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HARDY-SOBOLEV SPACES OF COMPLEX
TANGENTIAL DERIVATIVES OF HOLOMORPHIC

FUNCTIONS IN DOMAINS OF FINITE TYPE

SANDRINE GRELLIER∗

Abstract

In this paper, we prove Fefferman-Stein like characterizations of Hardy-Sobolev spaces of complex
tangential derivatives of holomorphic functions in domains of finite type in Cn. We also study the
relationship between these complex tangential Hardy-Sobolev spaces and the usual ones. We also
obtain partial results on domains not necessarily of finite type.

0. Introduction

In this paper, we consider Hardy-Sobolev spaces of complex tangential deriv-
atives of holomorphic functions in some domain � in Cn. Let us precise the
definition when n = 2. For L a complex tangential derivative in �, k ∈ N
and u a holomorphic function in �, we denote by ∇k

T u the (k + 1)-tuple of
functions given by (u, Lu, . . . , Lku). Then, we consider, for 0 < p < ∞, the
space H

p

k,T (�) of holomorphic functions u in � for which the normal max-
imal function of |∇k

T u| belongs to Lp(∂�). We call the complex tangential
Hardy-Sobolev space of order k H

p

k,T (�). One has to put in parallel the usual
Hardy-Sobolev space H

p

k (�) which is defined in terms of the total gradient.
For this last one, Fefferman-Stein like characterizations hold in terms of the
Littlewood-Paley function, the area integral or the maximal admissible func-
tion. These characterizations are proved when � is strictly pseudoconvex or
of finite type in C2 where one can define geometrically adapted admissible ap-
proach regions. Since derivation preserves holomorphy, this follows from the
corresponding characterizations of the Hardy space of holomorphic functions.
We prove here analogous characterizations of H

p

k,T (�) when � is of finite
type in Cn with the main difficulty that complex tangential derivation does not
preserve holomorphy. Here, we say that � is of finite type m when the Lie
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brackets up to order m of the complex tangential vector fields generate all the
tangential space. Let us point out that part of the characterizations of H

p

k,T (�)

(as well as all the characterizations of H
p

k (�)) hold without any assumptions
of finite type on �. In this case, we use a family of admissible approach re-
gions A (m)

α (ζ ), ζ ∈ ∂�, which are arbitrarily large, as m increases, around
Levi flat points ζ but which coïncide with the hyperbolic approach regions
around stricly pseudoconvex points and which fit the domain around points of
finite type m in C2.

Moreover, we study the relationship between H
p

k,T (�) and H
p

k (�). Note
that in [11] and in [6], results were given in strictly pseudoconvex domains (or
more generally in domains of finite type 2, the case of the unit ball in Cn have
been done previously in [1]). In this case, H

p

k (�) identifies with H
p

2k,T (�).
The situation cannot be as simple in the general case, since the inclusion
H

p

k (�) ⊂ H
p

2k,T (�) cannot be improved because of the strictly pseudoconvex
points. To obtain converse inclusions, some finite type hypothesis is necessary.
One needs to recover all complex derivatives from complex tangential ones.
When � is of finite type m, we prove that a holomorphic function in H

p

k,T (�)

is in the usual Hardy-Sobolev space of order k/m.
Let us now describe precisely the setting.
Let � ⊂ Cn be a bounded, smooth domain, given by

� = {z ∈ Cn; r(z) < 0}
with r a C ∞ function such that |∇r| = 1 on ∂� = {r = 0}. For δ > 0
and z ∈ �, denote by τ(z, δ) the function (eventually infinite) constructed
by Catlin which gives, when � is of finite type m, the size in the complex
tangential directions of the polydiscs that fits the domain around z (we will
recall the precise definition of τ(z, δ) in §1.1). Form ≥ 2 an integer, denote by
τm(z, δ) := min{τ(z, δ), δ1/m} and by Qm(z, δ) the corresponding polydiscs.
It gives a non-isotropic pseudo-distance dm on ∂�. This is equivalent to Catlin’s
pseudo-distance when� is of finite typeµ, for anym ≥ µ and gives arbitrarily
large balls in complex tangential directions around flat points as m grows.

We identify a small neighborhood of ∂� in �, denoted by � ∩ U , with
∂� × [0, s0[ via a diffeomorphism �:

� : ∂� × [0, s0[→ � ∩ U �(ζ, 0) = ζ, ζ ∈ ∂�.

For z ∈ � ∩ U , let π(z) ∈ ∂� and δ(z) ≥ 0 be such that �(π(z), δ(z)) = z;
δ(z) is equivalent to the distance to ∂�. In the following, we will write τm(z)
for τm(z, δ(z)) and we will forget the subscript m when there is no ambiguity.

We define the following quantities for any smooth function u and any aper-
ture α > 0:
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• The normal maximal function:

for any ζ ∈ ∂�, N u(ζ ) = sup {|u(�(ζ, t))|; 0 < t < s0} .
• The maximal admissible function:

for any ζ ∈ ∂�, M (m)
α u(ζ ) = sup

{|u(z)|; z ∈ A (m)
α (ζ )

}
where A (m)

α (ζ ) denotes the admissible approach region:

A (m)
α (ζ ) = {�(z, t); z ∈ ∂�, 0 < t < s0, dm(z, ζ ) < αt} .

• The Littlewood-Paley function:

for any ζ ∈ ∂�, g(u)(ζ ) =
(∫ s0

0
|u ◦ �(ζ, t)|2 dt

t

)1/2

.

• The admissible area function:

for any ζ ∈ ∂�, S(m)α u(ζ ) =
(∫

A (m)
α (ζ )

|u(z)|2 dV (z)

δ(z)2τ(z, δ(z))2n−2

)1/2

.

Define the complex Hardy space H p as the space of holomorphic functions
u whose normal maximal functions are in Lp(∂�). It follows from standard
method (see [7] and [4] for harmonic functions and [3] and [11] in this context)
that H p, 0 < p < ∞, is characterized in terms of any of the preceding
functionals. Namely, it is equivalent for a holomorphic function u to be in
H p(�), to have M (m)

α u ∈ Lp(∂�), or g(δ∇u) ∈ Lp(∂�) or S(m)α (δ∇u) ∈
Lp(∂�), independently on the aperture α and on the choice of m.

One can then consider Hardy-Sobolev spaces H
p

k (�) of holomorphic func-
tions, that is the spaces of holomorphic functions which have derivatives up
to order k in H p(�). Since derivatives of holomorphic functions are still
holomorphic, it is a corollary of the previous characterizations of H p(�) that
similar characterizations hold for H

p

k (�).
For k ∈ N, r ∈ N∗, m ∈ N \ {0, 1}, 0 < p < ∞, for a holomorphic function

u in �, the following are equivalent

u ∈ H
p

k (�)

N (|∇ku|) ∈ Lp(∂�)

M (m)
α (|∇ku|) ∈ Lp(∂�) for some α ∈]0, 1[

g(δr |∇r+ku|) ∈ Lp(∂�)

S(m)α (δr |∇r+ku|) ∈ Lp(∂�) for some α ∈]0, 1[.
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(the symbol ∇k denotes the collection of all the derivatives of order less than k).
We want here to prove the analogs for spaces involving only complex tan-

gential derivatives. We want also to link these spaces to the usual Hardy-
Sobolev spaces. Namely, denote by ∇k

T u the collection of all possible com-
position of order less than k of the Lij ’s, i < j , given by

Lij = ∂r

∂zj

∂

∂zi
− ∂r

∂zi

∂

∂zj
.

As before, denote by H
p

k,T (�) the set of holomorphic functions u in � such
that N (|∇k

T u|) ∈ Lp(∂�).
Our first result holds without any assumption on the type of �.

Theorem 0.1. For k ∈ N, m ≥ 2 an integer and 0 < p < ∞, the following
are equivalent for a holomorphic function u in �.

(i) u ∈ H
p

k,T (�),

(ii) M (m)
α (|∇k

T u|) ∈ Lp(∂�) for some α ∈]0, 1[.

Furthermore, if S(m)α (τ−k
m δr |∇ru|) ∈ Lp(∂�) for some r ∈ N so that 2r−k ≥ 1

then u ∈ H
p

k,T (�).

Remark 0.2. The last statement implies in particular that H
p

k/2(�) ⊂
H

p

k,T (�) (since cδ(z)1/2 ≤ τm(z)).

Remark 0.3. When � is Levi flat around some point, part (ii) states that the
supremum can be taken over arbitrarily large admissible regions around this
point.

Theorem 0.4. Let� be a bounded smooth domain of finite typem in Cn. For
k ∈ N, and 1− 1

mn+1 < p < ∞, the following are equivalent for a holomorphic
function u in �.

(i) u ∈ H
p

k,T (�),

(ii) M (m)
α (|∇k

T u|) ∈ Lp(∂�) for some α ∈]0, 1[,

(iii) g(δ|∇∇k
T u|) ∈ Lp(∂�),

(iv) S(m)α (δ|∇∇k
T u|) ∈ Lp(∂�) for someα ∈]0, 1[,

(v) S(m)α (τ−k
m δr |∇ru|) ∈ Lp(∂�) for some r ∈ N so that 2r − k ≥ 1.

Remark 0.5. The last statement implies that, when � is of finite type m,
a function in H

p

k,T (�) is also in the ordinary Hardy-Sobolev space H
p

k/m(�)

(since τm(z) ≤ Cδ(z)1/m). We recover in this context the well known phe-
nomenon of finite type domains: complex tangential derivatives of holomorphic
functions behave at least as well as global derivatives of order 1/m in domains
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of finite type m. It actually says something more subtle. A complex tangential
gradient of order k behaves like τ−k

m δr |∇ru| and conversely in domains of fi-
nite typem. In particular, this means that ∇k

T u behaves as an ordinary gradient
whose order changes from point to point.

Remark 0.6. In this paper, we only give the proof of Theorem 0.4 when
0 < p < 2. When p ≥ 2, the result follows from singular integrals machinery
and some commutation properties (see [12]).

The key point in the proofs of Theorem 0.1 and 0.4 is the use of mean-value
properties for complex tangential derivatives. For z ∈ �, denote by Qm(z) the
set

Qm(z) := {w ∈ �; δ(z)/2 ≤ δ(w) ≤ 2δ(z); dm(π(z), π(w)) ≤ δ(z)/2}.
Denote by MeanQm(z)(|F |) the mean-value of |F | over Qm(z). We prove the
following.

Theorem 0.7 (Mean-value inequality). For k, l ∈ N, 0 < p < ∞ and
m ≥ 2 an integer, there exists a constant C > 0 such that, for u holomorphic
function in � and z in � ∩ U ,

δ(z)lp|∇ l∇k
T u(z)|p ≤ C MeanQm(z)(|∇k

T u|p).

To get these mean-value properties, we improve the usual freezing coeffi-
cient method which consists in taking the coefficients of L to be constant up to
a remaining term so that it preserves holomorphy. As this is not sufficient here,
we “freeze” the coefficients to a higher order by using a Taylor expansion of
the coefficients of L up to a sufficiently large order.

To prove the link between complex tangential derivatives and ordinary de-
rivatives, we use the pointwise estimates between complex tangential gradients
and ordinary gradients proved in [10]. Namely, one has the following:

Pointwise estimates ([10]). For k ∈ N, u a holomorphic function in �,
and z ∈ �,

(1) τ (z)2k|∇k
T u(z)|2 ≤ C MeanQ(z)(|u|2).

Moreover if � is of finite type m in Cn then for ε > 0 there exists C(ε) so that

(2) δ(z)2k|∇ku(z)|2 ≤ MeanQ(z)(C(ε)τ 2k|∇k
T u|2 + ε2|u|2).

The paper is organized as follows. In section 1, we recall some basic defin-
itions and properties of the geometry and prove Theorem 0.7. Theorem 0.1
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follows at once. In section 2, we establish the relations between usual area
integrals and area integrals of complex tangential derivatives. In section 3, we
conclude by showing the links between area integrals and maximal functions
of complex tangential derivatives.

As said before, we proved these results in the context of domains of finite
type 2 in [11]. The main innovation in this paper is to develop a new technic
which allows to overcome the technical difficulties which appear for m > 2.

In the following, we will use the symbol A <∼ B if there exists a universal
constant C so that A ≤ CB. Similarly, we will write A � B if A <∼ B and
B <∼ A.

1. Geometry and mean-value properties

In this paragraph, we will assume for simplicity that n = 2.

1.1. Geometry

Assume � is a domain in C2. Let us recall the following facts from [5] (see
also [8]). Let z0 ∈ ∂�, as |∇r|(z0) = 1, we may assume that ∂r

∂z1
�= 0 in a

neighborhood V (z0) of z0. Then

Lemma 1.1. Let M ∈ N, M ≥ 2. For any z ∈ V (z0) ∩ �, there exists a
biholomorphic mapping �z : C2 → C2 such that - := r ◦ �z satisfies:

-(ζ ) = r(z) + Re(ζ1) +
∑
j,k∈N

j,k≥1;j+k≤M

aj,k(z)ζ2
j ζ2

k + O
(|ζ2|M+1 + |ζ1| |ζ |) .

Moreover

�z(ζ ) =
(
z1 + d0(z)ζ1 +

M∑
k=1

dk(z)ζ2
k, z2 + ζ2

)

where d0(.), dk(.); k = 1, . . . ,M depend smoothly on z and d0(.) �= 0 in
V (z0).

It is easy to extend this result to arbitrary dimension (this is done for instance
in [10]). It is important to note that this change of variables is independent
on any assumption on the type of �. Now fix m ≥ 2 an integer and take
M ≥ m in the preceding lemma. Define Al(z) := max

{|aj,k(z)|; j + k = l
}
.

For δ > 0, denote by τ(z, δ) = min
{(

δ
Al(z)

)1/l
, l = 2, . . . , m

}
. This defines

a function on V (z0) ∩ � with values in R+. When � is of finite type m, there
exists l ∈ {2, . . . , m} such that Al(z) �= 0 for z ∈ ∂� and by continuity for
z ∈ V (z0) sufficiently small so that τ(z, δ) takes finite values. Now define
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τm(z, δ) := min{τ(z, δ), δ1/m}. Remark that if � is of finite type m, then, for
any µ ≥ m, τm � τµ � τ . Define the polydisc around z by

Qm(z, δ) = �z (Rm(z, δ)) = �z

({
ζ ∈ C2; |ζ1| < δ, |ζ2| < τm(z, δ)

})
.

The following properties hold:

(1) there exists a constantC > 0 such that, for any z ∈ V (z0) and 0 < δ < 1,

1

C
δ1/2 ≤ τm(z, δ) ≤ Cδ1/m.

(2) if δ′ < δ then
(
δ′
δ

)1/2
τm(z, δ) ≤ τm(z, δ

′) ≤ (
δ′
δ

)1/m
τm(z, δ).

(3) for any 0 < δ < 1 and z ∈ Qm(z
′, δ), τm(z, δ) � τm(z

′, δ).

(4) there exists a constantC > 0 such that, if z ∈ Qm(z
′, δ), thenQm(z, δ) ⊂

Qm(z
′, δ) and Qm(z

′, δ) ⊂ Qm(z, Cδ).
By definition, there exists a constant c such that, for any z ∈ V (z0),

Qm(z, cδ(z)) ⊂ �.

We will note Qm(z) = Qm(z, cδ(z)) = �z(Rm(z)) and τm(z) = τm(z, cδ(z)).

(5) In addition, for any ζ ∈ Qm(z), τm(ζ ) � τm(z).

It follows from these properties that

dm(z, ζ ) = inf{δ > 0, z ∈ Qm(ζ, δ) ∩ ∂�}
defines a pseudo-distance on ∂�.

1.2. Mean-value property for complex tangential derivatives and
applications

Let E be a measurable subset of �. Denote by MeanE(F ) the mean-value of
|F | over E with respect to the Lebesgue measure.

We prove the following proposition.

Proposition 1.2. For k, l, r,m ∈ N, m ≥ 2, 0 < p < ∞, there exists a
constant C > 0 such that, for any holomorphic function u in � and any z in
� ∩ U ,

δ(z)lp|∇ l+r∇k
T u(z)|p ≤ C MeanQm(z)(|∇r∇k

T u|p).

Once this proposition is proved it follows by standard methods (see [7] or
[14] for instance) that
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Corollary 1.3. For k,m ∈ N, m ≥ 2, α > 0, 0 < p < ∞ and a
holomorphic function u,∥∥M (m)

α (|∇k
T u|)∥∥

Lp(∂�)
<∼
∥∥N (|∇k

T u|)∥∥
Lp(∂�)

,

and for any ζ ∈ ∂�, g(δ|∇∇k
T u|)(ζ ) <∼ S(m)α (δ|∇∇k

T u|)(ζ ).

This gives the equivalence between (i) and (ii) of Theorem 0.1 and that (iv)
implies (iii) in Theorem 0.4. Note that, in fact, the implication (iv) ⇒ (iii)
does not need any finite type hypothesis.

Let us now prove Proposition 1.2. First, remark that |∇r∇k
T u| � |∇k

T ∇ru|:
for k = r = 1, the commutator of any first order derivative and ∇T is a
differential operator of order 1 with smooth coefficients. As ∇T contains the
identity by definition, we can write |∇∇T u| � |∇T ∇u|. For larger r and k, the
result follows from induction.

So, as ordinary derivatives preserve holomorphy, it is enough to consider the
case r = 0. We are going to write Lku as a sum of a function satisfying mean-
value properties and of a remaining term. For this we introduce the following
class of functions.

Definition 1.4. Let K = (k1, k2) be a multi-index of positive integers. A
function F ∈ C ∞(�) is called (AB)K if ∂

kj F

∂ζj
kj

= 0 for j = 1, 2 in �.

To simplify notation, we will assume that K is fixed in the following and
we will write (AB) instead of (AB)K .

For any ζ ∈ C and r > 0, we denote by D(ζ, r) the disc {z ∈ C; |z − ζ | ≤ r}.
The terminology (AB) comes fromAhern and Bruna who proved the following
lemma (cf [1]):

Lemma 1.5. For (l1, l2) and (m1,m2) ∈ N2, 0 < p < ∞, there exists a
constant C such that, for any (AB)-function F in �, any ζ = (ζ1, ζ2) ∈ � and
any r = (r1, r2) ∈ (]0,+∞[)2 such that D(ζ1, r1) × D(ζ2, r2) ⊂ �,

r
p(l1+m1)

1 r
p(l2+m2)

2

∣∣∣∣ ∂l1+l2+m1+m2F

∂ζ1
l1
∂ζ2

l2
∂ζ

m1
1 ∂ζ2

m2

(ζ )

∣∣∣∣
p

≤ C MeanD(ζ1,r1)×D(ζ2,r2)(|F |p).

Given z ∈ � ∩ U , let w = �z(ζ ) and - = r ◦ �z(ζ ). Denote by L′ =
∂-

∂ζ2

∂
∂ζ1

− ∂-

∂ζ1

∂
∂ζ2

a holomorphic complex tangential vector field. Recall that
Qm(z) = �z(Rm(z)) where Rm(z) = Rm(z, cδ(z)) and Rm(z, δ) = {ζ ∈
C2; |ζ1| < δ, |ζ2| < τm(z, δ)}. We have the following lemma:

Lemma 1.6. For ζ ∈ Rm(z), k, l ∈ N and a holomorphic function f in
�z(�),

L′kf (ζ ) = Fklf (ζ ) + Rklf (ζ )
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where Fklf is an (AB)-function and for 0 < p < ∞, ζ ∈ Rm(z), 0 ≤ j ≤ l,

δ(z)jp|∇jRklf (ζ )|p ≤ C MeanRm(z)
(|f |p) .

Proof. It follows easily by induction on k ∈ N that there exist some con-
stants cr,s , 1 ≤ r + s ≤ k, such that

L′k =
∑

1≤r+s≤k

∑
Ek,r,s

cr,s

( k∏
j=1

∂mj+nj -

∂ζ
mj

1 ∂ζ
nj
2

)
∂r+s

∂ζ r1 ∂ζ
s
2

,

where Ek,r,s denotes the set of couples (mj , nj ), j = 1, dots, k, in lexico-
graphical order, which satisfy

∑k
j=1 mj = k − r and

∑k
j=1 nj = k − s with

mj + nj ≥ 1.
For any N ∈ N, we can write - = T N

0 - + RN
0 - where T N

0 - stands for the
Taylor expansion of - up to order N .

Assume for simplicity that l = 0. Choose N = 2k − 1. Since - is C ∞, one
has

∂mj+nj -

∂ζ
mj

1 ∂ζ
nj
2

= ∂mj+nj T N
0 -

∂ζ
mj

1 ∂ζ
nj
2

+ rN,mj ,mj
where rN,mj ,mj

= O
(|ζ |N+1−mj−nj

)
.

Now, for ζ ∈ Rm(z), |ζ | ≤ τm(z) so one obtains, sincemj +nj ≤ 2k− (r+s),

L′kf (ζ ) =
∑

1≤r+s≤k

(
k∏

j=1

(
∂mj+nj T N

0 -

∂ζ
mj

1 ∂ζ
nj
2

)
+ O(τm(z)

N+1−2k+(r+s))

)
∂l+sf

∂ζ r1 ∂ζ
s
2

(ζ )

= Fk0f (ζ ) + Rk0f (ζ ).

By definition, Fk0 is an (AB)K -function for K = K(N) large enough.
But, by the mean-value properties satisfied by f , for any ζ ∈ Rm(z)

∑
1≤r+s≤k

O
(
τm(z)

N+1−2k+(r+s)
)p ∣∣∣∣ ∂r+sf

∂ζ r1 ∂ζ
s
2

∣∣∣∣
p

(ζ ) ≤ C MeanRm(z)
(
τp(N+1−2k)
m |f |p)

≤ C ′ MeanRm(z)(|f |p).
This gives the lemma.

Proof of the proposition. Denote by f the holomorphic function in
�z(�) given by f = u ◦ �z. Write δlp(z)|∇ lL′kf |p <∼ δlp(z)|∇ lFklf |p +
δ(z)lp|∇ l∇ lRklf |p. The second term is bounded by the mean- value of |f |p
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on Rm(z). For the first term, we use Lemma . to get a bound as MeanRm(z)

(|Fklf |p). This in turn is bounded by

MeanRm(z)(|L′kf |p + |Rklf |p) ≤ C MeanRm(z)(|L′kf |p + |f |p).
Going back to �, it gives the result for L since L′ corresponds to a smooth
non-vanishing function times L.

Remark 1.7. It is by an analogous method that the pointwise estimates
quoted in the introduction are proved in [10].

In the following, we will forget the subscript m to simplify the notations.

2. Area Integrals

2.1. Area integrals and area integrals of complex tangential derivatives

First, recall that usual methods, involving Hardy inequality and mean-value
properties, allow to prove that, for 0 < p ≤ 2 and u holomorphic in �,

(∗) ‖Sα(δr+ητ−k|∇ru|)‖Lp(∂�)
<∼ ‖Sα(δl+ητ−k|∇ lu|)‖Lp(∂�) + sup

K

|u|

as long as r+η−k/2 and l+η−k/2 are positive, whereK denotes a compact
subset of � (see [4] and [3]). The same kind of method using part (1) of the
pointwise estimates of the introduction gives that

‖Sα(δη+1|∇∇k
T u|)‖Lp(∂�

<∼ ‖Sα(δr+ητ−k|∇ru|)‖Lp(∂�) + sup
K

|u|

for r + η − k/2 > 0 and η > −1 (see [11] in the context of domains of type
2 and [9]).

We prove now a converse inequality. For 0 < p ≤ 2, ‖Sα(δr+ητ−k|∇ru|)‖p
can be estimated by the Lp-norm of Sα(δj+η|∇j∇k

T u|) when r + η− k/2 > 0
and j + η > 0. This estimate is proved in [9]. We give here a simplified proof.

By (∗), it is sufficient to prove the required estimate for some r big enough.
Apply the converse pointwise estimates (2) to the component of ∇ lu, l will be
chosen large enough, and integrate over Aα(ζ ) to get

Sα(δ
k+l+ητ−k|∇k+lu|)(ζ )

<∼ C(ε)Sβ(δ
l+η|∇k

T ∇ lu|)(ζ ) + εSβ(δ
l+ητ−k|∇ lu|)(ζ )

for some β > α. Now, by the mean-value properties, the first term is majorized
by Sγ (δ

j+η|∇j∇k
T u|)(ζ ) for any j ∈ N so that j + η > 0. And for l large

enough, the Lp-norms of Sβ(δl+ητ−k|∇ lu|) and of Sα(δk+l+ητ−k|∇k+lu|) are



242 sandrine grellier

equivalent to ‖Sα(δr+ητ−k|∇ru|)‖p for any r + η − k/2 > 0. So, as the Lp-
norms of the area integrals Sα are independent on the aperture α, it gives an a
priori estimate for ε small enough. We get rid of the a priori assumption as in
[11] by applying this inequality in �ε = {z ∈ �; δ(z) > ε} and letting ε goes
to 0. Eventually we get the following result.

Proposition 2.1. Assume � is of finite type in Cn. For k, r, j ∈ N, 0 < p ≤
2, α, η ∈ R so that r + η − k/2 > 0, j + η > 0, for u holomorphic in �

‖Sα(δr+ητ−k|∇ru|)‖p <∼ ‖Sα(δη+j |∇j∇k
T u|)‖p + sup

K

|u|.

2.2. An embedding result

In this section, we prove a key estimate to deal with the remaining terms.

Proposition 2.2. Assume � is of finite type m in Cn.
Let µ ∈]0, 1/m[. For 1 − (1/m−µ)

n+(1/m−µ)
< p ≤ 2, there exists q ≥ p, q > 1

so that
‖Sα(δ1−µ|∇∇k−1

T u|)‖q ≤ ‖Mα(|∇k
T u|)‖p.

Proof. By the preceding paragraph, ‖Sα(δ
1−µ|∇∇k−1

T u|)‖q is success-
ively bounded by

‖Sα(δ
k−µτ−k+1|∇ku|)‖q, ‖Sα(δ

−µτ |∇k
T u|)‖q, ‖Sα(δ

1/m−µ|∇k
T u|)‖q

up to supK |u|. This in turn is bounded by

C‖Mα(δ
1/m−µ−ε |∇k

T u|)‖Lq(∂�)

for any ε > 0 since

Sα(δ
1/m−µ|∇k

T u|)(ζ )
≤ Mα(δ

1/m−µ−ε |∇k
T u|)(ζ ) ×

(∫
Aα(ζ )

δ(z)εdV (z)

δ(z)2τ 2(z, δ(z))

)1/2

.

Now, using the atomic decomposition of spaces of homogeneous type (see
[2]), one can show (see [11]) that

‖Mα(δ
1/m−µ−ε |∇k

T u|)‖Lq(∂�) ≤ ‖Mα(|∇k
T u|)‖Lp(∂�)

if 1/m − µ − ε ≥ n/p − n/q.
It is possible to find such a q by assumption on the range of p.
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3. Characterizations of complex tangential Hardy-Sobolev spaces

3.1. Estimate on the normal maximal function by the Littlewood-Paley
function

In this paragraph, we prove that (iii) implies (i) of Theorem 0.4. More precisely,
we prove, without finite type hypothesis the following result.

Proposition 3.1. For k ∈ N, 0 < p < ∞ and u holomorphic in �,

‖N (|∇k
T u|)‖Lp(∂�)

<∼ ‖g(δ|∇∇k
T u|)‖Lp(∂�) + sθ0 ‖Sα(δ1−θ |∇∇k−1

T u|)‖Lq(∂�)

for any q > 1, q ≥ p, any θ ∈]0, 1[.

Remark 3.2. When � is of finite type, it gives an a-priori estimate when
1 − 1

mn+1 < p ≤ 2, since by Proposition 2.2, for θ sufficiently close to 0, one
can choose q > 1, q ≥ p, so that

‖Sα(δ1−θ |∇∇k−1
T u|)‖Lq(∂�)

<∼ ‖Mα(∇k
T u)‖Lp(∂�)

<∼ ‖N (|∇k
T u|)‖Lp(∂�).

So, if u ∈ C ∞(�) ∩ H (�), for s0 small enough, we have

‖N (|∇k
T u|)‖Lp(∂�) ≤ C‖g(δ∇∇k

T u)‖Lp(∂�).

To obtain the general result, one has to apply this estimate in�ε = {�(z, t), t >

ε} (since a holomorphic function in � is in particular C ∞(�ε)) and to let ε
goes to zero. On one hand

∫ ε0

ε

t2|f |2(�(ζ, t))
dt

t
≤ g(δ|f |)(ζ ),

on the other hand, the monotone convergence theorem proves that

lim
ε→0

‖ sup
ε<t<ε0

|∇k
T u‖|Lp(∂�) = ‖N (|∇k

T u|)‖Lp(∂�).

Proof. The method is analogous to the one used in [11]. The trick is to
write ∇k

T u as the sum of a harmonic function and of a remaining term.
Write ∇k

T u = (∇k
T u)0 + (∇k

T u)h where (∇k
T u)0 is the (vector)-solution to

the Dirichlet problem {
<v = <(∇k

T u) in �

v = 0 on ∂�.
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Then,

∣∣(∇k
T u)0 ◦ �(ζ, t)

∣∣ ≤
∫ s0

0
|∇(∇k

T u)0 ◦ �(ζ, s)|ds + sup
K

|u|

≤ sθ0

(∫ s0

0

∣∣∇(∇k
T u)0 ◦ �(ζ, s)

∣∣2s2−2θ ds

s

)1/2

+ sup
K

|u|

where K is a compact subset of �, 0 < θ < 1.
So, it gives

‖N (|∇k
T u|)‖Lp(∂�) ≤ ‖N (|(∇k

T u)h|)‖Lp(∂�) + ‖N (|(∇k
T u)0|)‖Lp(∂�)

<∼ ‖g(δ∇(∇k
T u)h)‖Lp(∂�)

+ sθ0

∥∥∥∥
(∫ s0

0
|∇(∇k

T u)0 ◦ �(., s)|2s2−2θ ds

s

)1/2∥∥∥∥
Lp(∂�)

+ sup
K

|u|

<∼ ‖g(δ∇∇k
T u)‖Lp(∂�) + ‖g(δ∇∇k

T u)0‖Lp(∂�)

+ sθ0

∥∥∥∥
(∫ s0

0
|∇(∇k

T u)0 ◦ �(., s)|2s2−2θ ds

s

)1/2∥∥∥∥
Lp(∂�)

+ sup
K

|u|

<∼ ‖g(δ∇∇k
T u)‖Lp(∂�)

+ 2sθ0

∥∥∥∥
(∫ s0

0
|∇(∇k

T u)0 ◦ �(., s)|2s2−2θ ds

s

)1/2∥∥∥∥
Lp(∂�)

+ sup
K

|u|.

Now, by estimates on the Dirichlet problem (see [11] appendix for study in
this context or [13]) we obtain that, for some q > 1, q ≥ p

(∗) =
∥∥∥∥
(∫ s0

0

∣∣∇(∇k
T u)0 ◦ �(., s)

∣∣2s2−2θ ds

s

)1/2∥∥∥∥
Lp(∂�)

≤
∥∥∥∥
(∫ s0

0

∣∣∇(∇k
T u)0 ◦ �(., s)

∣∣2s2−2θ ds

s

)1/2∥∥∥∥
Lq(∂�)

≤ ∥∥<(∇k
T u
)∥∥

W
−1,(q,2)
θ (�)

whereW−1,(q,2)
θ denotes the usual Sobolev space. Now, since u is holomorphic,

|<∇k
T u| = |[<,∇k

T ]u|. Note that |[<,∇k
T ]u| � |∇2∇k−1

T u|: First, recall that
|∇k

T ∇ru| � |∇r∇k
T u|. The commutator [<,∇k

T ] is obtained by derivating at
least one and at most two complex tangential vector fields of the ∇k

T . If only
one is derivated, one gets a term � |∇2∇k−1

T u|, if two are derivated, one obtains
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a term � |∇2∇k−2
T u|. So,

∥∥<(∇k
T u
)∥∥

W
−1,(q,2)
θ (�)

�
∥∥∥∥
(∫ s0

0
|∇∇k−1

T u|2s2−2θ ds

s

)1/2∥∥∥∥
Lq(∂�)

.

Now, by the mean-value properties, this is bounded by∥∥Sα

(
δ1−θ

∣∣∇∇k−1
T u

∣∣)∥∥
Lq(∂�)

.

This ends the proof of the proposition.

3.2. Estimate of the area integral by the admissible maximal function

In this paragraph, we adapt the method of [7] to our setting. We are going to
prove the following result.

Proposition 3.3. Let ε > 0. For 0 < µ < 1, 0 < p < 2, α > 0 and u

holomorphic in �,

∥∥Sα(δ|∇∇k
T u|)∥∥

p
<∼
(

1

ε2
+ 1

)∥∥Mα

(∇k
T u
)∥∥

p

+ (ε + s
µ
0 )
∥∥Sα(δ|∇∇k

T u|)∥∥
p

+ ∥∥Sα(δ1−µ|∇∇k−1
T u|)∥∥

p
+ sup

K

|u|.

Remark 3.4. Implication (ii) ⇒ (iv) of Theorem 0.7 follows: By §2.1,
this gives an a-priori estimate when � is of finite type m and 0 < p <

2. Indeed, ‖Sα(δ1−µ|∇∇k−1
T u|)‖p is estimated by ‖Sα(δ1−µτ |∇∇k

T u|)‖p <∼
s

1/m−µ

0 ‖Sα(δ|∇∇k
T u|)‖p if 1/m − µ > 0.

We conclude that, when � is of finite type m, for u ∈ C ∞(�)∩H (�), we
have ∥∥Sα(δ∇∇k

T u
)∥∥

Lp(∂�)
≤ C

(∥∥Mα

(∇k
T u
)∥∥

Lp(∂�)
+ sup

K

|u|).
It remains to show that this inequality is still valid for general u. We apply
this inequality in �ε = {z ∈ Cn; δ(z) > ε}. One can verify that the constant
involved is independent of ε > 0. We want to let ε → 0 in the inequality. Let
us observe that, for ζε = �(ζ, cε) ∈ ∂�ε , Rα(ζε) ⊂ Rβ(ζ ), for some β > α.
This allows to show that∥∥Mα

(∇k
T u
)∥∥

Lp(∂�ε)
≤ ∥∥Mβ

(∇k
T u
)∥∥

Lp(∂�)
.

Then, we conclude by Fatou’s Lemma that∥∥Sα(δ∇∇k
T u
)∥∥

Lp(∂�)
≤ C

(∥∥Mβ

(∇k
T u
)∥∥

Lp(∂�)
+ sup

K

|u|).
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In the following, it will be convenient to have a defining function for �
which is harmonic near ∂�. We choose a point x0 ∈ K and denote by δ the
Green’s function for � with singularity x0. Thus, δ is harmonic in �\ {x0} and
δ(z) is comparable with the distance to the boundary, for z ∈ � ∩ U . Let λ
and ε be any real positive numbers and E be the set

Eε,λ = E :=
{
z ∈ ∂�; Mα

(∇k
T u
)
(z) ≤ λ,

Sγ
(
δ1−µ

∣∣∇∇k−1
T u

∣∣)(z) ≤ λ, Sγ
(
δ
∣∣∇∇k

T u
∣∣)(z) ≤ λ

ε + s
µ
0

}
;

for some γ > α.
Let E0 be those points of E of relative density 1

2 , D0,D their complements.
By the maximal Theorem, σ(D0) ≤ Cσ(D). Proposition 3.3. follows from
the following lemma.

Lemma 3.5. There exists a constant C and γ > α such that, for every ε > 0∫
E0

Sα
(
δ
∣∣∇∇k

T u
∣∣)2

(z) dσ (z)

≤ C

((
1

ε2
+ 1

)
λ2σ(D0) + sup

K

|u|2

+
∫ λ

0
tσ
({

Mα(∇k
T u) ≥ t

})
dt

+ (
ε + s

µ
0

)2
∫
E

Sγ
(
δ
∣∣∇∇k

T u
∣∣)2

(z)dσ (z)

+
∫
E

Sγ
(
δ1−µ

∣∣∇∇k−1
T u

∣∣)2
(z) dσ (z)

)
.

Assume this lemma proved and let us prove Proposition 3.1. Write

(∗) = ∥∥Sα(δ∣∣∇∇k
T u
∣∣)∥∥p

Lp(∂�)

= p

∫ ∞

0
λp−1σ

({
Sα
(
δ
∣∣∇∇k

T u
∣∣) ≥ λ

})
dλ

≤ p

∫ ∞

0
λp−1σ(D0) dλ

+ p

∫ ∞

M

λp−3
∫
E0

Sα
(
δ
∣∣∇∇k

T u
∣∣)2

(z) dσ (z)dλ + Mpσ(∂�).
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Use Lemma 3.5 to get

(∗) <∼
(

1

ε2
+ 1

)∫ ∞

0
λp−1σ(D) dλ

+
∫ ∞

M

λp−3
∫ λ

0
tσ
({

Mα

(∇k
T u
) ≥ t

})
dt dλ

+
∫ ∞

M

λp−3
∫
E

Sγ
(
δ1−µ

∣∣∇∇k−1
T u

∣∣)2
(z) dσ (z) dλ

+ (
ε + s

µ
0

)2
∫ ∞

M

λp−3
∫
E

Sγ
(
δ
∣∣∇∇k

T u
∣∣)2

(z) dσ (z) dλ

+ Mpσ(∂�) + sup
K

|u|2Mp−2

<∼
(

1

ε2
+ 1

)∥∥Mα

(∇k
T u
)∥∥p

Lp(∂�)
+ ∥∥Sγ (δ1−µ

∣∣∇∇k−1
T u

∣∣)∥∥p
Lp(∂�)

+ (
ε + s

µ
0

)p∥∥Sγ (δ∣∣∇∇k
T u
∣∣)∥∥p

Lp(∂�)
+ Mpσ(∂�) + sup

K

|u|2Mp−2.

It gives proposition 3.3.
Proof of Lemma 3.5. We note Rα = ∪z∈E0Aα(z) and

IE0 =
∫
E0

Sα
(
δ∇∇k

T u
)2
(z) dσ (z).

Then

IE0 =
∫∫

Rα

δ2
∣∣∇∇k

T u
∣∣2σ ({ζ ∈ E0; z ∈ Rα(ζ )}) dV (z)

δ2τ 2n−2

≤ C

∫∫
Rα

δ
∣∣∇∇k

T u
∣∣2 dV .

We write that

2
∣∣∇∇k

T u
∣∣2 ≤ 2

∣∣<(∇k
T u).∇k

T u
∣∣+ <

∣∣∇k
T u
∣∣2

and, following the method of Fefferman and Stein, we will estimate∫∫
Rα

δ<
∣∣∇k

T u
∣∣2dV
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by applying Green’s Theorem. Let us denote by dσ̂ the surface measure on
∂Rα . So, we obtain

IE0 ≤ C

(∫∫
Rα

δ
∣∣∇k

T u.<
(∇k

T u
)∣∣ dV

+
(∫

∂Rα

δ
∂|∇k

T u|2
∂ν

dσ̂ −
∫
∂Rα

∂δ

∂ν

∣∣∇k
T u
∣∣2 dσ̂))

= (1) + (2) + (3),

where ∂
∂ν

denotes the outer normal derivative on ∂Rα .
Estimate of the first term (1): As u is holomorphic in �, we have <∇k

T u =
[<,∇k

T ]u and so, as in the preceding paragraph |<∇k
T u| � |∇2∇k−1

T u|. So

(1) ≤
∫∫

Rα

δ
∣∣∇k

T u
∣∣.∣∣∇2∇k−1

T u
∣∣ dV

≤
(∫∫

Rα

δ−1+µ
∣∣∇k

T u
∣∣2 dV)1/2

×
(∫∫

Rα

δ3−µ
∣∣∇2∇k−1

T u
∣∣2 dV)1/2

<∼
∫∫

Rα

δ−1+µ
∣∣∇k

T u
∣∣2 dV +

∫∫
Rα

δ3−µ
∣∣∇2∇k−1

T u
∣∣2 dV

<∼ s
µ
0

∫∫
Rα

δ
∣∣∇∇k

T u
∣∣2 dV +

∫∫
Rα

δ1−µ
∣∣∇∇k−1

T u
∣∣2 dV + sup

K

|u|

for every 0 < µ < 1, some β > α, by Hardy inequality and mean-value
property.

Estimate of the second term (2): (2) ≤ ∫
∂Rα

δ|∇∇k
T u|.|∇k

T u| dσ̂ .
We split ∂Rα into three pieces ∂Rα = F ∪ FE0 ∪ FD0 where

�−1(F ) ⊂ ∂� × {s0}, �−1
(
FE0

) ⊂ E0 and �−1
(
FD0

) ⊂ D0 × (0, s0).

So, we write
(2) ≤

(∫
F

+
∫
FE0

+
∫
FD0

)
.

First, we have ∫
F

δ
∣∣∇∇k

T u
∣∣.∣∣∇k

T u
∣∣ dσ̂ ≤ C sup

K

|u|2

and ∫
FE0

δ
∣∣∇∇k

T u
∣∣.∣∣∇k

T u
∣∣ dσ̂ = 0 since FE0 ⊂ ∂�.
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For every ε > 0, the last part is majorized by

≤ C

(
1

ε2

∫
FD0

∣∣∇k
T u
∣∣2 dσ̂ + ε2

∫
FD0

δ2
∣∣∇∇k

T u
∣∣2 dσ̂) .

As Mα(∇k
T u) ≤ λ on E, we deduce that

1

ε2

∫
FD0

∣∣∇k
T u
∣∣2 dσ̂ ≤ 1

ε2
λ2
∫
FD0

dσ̂ ≤ C

ε2
λ2σ(D0).

Now, by the mean-value property,

ε2
∫
FD0

δ2
∣∣∇∇k

T u
∣∣2 dσ̂ ≤ C

(
ε2
∫∫

Rβ

δ
∣∣∇∇k

T u
∣∣2 dV + sup

K

|u|2
)

(this follows from the fact that∫
∂Rα

δl+1τ r MeanQ(|f |2) dσ̂ ≤ C

∫∫
Rβ

δlτ r |f |2 dV,

for β sufficiently large).
So

(2) ≤ C

ε2
λ2σ(D0) + C

(
ε2
∫∫

Rβ

δ
∣∣∇∇k

T u
∣∣2 dV + sup

K

|u|2
)
.

Estimate of the third term: The third term is majorized by

(3) ≤ C

∫
∂Rα

∣∣∇k
T u
∣∣2 dσ̂ ≤ C

(∫
F

+
∫
FE0

+
∫
FD0

)

≤ C

(
sup
K

|u|2 +
∫ λ

0
tσ
({

Mα(∇k
T u) ≥ t

})
dt + λ2σ(D0)

)
,

since Mα(∇k
T u) ≤ λ on E.

To conclude for Lemma 3.5, it suffices to remark that∫∫
Rβ

|f |2 dV
δ

≤
∫
E

Sγ (f )
2 dσ,

for some γ > β.
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