, s ∈ S.

Proof. By hypothesis there exists a functionψ : S→C such that 〈f (s),f (t)〉
= ψ(s + t−), for all s, t ∈ S. It follows that

(12)
n∑

j,k=1

cj c̄kψ(sj + s−
k ) =

∥∥∥∥
n∑

j=1

cjf (sj )

∥∥∥∥
2

H

≥ 0,

for all choices of finitely many elements {cj }nj=1 ⊆ C and {sj }nj=1 ⊆ S. Fur-
thermore,

|ψ(s)| = |〈f (s), f (0)〉| ≤ ‖f (s)‖H‖f (0)‖H ≤ C‖f (0)‖Hα(s), s ∈ S,

for some constant C > 0. This establishes that ψ is α-bounded and posit-
ive definite. Accordingly, the classical Berg-Maserick theorem guarantees a
unique regular measure µ ≥ 0 exists, with support in Sα , such that ψ = µ̂. It
follows from (12) and ψ = µ̂ that

(13)

∥∥∥∥
n∑

j=1

cj ŝj
∣∣
α

∥∥∥∥
L2(µ)

=
∥∥∥∥

n∑
j=1

cjf (sj )

∥∥∥∥
H

,

for all choices {cj }nj=1 ⊆ C and {sj }nj=1 ⊆ S. It is clear from (13) that !f :

D
(α)
S → H as given by (1) is well defined.
Let � ⊆ H ′ (� H) denote the family of all finite sums of the form∑
j cjf (sj ) for which

∑
j cj ŝj ≥ 0 pointwiseµ-a.e. on Sα; the family� is well

defined because of (13). Furthermore, for a fixed element
∑n

j=1 cjf (sj ) ∈ �,

we see that
〈 p∑
8,k=1

d8d̄kf (t8 + t−k ),
n∑

j=1

cjf (sj )

〉
=

∑
j,k,8

c̄j d8d̄kψ(s−
j + t8 + t−k )

=
∑
j,k,8

c̄j d8d̄k

∫
Sα

¯̂sj t̂8 ¯̂tk dµ

=
∫
Sα

( n∑
j=1

cj ŝj

)
.

∣∣∣∣
p∑

8=1

d8t̂8

∣∣∣∣
2

dµ

=
∫
Sα

( n∑
j=1

cj ŝj

)
.

∣∣∣∣
p∑

8=1

d8t̂8

∣∣∣∣
2

dµ
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is a non-negative number for all choices of finitely many elements {d8}p8=1 ⊆ C
and {t8}p8=1 ⊆ S. Together with the inequality

∣∣∣∣
〈
f (t),

n∑
j=1

cjf (sj )

〉∣∣∣∣ ≤ Cα(t)

∥∥∥∥
n∑

j=1

cjf (sj )

∥∥∥∥
H

, t ∈ S,

this shows that f is �-positive definite and �-scalarly α-bounded. Moreover,
for

∑r
j=1 βj ŝj |α ∈ D

(α)
S , it follows from (13) and the definition of !f that

∥∥∥∥!f

( r∑
j=1

βj ŝj |α
)∥∥∥∥

H

=
∥∥∥∥

r∑
j=1

βj ŝj

∥∥∥∥
L2(µ)

≤ µ(Sα)1/2

∥∥∥∥
r∑

j=1

βj ŝj |α
∥∥∥∥∞

,

i.e. !f : D
(α)
S → H is continuous with ‖!f ‖ ≤ µ(Sα)1/2 = ‖f (0)‖H . In

particular, !f is weakly compact (as H is reflexive) and we see that !f is
α-bounded.

Proposition 2.7 and Remark 2.3(b) now imply the existence of a unique
regular, �-positive vector measure m : B(Sα) → H[f ] satisfying

f (s) =
∫
Sα

ŝ dm, s ∈ S.

The isometric linear map
∑

j cjf (sj ) �→ ∑
j cj ŝj |α, from the linear span of

f (S) ⊆ H[f ] onto D
(α)
S (considered as a subspace ofL2(µ)), extends uniquely

to an isometric isomorphism J of H[f ] onto L2(µ). Moreover, for any s ∈ S,

we have that ∫
Sα

ŝ d(J ◦ m) = J

(∫
Sα

ŝ dm

)
= J (f (s)) = ŝ|α.

But, if n : B(Sα) → L2(µ) is the canonical vector measure given by n(E) =
χ

E
, for each E ∈ B(Sα), then n is regular and also satisfies∫

Sα

ŝ dn = ŝ|α, s ∈ S.

Hence,
∫
Sα g d(J ◦ m) = ∫

Sα g dn for all g ∈ D
(α)
S . Then a simple approx-

imation argument (using the density of D
(α)
S in C(Sα) and the dominated con-

vergence theorem for vector measures) shows that
∫
Sα g d(J ◦m) = ∫

Sα g dn

for all g ∈ C(Sα). Since both n and J ◦ m are regular, the uniqueness part
of the vector valued Riesz representation theorem implies that n = J ◦ m.
Since n is clearly orthogonally scattered and J is isometric, it follows from
the polarization identity that m is also orthogonally scattered.
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3. Representation of ∗-semigroups of scalar operators

The aim of this section is to apply the results of §1 to deduce an integral
formula for representations of certain kinds of semigroups of scalar operators
in a Banach space. In the Hilbert space setting there is a vast literature on this
topic, where the Mackey-Wermer theorem implies that scalar operators reduce
essentially to normal operators. For Banach spaces the known results are not
so well developed. Often there are restrictions on the Banach space, such as
reflexivity or weak sequential completeness. In other cases the underlying
semigroup S is either of a rather particular nature (e.g. S is a group or S = N0

or S = R+ etc.) or S is required to be imbedded in an appropriate topological
group and the associated operator semigroup should have some continuity
properties. As a sample of results in this direction we refer to [6], [14], [15],
[16], [20], [21], [22], [24], [26], [27], [28], [31], [32], [36], [37] and the
references therein, for example.

The kind of restrictions indicated above lie in the very nature of things;
general Banach spaces simply do not have the rich geometric structure avail-
able in Hilbert spaces. The methods of positive definite functions compensate
for this to some extent because of the rather rich order structure imposed on
the Banach space. Furthermore, there are virtually no restrictions on the un-
derlying semigroup S when applying such methods. Of course, there must be
some additional properties placed on the operator semigroup involved. Such
properties, roughly speaking, compensate for the fact that selfadjoint and nor-
mal operators have no analogue in the Banach space setting and hence, the
powerful methods of C∗-algebras are not available.

In order to motivate and formulate a suitable notion of a ∗-representation for
semigroups of scalar operators, we begin with a consideration of generalized
Laplace transforms of multiplicative, operator-valued measures.

Throughout this section Y denotes a (complex) Banach space. The vector
space of all continuous linear operators of Y into itself is denoted by L(Y ).
To stress that L(Y ) is equipped with the strong operator topology (i.e. the
topology of pointwise convergence on Y ) we will write Ls(Y ). It is an easy
consequence of the Banach-Steinhaus theorem that Ls(Y ) is a quasicomplete
lcHs; its topology is determined by the family of seminorms {qy : y ∈ Y },
where

(14) qy : T �→ ‖Ty‖, T ∈ Ls(Y ).

All continuous linear functionals ξ on Ls(Y ) have the form

(15) ξ : T �→
n∑

j=1

〈Tyj , y ′
j 〉, T ∈ Ls(Y ),
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for some finite family of elements {yj }nj=1 ⊆ Y and {y ′
j }nj=1 ⊆ Y ′, [34, p. 139].

A vector measure P : ) → Ls(Y ), where ) is a σ -algebra of subsets of
some non-empty set =, is usually called an operator-valued measure. From
the definition of the topology in Ls(Y ) this means that the Y -valued function
Py defined by Py : E �→ P(E)y is σ -additive on ), for each y ∈ Y . In
view of (15) and the Orlicz-Pettis theorem, this is equivalent to the C-valued
function 〈Py, y ′〉 : E �→ 〈P(E)y, y ′〉 being σ -additive on ) for each y ∈ Y

and y ′ ∈ Y ′.
An operator-valued measure P : ) → Ls(Y ) which is multiplicative on )

(i.e. P(E ∩ F) = P(E)P (F ) for all E,F ∈ )) and satisfies P(=) = I

(the identity operator on Y ) is called a spectral measure. For such meas-
ures it turns out that the only P -integrable functions h : = → C are those
which are bounded and )-measurable, [11, XVIII Theorem 2.11(c)]. In this
case, if we define P(h) := ∫

=
h dP, then for each E ∈ ) the operator∫

E
h dP := P(h)P (E) = P(E)P (h) is the unique element of Ls(Y ) which

satisfies 〈∫
E
h dP, ξ〉 = ∫

E
h d〈P, ξ〉 for all ξ ∈ (Ls(Y ))

′. A set E ∈ )

is called P -null whenever P(E) = 0. The multiplicativity of P implies that
P(F) = 0 for all sets F ∈ ) satisfying F ⊆ E. Two P -integrable func-
tions are called P -equivalent if they only differ on a P -null set. Then L1(P )

denotes the usual space of equivalence classes of P -integrable functions mod-
ulo P -equivalence. An operator T ∈ L(Y ) is called a scalar-type spectral
operator (briefly, a scalar operator) if there exists some spectral measure
P : ) → Ls(Y ) and h ∈ L1(P ) such that T = P(h), [11, XV, §4 and XVII,
§2].

Let P : ) → Ls(Y ) be a spectral measure. Then the integration map
IP : L1(P ) → Ls(Y ) defined by h �→ P(h) is injective. For each y ∈ Y

define a seminorm qy(P ) on L1(P ) by

qy(P ) : h �→ qy(P (h)), h ∈ L1(P ),

where qy is given by (14). The family of seminorms {qy(P ) : y ∈ Y } determ-
ines a lcH-topology τ(P ) on L1(P ) and IP becomes a bicontinuous linear and
algebraic isomorphism of (L1(P ), τ (P )) onto its range R(IP ), equipped with
the relative topology from Ls(Y ). If the range P()) of P is a closed subset of
Ls(Y ), which is always the case if Y is separable for instance, then the lcHs
L1(P ) is τ(P )-complete. In particular, the range R(IP ) is then a complete
subspace of the quasicomplete lcHs Ls(Y ). Moreover, R(IP ) coincides with
the closed subalgebra AP of Ls(Y ) generated by P()). The algebra AP has
an involution ∗, namely P(h)∗ := P(h̄) for each h ∈ L1(P ). Each element of
the dual space A ′

P has the special form (c.f. (15))

(16) T �→ 〈Ty, y ′〉, T ∈ AP ,
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for some y ∈ Y and y ′ ∈ Y ′, [13]. Functionals of the form (16) will be denoted
by y ⊗ y ′.

Define ||| · ||| : Y → [0,∞) by

(17) |||y||| := sup{‖P(f )y‖ : f ∈ L1(P ), 0 ≤ |f | ≤ 1}, y ∈ Y.

Then ||| · ||| is an equivalent norm on Y with the property that |||P(h)y||| =
|||P(|h|)y||| for all y ∈ Y and h ∈ L1(P ). In particular, if |||P(h)||| denotes the
operator norm calculated with respect to the norm ||| · ||| in Y , then

(18) |||P(h)||| = |||P(|h|)|||, h ∈ L1(P ).

All of the above notions and facts about the integration map and spectral
measures can be found in [9], [10], [11], for example.

Let P : ) → Ls(Y ) be a spectral measure and fix a vector y ∈ Y . An
element y ′ ∈ Y ′ is called a Bade functional for y with respect to P if

(i) 〈P(E)y, y ′〉 ≥ 0 for each E ∈ ), and

(ii) P(E)y = 0 whenever E ∈ ) satisfies 〈P(E)y, y ′〉 = 0.

The existence of Bade functionals follows from [3, Theorem 3.1], after noting
that P()) is a σ -complete Boolean algebra of projections; see the proof of
[11, XVII Corollary 3.10]. In particular, the Y -valued vector measure Py and
the non-negative scalar measure 〈Py, y ′〉 have the same null sets whenever y ′
is a Bade functional for y with respect to P .

Given y ∈ Y, let P())[y] denote the cyclic space generated by y, that is,
the closed subspace of Y generated by {P(E)y : E ∈ )}. In the notation
of Section 1 we have P())[y] = Y [Py]. We note that the restrictions to the
invariant subspace P())[y] of all members of P()) forms a σ -complete
Boolean algebra of projections inP())[y], [11, XVII Corollary 3.11], and that
y is a cyclic vector for this family of restrictions (in the Banach spaceP())[y]).
So, if we choose any fixed Bade functional y ′ ∈ Y ′ for y with respect to P,

then the linear span of �y := {P(F)′y ′ : F ∈ )} is a weak-∗ dense subspace
of (P ())[y])′, [11, XVII Lemma 3.13]. Define � := ∪y∈Y {y ⊗ ξ : ξ ∈ �y},
where y ⊗ ξ is given by (16). Then � ⊆ A ′

P and the properties of Bade
functionals ensure that the spectral measure P is �-positive. Moreover, �
separates the points of AP . To see this, let T = P(h) for some h ∈ L1(P ) and
suppose that 〈T , ζ 〉 = 0 for all ζ ∈ �. Fix y ∈ Y . Then 〈(∫

=
h dP )y, ξ 〉 =

0 for all ξ ∈ �y . Approximating h uniformly by )-simple functions and
using the dominated convergence theorem for vector measures, [19, p. 30,
Theorem 2], applied to Py : ) → P())[y], it follows that (

∫
=
h dP )y =∫

=
h d(Py) is an element of P())[y]. Since the linear span of the restrictions

�y |P())[y] is weak-∗ dense in (P ())[y])′ and 〈∫
=
h d(Py), ξ〉 = 0 for all
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ξ ∈ �y it follows that (
∫
=
h dP )y = 0. But, y ∈ Y is arbitrary and so

T = ∫
=
h dP = 0 as an element of AP ⊆ L(Y ).

Let S be a unital, commutative semigroup with an involution and P :
B(S∗) → Ls(Y ) be a regular, compactly supported spectral measure with
range a closed subset of Ls(Y ). Let X denote the complete lcHs AP :=
R(IP ) ⊆ Ls(Y ) in which case P can be considered as an X-valued measure.
As noted above � := ∪y∈Y {y ⊗ ξ : ξ ∈ �y} ⊆ X′ is a total set of functionals
for X and P is �-positive. It follows from properties of Bade functionals that

{∫
=

h dP : h ∈ L1(P ), h ≥ 0

}
⊆ C�.

Define a map UP : S → X ⊆ Ls(Y ) by

(19) UP (s) :=
∫
S∗
ŝ dP, s ∈ S.

Then {UP (s)}s∈S is a commutative semigroup of scalar operators, that is,
UP (st) = UP (s)UP (t) for all s, t ∈ S. Moreover, UP (e) = I and UP (s

−) =
UP (s)

∗ := ∫
S∗ ¯̂s dP, for each s ∈ S. With respect to the equivalent norm ||| · |||

in Y given by (17) we have |||UP (s)
∗||| = |||UP (s)||| for all s ∈ S; see (18).

Moreover, Proposition 2.6 applied to m := P and X := AP implies that UP

is �-positive definite and α-bounded with respect to the absolute value

(20) α(s) := sup{|ŝ(ρ)| : ρ ∈ supp(P )}, s ∈ S.

The following result summarizes the above discussion.

Proposition 3.1. Let S be a unital, commutative semigroup with an in-
volution. Let Y be a Banach space and P : B(S∗) → Ls(Y ) be a regular,
compactly supported spectral measure with range a closed subset of Ls(Y ).
Then there exists a unital, abelian and complete subalgebra AP ⊆ Ls(Y )

with an involution ∗, and a total set of functionals � ⊆ A ′
P for AP such that

UP : S → Ls(Y ), as defined by (19), is a semigroup of scalar operators which
takes its values in AP and satisfies

(i) UP (e) = I and UP (st) = UP (s)UP (t), for all t, s ∈ S,

(ii) UP (s
−) = UP (s)

∗, for all s ∈ S,

(iii) UP is �-positive definite and α-bounded with respect to the absolute
value α : S → [0,∞) given by (20), and

(iv) |||UP (s)||| = |||UP (s)
∗||| for an equivalent norm ||| · ||| on Y , for all

s ∈ S.
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Proposition 3.1 suggests what (perhaps) a natural definition of a ∗-represen-
tation for a semigroup of scalar operators in a Banach space should be; see
Definition 3.5 below. First we need one further notion.

Definition 3.2 ([34], p. 255). Let Y be a Banach space. A unital subal-
gebra A ⊆ L(Y ) is called a spectral algebra if it is continuously isomorphic
(linearly and multiplicatively) to a C(K)-space for some compact Hausdorff
space K .

In every spectral algebra A ⊆ L(Y ) there is an involution given by T ∗ =
@(f̄ ) if T = @(f ), where @ : C(K) → A is an isomorphism as in Defin-
ition 3.2. This involution is independent of the isomorphism @ and the space
C(K).

For the class of reflexive Banach spaces, C. Ionescu Tulcea introduced the
notion of a (D)-algebra (in [14]) as a spectral algebra which is closed in the
weak operator topology.

Lemma 3.3. Let Y be a Banach space not containing a copy of c0 and A ⊆
L(Y ) be a spectral algebra. Then the closure ¯A w of A in the weak operator
topology is a (D)-algebra. In particular, ¯A w is also a spectral algebra and
each element of ¯A w (hence, of A ) is a scalar operator.

Proof. Let @ : C(K) → A ⊆ L(Y ) be an isomorphism as in Defini-
tion 3.2. A subset W ⊆ L(Y ), for an arbitrary Banach space Y , is relatively
compact for the weak operator topology if and only if {Ty : T ∈ W } is a
relatively weakly compact subset of Y , for each y ∈ Y . This fact, together
with a result of A. Pelczyński (see the proof of Proposition 2.10(ii)), implies
that W := {@(h) : ‖h‖∞ ≤ 1} is relatively compact for the weak operator
topology in L(Y ). Since Ls(Y ) is quasicomplete and the weak operator topo-
logy is the weak topology for the lcHsLs(Y ), it follows from the vector-valued
Riesz representation theorem [18] that there exists a unique regular measure
Q : B(K) → Ls(Y ) such that @(h) = ∫

K
h dQ for all h ∈ C(K). An exam-

ination of the proof of the Riesz representation theorem given in [18] shows
that Q takes its values in W

w ⊆ ¯A w. Note that Q(K) = @(1) = I . The ho-
momorphism property of @ implies that (

∫
K
g dQ).(

∫
K
h dQ) = ∫

K
gh dQ

for all g, h ∈ C(K) from which it follows that Q is multiplicative on B(K),

[17, Lemma 3]. So, Q is a spectral measure. Hence, its range Q(B(K)) is
a σ -complete Boolean algebra of projections in the sense of W. Bade [11,
XVII Corollary 3.10]. Accordingly, the closure F of Q(B(K)) in Ls(Y ) is a
complete Boolean algebra of projections, [11, XVII Lemma 3.23], which is
clearly contained in W

w ⊆ ¯A w. If = denotes the Stone space of the Boolean
algebra F , in which case = is a compact (extremely disconnected) Hausdorff
space, then there exists a regular spectral measure P : B(=) → Ls(Y ) with
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range precisely F , [3, p. 349]. In particular, P has closed range in Ls(Y ) and
so R(IP ) is the closed subalgebra AP of Ls(Y ) generated by P(B(=)), that
is, by F . Since F ⊆ ¯A w we have AP ⊆ ¯A w. But, Q(B(K)) ⊆ F ⊆ AP

and AP is closed and convex in Ls(Y ) hence, is also weak operator topology
closed in L(Y ). In particular, AP is complete in Ls(Y ) (as P has closed range
in Ls(Y )) and so it follows that

∫
K
g dQ ∈ AP for all g ∈ L1(Q). Since

C(K) ⊆ L1(Q) it follows that @(h) = ∫
K
h dQ ∈ AP for all h ∈ C(K), that

is, A ⊆ AP . But, AP is weak operator topology closed and so ¯A w ⊆ AP .
This establishes that ¯A w = AP and so certainly each element of ¯A w is a
scalar operator. Finally, AP is isomorphic to C(=), [11, XVII Lemma 3.9 &
Corollary 3.17], and so ¯A w is a spectral algebra.

In view of Definition 3.2 and Lemma 3.3, the notion of a spectral algebra
can be interpreted as an extension to arbitrary Banach spaces of the notion of
a (D)-algebra in reflexive spaces.

Lemma 3.4. Let Y be a Banach space and P : ) → Ls(Y ) be any spectral
measure. Then the closed subalgebra AP of Ls(Y ) generated by the range
P()) of P is a spectral algebra.

Proof. Since P()) is a σ -complete Boolean algebra of projections (see
the proof of [11, XVII Corollary 3.10]) its closure F in Ls(Y ) is a complete
Boolean algebra of projections, [11, XVII Lemma 3.23]. Moreover, AP is
also the closed subalgebra of Ls(Y ) generated by F . But, this subalgebra
coincides with that generated in L(Y ) by the operator norm topology, [11,
XVII Corollary 3.17], and hence, is isomorphic to a C(K) space, [11, XVII
Lemma 3.9].

It follows from Lemma 3.4 that the algebra AP of Proposition 3.1 is a
spectral algebra, and is weak operator topology closed.

Definition 3.5. Let S be a unital, commutative semigroup with an invol-
ution, and let Y be a Banach space. A map U : S → L(Y ) is called a positive,
exponentially bounded ∗-representation (of operators) if

(i) U (e) = I and U (st) = U (s)U (t) for all s, t ∈ S,

(ii) there exists a spectral algebra A ⊆ L(Y ) such that U (S) ⊆ A and
U (s−) = U (s)∗ for all s ∈ S,

(iii) there is a set of functionals � ⊆ (Ls(Y ))
′ which separates the points of

¯A w and such that U is �-positive definite, and

(iv) there is an absolute value α : S �→ [0,∞) such that U is α-bounded,
that is, U is �-scalarly α-bounded and the map !U : D

(α)
S → L(Y ) is

compact for the weak operator topology.
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Remark 3.6. (a) Let Y be a Hilbert space. A map U : S → L(Y ) is called a
∗-representation [38, §6] if U (e) = I and U (st−) = U (s)U (t)∗ for all s, t ∈
S. Then each U (s) is a normal operator and there exists a regular selfadjoint
spectral measureP : B(S∗) → Ls(Y )with compact support such that U = P̂

is the generalized Laplace transform of P , [30, Theorem 2]. Proposition 3.1
implies that properties (i), (iii) and (iv) of Definition 3.5 are satisfied and
Lemma 3.4 implies property (ii) with A being the closed subalgebra of Ls(Y )

generated by P(B(S∗)). Hence, U is a positive, exponentially bounded ∗-
representation in the sense of Definition 3.5.

(b) Property (ii) of Definition 3.5 is a substitute in the Banach space setting
for the existence (always) of adjoint operators in the Hilbert space setting.
Moreover, if U is a ∗-representation in a Hilbert space Y (see part (a)), then in
(ii) of Definition 3.5 A can always be chosen as the C∗-algebra generated by
the ∗-closed, commutative family of operators U (S). Furthermore, {y ⊗ y :
y ∈ Y } can always be taken as � in part (iii), in which case the cone C�

consists of the positive operators in L(Y ). So, condition (iii) is a substitute in
the Banach space setting for the above mentioned properties of the functionals
{y ⊗ y : y ∈ Y } in the Hilbert space setting. Moreover,

(21) α(s) := ‖U (s)‖, s ∈ S,

is always an absolute value for a ∗-representation U : S → L(Y ) in a Hilbert
space Y (the property ‖U (s)∗‖ = ‖U (s)‖ is crucial here) and U is always
�-scalarly α-bounded with respect to � = {y ⊗ y : y ∈ Y }; see the proof
of Theorem 2 in [30]. Also, !U : D

(α)
S → Ls(Y ) is then automatically weak

operator compact. Indeed, since Y is reflexive, the argument at the beginning
of the proof of Lemma 3.3 shows that it suffices to establish the continuity of
!U . By Proposition 2.10(i) it is then enough to show that� := {y⊗y : y ∈ Y }
is a full space of functionals for Ls(Y ). But, if ||| · ||| denotes the dual norm of
the Banach space L(Y )−equipped with its operator norm topology – then it
is known that

‖T ‖ ≤ 2 sup{|〈T , y ⊗ y〉| / |||y ⊗ y||| : y ∈ Y }, T ∈ L(Y ).

Hence, for fixed y ∈ Y\{0}, consider the continuous seminorm qy on Ls(Y )

as given by (14). Define py : (Ls(Y ))
′ → [0,∞) to be the norm ||| · ||| / 2‖y‖.

Then

qy(T ) = ‖Ty‖ ≤ sup{|〈T , z ⊗ z〉| / py(z ⊗ z) : z ⊗ z ∈ �\{0}} < ∞
for each T ∈ Ls(Y ), which shows that (8) is satisfied in X := Ls(Y ), that
is, � is a full space of functionals. So, condition (iv) is a natural analogue in
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the Banach space setting of the fact that every ∗-representation of (necessarily
normal) operators in a Hilbert space is α-bounded with respect to the particular
absolute value (21).

In view of Remark 3.6(b) our final result can be interpreted as a natural
extension to the Banach space setting of the integral representation for ∗-
semigroups of normal operators in Hilbert spaces as indicated in Remark 3.6(a);
see also [23].

Proposition 3.7. Let S be a unital, commutative semigroup with an involu-
tion. Let Y be a Banach space and U : S → L(Y ) be a positive, exponentially
bounded ∗-representation. Then there exists a unique regular, compactly sup-
ported spectral measure P : B(S∗) → Ls(Y ) such that

(22) U (s) =
∫
S∗
ŝ dP, s ∈ S.

In particular, each U (s), for s ∈ S, is a scalar operator.

Proof. Let A ⊆ Ls(Y ) and � ⊆ A ′ = ( ¯A w)′ and α : S → [0,∞) be
as in Definition 3.5. Since X := ¯A w is quasicomplete for the strong operator
topology (being a closed subspace of the quasicomplete space Ls(Y )), we
can apply Proposition 2.7 to the function f := U considered as being X-
valued. Hence, there is a unique regular, �-positive operator-valued measure
P : B(Sα) → ¯A w ⊆ Ls(Y ) such that U (s) = ∫

Sα ŝ dP (s) for each s ∈ S.
Note that only (iii) and (iv) of Definition 3.5 are needed here. Since P(Sα) =
U (e) = I, in order to show that P is a spectral measure it remains to verify
that P is multiplicative on B(Sα). Define P(h) := ∫

Sα h dP for each bounded
Borel function h on Sα . Then, by (i) and (ii) of Definition 3.5, we have that

P(ŝt̂) =
∫
Sα

ŝt̂ dP =
∫
Sα

(st )̂ dP = U (st) = U (s)U (t) = P(ŝ)P (t̂)

for all s, t ∈ S and

P( ¯̂s) =
∫
Sα

¯̂s dP =
∫
Sα

(s−)̂ dP = U (s−) = U (s)∗ = P(ŝ)∗

for all s ∈ S. Since integration is a linear operation it follows that

(23) P (h)P (g) = P(hg), h, g ∈ D
(α)
S .

But, D
(α)
S is a dense subalgebra of C(Sα) and so by a known result [17,

Lemma 3] it follows from (23) that P is indeed multiplicative.
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Some final comments are in order. In view of Definition 3.2, the fact that
‖h‖∞ = ‖h̄‖∞ for any element h of a C(K)-space, and part (ii) of Defini-
tion 3.5 it follows if U : S → L(Y ) is any positive, exponentially bounded
∗-representation, then for an equivalent norm ||| · ||| on Y we have

|||U (s)||| = |||U (s)∗|||, s ∈ S.

In particular, it is then immediate from (15) that U is �-scalarly α-bounded
for the particular absolute value given by α(s) := |||U (s)||| and for every �

satisfying (iii) of Definition 3.5. Moreover, if 〈U 〉u denotes the closed sub-
algebra of L(Y ) generated by U (S) with respect to the operator norm, then
〈U 〉u is contained in some spectral algebra which is weak operator topology
closed. Indeed, it follows from (22) that 〈U 〉u is contained in the closed sub-
algebra AP of Ls(Y ) generated by P(B(Sα)). The conclusion then follows
from Lemma 3.4. In particular, 〈U 〉u is contained in a (D)-algebra. Moreover,
AP ⊆ ¯A w. Indeed, as seen in the proof of Lemma 3.3

P(B(Sα)) ⊆ {@(h) : ‖h‖∞ ≤ 1}w ⊆ ¯A w,

where @ : C(K) → A is an isomorphism as in Definition 3.2, and so also
AP ⊆ ¯A w. Since !U

(∑n
j=1 βj ŝj

∣∣
α

) = ∫
Sα

(∑n
j=1 βj ŝj

)
dP ∈ AP , we see

that the continuous extension of !U from D
(α)
S to C(Sα) takes its values in

AP ⊆ ¯A w (and is again weakly compact of course). Moreover, the weak
operator compactness of !U is the same whether we interpret !U as being
¯A w-valued or Ls(Y )-valued; see the discussion after Definition 2.4.

We conclude with the following

Example 3.8. Let D be the closure of a bounded, open, connected subset
of C, and let µ denote planar Lebesgue measure on D. Fix p ∈ [1,∞) and
consider Y := Lp(D,µ), the usual Banach space of p-th power µ-integrable
functions.

The set N0 := {0, 1, 2, · · ·} determines a commutative semigroup S =
N0 × N0 via the operation (m, n).(u, v) = (m + u, n + v), in which case
e = (0, 0) is the identity element. An involution is defined in S by the formula
(m, n)− = (n,m), for each (m, n) ∈ S.

For z ∈ C, the function ρz : S → C given by ρz(m, n) = zmz̄n, for each
(m, n) ∈ S, is a character for S and all characters are of this form, that is,
S∗ � C (also topologically), [4, pp. 116–117].

For each φ ∈ C(D) let Mφ ∈ L(Y ) denote the multiplication operator
Mφ : f �→ φf, for f ∈ Y, and define A := {Mφ : φ ∈ C(D)}. Since
‖Mφ‖ = ‖φ‖∞ := sup{|φ(z)| : z ∈ D}, for each φ ∈ C(D), it is clear that A
is a spectral algebra. Moreover, it is known that ¯A w = {Mφ : φ ∈ L∞(D,µ)}.
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Let ψ(z) = z, for z ∈ D, and define U : S → L(Y ) by

U ((m, n)) = (Mψ)
m(Mψ̄)

n, (m, n) ∈ S.

Then certainly U (S) ⊆ A and so (i) and (ii) of Definition 3.5 are satisfied. If
F := {f ∈ Y : f ≥ 0} and G := {g ∈ Lq(D,µ) : g ≥ 0}, where q is the
conjugate index to p (i.e. p−1 + q−1 = 1 if p > 1 and q = ∞ if p = 1), then
it is routine to verify that � := {f ⊗ g : f ∈ F, g ∈ G} separates the points
of ¯A w. Moreover, if f ⊗ g ∈ � then

(24) 〈U ((m, n)), f ⊗ g〉 =
∫
D

zmz̄nfg dµ, (m, n) ∈ S.

Define an absolute value α : S → [0,∞) by α(s) := ‖U (s)‖, for s ∈ S.
Then it can be calculated that Sα = {z ∈ C : |z| ≤ ‖ψ‖∞} and hence, D ⊆ Sα .
It follows from (24) that

(25) |〈U ((m, n)), f ⊗ g〉| ≤ C‖ψ‖m+n
∞ = Cα((m, n)), (m, n) ∈ S,

where C = ∫
D
fg dµ. Accordingly, 〈U (·), f ⊗ g〉 is α-bounded. Since

(fg)dµ is a positive, compactly supported measure on C it follows from (24)
and (25) that 〈U (·), f ⊗g〉 is also positive definite, [4, p. 117]. This establishes
that U is �-positive definite and �-scalarly α-bounded.

Given βj ∈ C and (mj , nj ) ∈ S, for 1 ≤ j ≤ n, we have that

!U

( n∑
j=1

βjz
mj z̄nj

∣∣∣∣
α

)
= M∑n

j=1 βj z
mj z̄

nj

and so
∥∥∥∥!U

( n∑
j=1

βjz
mj z̄nj

∣∣∣∣
α

)∥∥∥∥ =
∥∥∥∥

n∑
j=1

βjz
mj z̄nj

∥∥∥∥∞
≤ sup

z∈Sα

∣∣∣∣
n∑

j=1

βjz
mj z̄nj

∣∣∣∣.

Hence, !U is continuous for the operator norm topology and so is certainly
continuous for the weak operator topology. Since Y does not contain a copy
of c0 (as Y is reflexive if 1 < p < ∞ and weakly sequentially complete if
p = 1), an argument as in the proof of Lemma 3.3 shows that !U : D

(α)
S →

L(Y ) is compact for the weak operator topology. Accordingly, U is a positive,
exponentially bounded ∗-representation.

The spectral measure P : B(Sα) → Ls(Y ) as guaranteed by Proposi-
tion 3.7 can be explicitly given. Its support is the subset D of Sα and, for each
Borel subset E of Sα , the projection P(E) ∈ L(Y ) is given by f �→ χ

E∩Df,

for f ∈ Y .
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