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SMOOTH CURVES ON PROJECTIVE K3 SURFACES

ANDREAS LEOPOLD KNUTSEN

Abstract
In this paper we give for all n ≥ 2, d > 0, g ≥ 0 necessary and sufficient conditions for the
existence of a pair (X,C), whereX is aK3 surface of degree 2n in Pn+1 andC is a smooth (reduced
and irreducible) curve of degree d and genus g on X. The surfaces constructed have Picard group
of minimal rank possible (being either 1 or 2), and in each case we specify a set of generators.
For n ≥ 4 we also determine when X can be chosen to be an intersection of quadrics (in all other
cases X has to be an intersection of both quadrics and cubics). Finally, we give necessary and
sufficient conditions for OC(k) to be non-special, for any integer k ≥ 1.

1. Introduction

In recent years the interest for K3 surfaces and Calabi-Yau threefolds has
increased because of their importance in theoretical physics and string theory in
particular. The study of curves on K3 surfaces is interesting not only in its own
right, but also because one can use K3 surfaces containing particular curves
to constuct K3 fibered Calabi-Yau threefolds containing the same curves as
rigid curves (see [4], [13], [2], [5] and [6]).

The problem of determining the possible pairs (d, g) of degree d and genus
g of curves contained in certain ambient varieties is rather fascinating. A fun-
damental result of L. Gruson and C. Peskine in [3] determines all such pairs for
which there exists a smooth irreducible nondegenerate curve of degree d and
genus g in P3. To solve the problem, the authors need curves on some rational
quartic surface with a double line.

S. Mori proved in [9] that essentially the same degrees and genera as those
found by Gruson and Peskine for curves on rational quartic surfaces, can be
found on smooth quartic surfaces as well.

K. Oguiso [13] showed in 1994 that for all n ≥ 2 and d > 0 there exists a
K3 surface of degree 2n containing a smooth rational curve of degree d.

The main aim of this paper is to prove the following general result:

Theorem 1.1. Let n ≥ 2, d > 0, g ≥ 0 be integers. Then there exists a K3
surface1 X of degree 2n in Pn+1 containing a smooth curve C of degree d and
genus g if and only if

Received March 26, 1999; in revised form February 1, 2001.
1 By a K3 surface is meant a smooth K3 surface.
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(i) g = d2/4n + 1 and there exist integers k,m ≥ 1 and (k,m) �= (2, 1)
such that n = k2m and 2n divides kd ,

(ii) d2/4n < g < d2/4n + 1 except in the following cases
(a) d ≡ ±1,±2 (mod 2n),
(b) d2 − 4n(g − 1) = 1 and d ≡ n ± 1 (mod 2n),
(c) d2 − 4n(g − 1) = n and d ≡ n (mod 2n),
(d) d2 − 4n(g − 1) = 1 and d − 1 or d + 1 divides 2n,

(iii) g = d2/4n and d is not divisible by 2n,

(iv) g < d2/4n and (d, g) �= (2n + 1, n + 1).

Furthermore, in case (i) X can be chosen such that PicX = Z 2n
dk
C = Z 1

k
H

and in cases (ii)–(iv) such that PicX = ZH ⊕ ZC, where H is the hyperplane
section of X.

If n ≥ 4, X can be chosen to be scheme-theoretically an intersection of
quadrics in cases (i), (iii) and (iv), and also in case (ii), except when d2 −
4n(g − 1) = 1 and 3d ≡ ±3 (mod 2n) or d2 − 4n(g − 1) = 9 and d ≡ ±3
(mod 2n), in which case X has to be an intersection of both quadrics and
cubics.

Remark 1.2. If one allows X to be a birational projective model of a K3
surface (which automatically yields with at worst rational double points as
singularities), then the result above remains the same, except that the case
(ii)-(c) occurs.

The most general results concerning construction of K3 fibered Calabi-Yau
threefolds are due to H. P. Kley [6], who constructs rigid curves of bounded gen-
era on complete intersection Calabi-Yau threefolds (CICY s). The approach of
Kley requires that the smooth curve C on the K3 surface X used to construct
the CICY is linearly independent of the hyperplane section H of X and also
that h1(C ′,OC ′(k)) = 0 for all C ′ ∈ |C| for k = 1 or 2 (depending on the
different types of CICY s). Motivated by this, we also prove the following res-
ult, which is an improvement of the results in [6] and gives the corresponding
existence of more rigid curves in CICY s than is shown in [6].

Proposition 1.3. Let k ≥ 1 be an integer. We can find X and C as in
Theorem 1.1 such that h1(C ′,OC ′(k)) = 0 for all C ′ ∈ |C| if and only if

d ≤ 2nk or dk > nk2 + g.

So far one has only used the K3 surfaces that are complete intersections
(more specifically the smooth complete intersections of type (4) in P3, (2, 3)
in P4 and (2, 2, 2) in P5, see Section 6) to construct CICY s containing rigid
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curves. S. Mukai showed in [11] that generalK3 surfaces of degrees 10, 12, 14,
16 and 18 are complete intersections in homogeneous spaces. For the triples
(n, d, g) in Theorem 1.1 corresponding to such general surfaces, one can then
construct K3 fibered Calabi-Yau threefolds that are complete intersections in
homogeneous spaces containing rigid curves. This is the topic in [8].

We work over the field of complex numbers, although the results will prob-
ably hold for any algebraically closed field of characteristic zero.

It is a pleasure to thank Professor Trygve Johnsen at the University of
Bergen. I would also like to thank Holger P. Kley for useful comments.

2. Preliminaries

A curve will always be reduced and irreducible in this paper.
We now quote some results which will be needed in the rest of the paper.

Most of these results are due to Saint-Donat [14].

Proposition 2.1 ([14, Cor. 3.2]). Let � be a complete linear system on a
K3 surface. Then � has no base points outside its fixed components.

Proposition 2.2 ([14, Prop. 2.6(i)]). Let |C| �= ∅ be a complete linear
system without fixed components on a K3 surface X such that C2 > 0. Then
the generic member of |C| is smooth and irreducible and h1(OX(C)) = 0

Proposition 2.3. Let |C| �= ∅ be a complete linear system without fixed
components on a K3 surface such that C2 = 0. Then every member of |C| can
be written as a sum E1 +E2 + · · · +Ek , where Ei ∈ |E| for i = 1, . . . , k and
E is a smooth curve of genus 1.

In other words, |C| is a multiple k of an elliptic pencil.
In particular, if C is part of a basis of PicX, then the generic member of

|C| is smooth and irreducible.

Proof. This is [14, Prop. 2.6(ii)]. For the last statement, since C is part of
a basis of PicX, k = 1 and |C| = |E|.

We will also need the following criteria for base point freeness and very
ampleness of a line bundle on a K3 surface.

Lemma 2.4 ([14], see also [7, Thm. 1.1]). Let L be a nef line bundle on a
K3 surface. Then

(a) |L| is not base point free if and only if there exist curves E,� and an
integer k ≥ 2 such that

L ∼ kE + �, E2 = 0, �2 = −2, E.� = 1.

In this case, every member of |L| is of the form E1 + · · · + Ek + �, where
Ei ∈ |E| for all i.
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Equivalently, L is not base point free if and only if there is a divisor E

satisfying E2 = 0 and E.L = 1.
(b) L is very ample if and only if L2 ≥ 4 and

(I) there is no divisor E such that E2 = 0, E.L = 1, 2,

(II) there is no divisor E such that E2 = 2, L ∼ 2E, and

(III) there is no divisor E such that E2 = −2, E.L = 0,

Note that (II) in (b) is automatically fulfilled if L is a part of a basis of
PicX, which it often will be in our cases.

LetL be a base point free line bundle on aK3 surface with dim |L| = r ≥ 2.
Then |L| defines a morphism

φL : X −→ Pr ,

whose image φL(X) is called a projective model of X.
We have the following result:

Proposition 2.5 ([14]). (i) If there is a divisor E such that E2 = 0 and
E.L = 2, or E2 = 2 and L ∼ 2E, then φL is 2 : 1 onto a surface of degree
1
2L

2.
(ii) If there is no such divisor, then φL is birational onto a surface of degree

L2 (in fact it is an isomorphism outside of finitely many contracted smooth
rational curves), and φL(X) is normal with only rational double points.

In [14] an L which is base point free and as in (i) is called hyperelliptic,
as in this case all smooth curves in |L| are hyperelliptic. We will call an L

which is base point free and as in (ii) birationally very ample (see [7] for a
generalization).

We will need the criteria for very ampleness to prove Theorem 1.1 and for
birational very ampleness to prove the statement in Remark 1.2.

We also have the following result about the ideal of φL(X), when L is very
ample.

Proposition 2.6 ([14, Thm. 7.2]). Let L with H 2 ≥ 8 be a very ample
divisor on aK3 surfaceX. Then the ideal ofφL(X) is generated by its elements
of degree 2, except if there exists a curve E such that E2 = 0 and E.L = 3, in
which case the ideal of X is generated by its elements of degree 2 and 3.

We will concentrate on the proof of Theorem 1.1, and give the main ideas
of the proof of the statement in Remark 1.2 in Remark 4.7 below.

The immediate restrictions on the degree and genus of a divisor come from
the Hodge index theorem. Indeed, ifH is any divisor on aK3 surface satisfying
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H 2 = 2n > 0 and C is any divisor satisfying C.H = d and C2 = 2(g − 1),
we get from the Hodge index theorem:

(C.H)2 − C2H 2 = d2 − 4n(g − 1) ≥ 0,

with equality if and only if
dH ∼ 2nC.

3. The case d2 − 4n(g − 1) = 0

We have

Proposition 3.1. Let n ≥ 2, d > 0, g ≥ 0 be integers satisfying d2 −
4n(g − 1) = 0. Then there is a K3 surface X of degree 2n in Pn+1 containing
a smooth curve C of degree d and genus g if and only if there exist integers
k,m ≥ 1 and (k,m) �= (2, 1) such that

n = k2m and 2n divides kd.

Furthermore,X can be chosen such that PicX = Z 2n
dk
C = Z 1

k
H , whereH is

the hyperplane section of X, and if n ≥ 4, such that X is scheme-theoretically
an intersection of quadrics.

Proof. First we show that these conditions are necessary. Let X be a
projective K3 surface containing a smooth curve of type (d, g) such that
d2 − 4n(g − 1) = 0. Let H be a hyperplane section of X. Since C ∼ d

2nH ,
there has to exist a divisor D and an integer k ≥ 1 such that H ∼ kD and 2n
divides kd . Furthermore, letting D2 = 2m, m ≥ 1, one gets

H 2 = 2n = 2mk2,

so n = k2m.
If (k,m) = (2, 1), then n = 4 and H ∼ 2D for a divisor D such that

D2 = 2, but this is impossible by Lemma 2.4.
Now we show that these conditions are sufficient by explicitly constructing

a projective K3 surface of degree 2n containing a smooth curve of type (d, g)
under the above hypotheses.

Consider the rank 1 lattice L = ZD with intersection form D2 = 2m. This
lattice is integral and even, and it has signature (1, 0).

Now [10, Thm. 2.9(i)] (see also [12]) states that:
If ρ ≤ 10, then every even lattice of signature (1, ρ − 1) occurs as the

Néron-Severi group of some algebraic K3 surface.
Therefore there exists an algebraic K3 surface X such that PicX = ZD.

Since D2 > 0, either |D| or | − D| contains an effective member, so we can



220 andreas leopold knutsen

assume D is effective (possibly after having changed D with −D). Since D

generates PicX, D is ample by Nakai’s criterion (in particular, it is nef). If
m ≥ 2, then D2 ≥ 4, and by Lemma 2.4 D is very ample. Indeed, since
PicX = ZD and D2 > 0, there can exist no divisor E such that E2 = 0,−2
or D ∼ 2E.

If m = 1, then by our assumptions k ≥ 3, so by [14, Thm. 8.3] kD is very
ample.

So in all cases, H := kD is very ample under the above assumptions, and
by H 2 = k2D2 = 2mk2 = 2n, we can embed X as a K3 surface of degree 2n
in Pn+1. Define

C := dk

2n
D.

thenC is nef, since it is a non-negative multiple of a nef divisor, and by Lemma
2.4 it is base point free (no curves with self-intersection −2 or 0 can occur on
X since D generates the Picard group).

So by Propositions 2.1 and 2.2 the generic member of |C| is smooth and
irreducible, and one easily checks that C.H = d and C2 = 2g − 2.

The two last assertions follow from the construction (the last one follows
from Proposition 2.6).

4. The case d2 − 4n(g − 1) > 0

We have the following result of Oguiso:

Theorem 4.1. Let n ≥ 2 and d ≥ 1 be positive integers. Then there exist a
K3 surface X of degree 2n in Pn+1 and a smooth rational curve C of degree d
on X.

Furthermore, X can be chosen such that PicX = ZH ⊕ ZC, where H

is the hyperplane section of X, and if n ≥ 4, then X can be chosen to be
scheme-theoretically an intersection of quadrics.

Proof. This is [13, Thm 3]. The last statement follows again by Proposition
2.6 since | disc(H,C)| = d2 + 4n > 16 and a divisor E such as the one in the
proposition would give | disc(E,H)| = 9.

We can make a more general construction:

Proposition 4.2. Let n ≥ 1, d ≥ 1, g ≥ 0 be positive integers satisfying
d2 − 4n(g − 1) > 0. Then there exist an algebraic K3 surface X and two
divisors H and C on X such that PicX = ZH ⊕ ZC, H 2 = 2n, C.H = d,
C2 = 2(g − 1) and H is nef.

Proof. Consider the lattice L = ZH ⊕ ZC with intersection matrix[
H 2 H.C

C.H C2

]
=

[
2n d

d 2(g − 1)

]
.
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This lattice is integral and even, and it has signature (1, 1) if and only if
d2 − 4n(g − 1) > 0.

By [10, Thm. 2.9(i)] again, we conclude that the lattice L occurs as the
Picard group of some algebraic K3 surface X. It remains to show that H can
be chosen nef.

Consider the group generated by the Picard-Lefschetz reflections

PicX
π�−→ PicX

D �−→ D + (D.�)�,

where � ∈ PicX satisfies �2 = −2 and D ∈ PicX satisfies D2 > 0. Now
[1, VIII, Prop. 3.9] states that a fundamental domain for this action is the
big-and-nef cone of X. Since H 2 > 0, we can assume that H is nef.

We would like to investigate under which conditions H is very ample and
|C| contains a smooth irreducible member. To show the latter for g > 0, it will
be enough to show that |C| is base point free, by Propositions 2.2 and 2.3.

We first need a basic lemma.

Lemma 4.3. Let H , C, X, n, d and g be as in Proposition 4.2 and k ≥ 1
an integer. If (d, g) = (2nk, nk2) (resp. (d, g) = (nk, nk2+3

4 )), we can assume
(after a change of basis of PicX) that kH − C > 0 (resp. kH − 2C > 0).

Proof. We calculate (kH − C)2 = −2 (resp. (kH − 2C)2 = −2), so by
Riemann-Roch either kH −C > 0 or C− kH > 0 (resp. either kH −2C > 0
or 2C − kH > 0). If the latter is the case, define C ′ := 2kH −C (resp. C ′ :=
kH −C). Then one calculatesC ′.H = d andC ′2 = 2(g−1), and since clearly
PicX � ZH ⊕ ZC ′, we can substitute C with C ′.

Proposition 4.4. LetH , C, X, n, d and g be as in Proposition 4.2 with g ≥
1, and with the additional assumptions that kH −C > 0 (resp. kH −2C > 0)
if (d, g) = (2nk, nk2) (resp. if (d, g) = (nk, nk2+3

4 )). Assume H is base point
free. Then |C| contains a smooth irreducible member if and only if we are not
in one of the following cases:

(i) (d, g) = (2n + 1, n + 1),

(ii) d2 − 4n(g − 1) = 1 and d − 1 or d + 1 divides 2n.

Proof. We first show that C is nef except for the case (i).
Assume that C is not nef. Then there is a curve � (necessarily contained in

the fixed component of |C|) such that C.� < 0 and �2 = −2.
We now consider the two cases �.H > 0 and �.H = 0 2.

2 This latter case occurs only if H is not ample, so it is only interesting in order to prove the
statement in Remark 1.2. To prove Theorem 1.1 we could assume that H is ample and thus get
an easier proof of Proposition 4.4.
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If �.H > 0, define a := −C.� ≥ 1 and

C ′ := C − a�,

then
C ′2 = 2(g − 1) ≥ 0,

so by Riemann-Roch either |C ′| or | − C ′| contains an effective member, and
since h0(OX(a�)) = 1, it must be |C ′|. Hence

0 < d ′ := C ′.H = C.H − a(�.H) < d,

where we have used that �.H > 0 to get the strict inequality on the right and
C ′2 ≥ 0 to get the strict inequality on the left, by the Hodge index theorem.
SinceH 2 > 0, one must have d ′2−4n(g−1) ≥ 0 by the Hodge index theorem,
and equality occurs if and only if d ′H ∼ 2nC ′.

We now show that d ′2 − 4n(g − 1) = 0 only if (d, g) = (2n + 1, n + 1)
and that C is not nef in this case.

Write � ∼ xH + yC, for two integers x and y. We have

C ′ ∼ C − a� ∼ C − a(xH + yC) ∼ −axH + (1 − ay)C ∼ d ′

2n
H,

which implies y = a = 1. We then have

−1 = �.C = dx + 2(g − 1)y = dx + 2(g − 1),

which yields x = − 2g−1
d

, whence

� ∼ −2g − 1

d
H + C.

Note that this implies

(1) d | 2g − 1.

We now use

−2 = �2 = (2g − 1)2

d2
2n − 2(2g − 1) + 2(g − 1) = 2

(
(2g − 1)2n

d2
− g

)

to conclude

(2) n = (g − 1)d2

(2g − 1)2
.
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Using this, we calculate

�.H = −2n
2g − 1

d
+ d = −2

(g − 1)d2

(2g − 1)2

2g − 1

d
+ d = d

2g − 1
,

which yields

(3) 2g − 1 | d.
Comparing (1) and (3), we get d = 2g − 1, which gives by (2) that

(d, g) = (2n + 1, n + 1).

So we have shown that d ′2 − 4n(g − 1) = 0 occurs only when (d, g) =
(2n + 1, n + 1) and that C is not nef in this case.

We now consider the case when d ′2 − 4n(g − 1) > 0. Since

0 �= d ′2 − 4n(g − 1) = | disc(H,C ′)| < d2 − 4n(g − 1) = | disc(H,C)|,
then disc(H,C) cannot divide disc(H,C ′) and we have a contradiction, so C

is nef.
If �.H = 0, write � ∼ xH + yC. We have

−2 = �2 = �.(xH + yC) = yC.�,

which gives the two possibilities

(a) y = 1, C.� = −2, and

(b) y = 2, C.� = −1.

In case (a), we get from �.H = 2nx+dy = 2nx+d = 0 that x = −d/2n,
which means that

d = 2nk and x = −k,

for some integer k ≥ 1. From �.C = dx + 2(g − 1)y = −2nk2 + 2(g − 1) =
−2, we get g = nk2. So (d, g) = (2nk, nk2) and � ∼ −kH + C, which by
assumption is not effective, a contradiction.

In case (b), we get from �.H = 2nx+dy = 2nx+2d = 0 that x = −d/n,
which means that

d = nk and x = −k,

for some integer k ≥ 1. We get from �.C = dx + 2(g− 1)y = −nk2 + 4(g−
1) = −1, that g = (nk2 +3)/4. So (d, g) = (nk, nk2+3

4 ) and � ∼ −kH +2C,
which by assumption is not effective, again a contradiction.

So we have proved that C is nef except for the case (i).
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If |C| is not base point free, then using Lemma 2.4(a), X must contain two
divisors E and � such that E2 = 0 and

| disc(E, �)| = 1,

and this must be divisible by | disc(H,C)| = d2 −4n(g−1), which then must
be equal to 1.

Setting E ∼ xH + yC one finds from E.C = dx + 2(g − 1)y = 1 and
E2 = 2nx2 + 2dxy + 2(g − 1)y2 = 0 that

x = ±1 and y = 1 ∓ d

2(g − 1)
.

Using the fact that d2 − 4n(g − 1) = 1, we get 2(g − 1) = (d+1)(d−1)
2n , which

gives

(x, y) =
(

1,− 2n

d + 1

)
or

(
−1,

2n

d − 1

)
.

So if d2 − 4n(g − 1) = 1 and d + 1 or d − 1 divides 2n, then the divisor
E will satisfy E2 = 0 and E.C = 1, whence C is not base point free by
Lemma 2.4(a).

This concludes the proof of the proposition.

Note that we have also proved

Corollary 4.5. Let H and C be divisors on a K3 surface X such that H
is nef, H 2 = 2n, C.H = d and C2 = 2(g− 1) for some integers n ≥ 1, d > 0
and g ≥ 1. If either

(a) (d, g) = (2n + 1, n + 1), or

(b) d2 − 4n(g − 1) = 1 and d + 1 or d − 1 divides 2n,

then C is not base point free.
In particular, a projective K3 surface of degree 2n, for an integer n ≥ 2

(or even a birational projective model of a K3 surface) cannot contain an
effective, irreducible divisor of degree d and arithmetic genus g for any values
of d and g as in (a) or (b).

Proof. In case (a) the divisor � := C −H is effective and satisfies �.C =
−1, so C is not even nef.

In case (b) the divisorE := H− 2n
d+1C orE := −H+ 2n

d−1C is effective and
satisfies E2 = 0 and E.C = 1. Thus C is not base point free by Lemma 2.4(a).

One gets the following

Theorem 4.6. Let n ≥ 2, d ≥ 1, g ≥ 0 be positive integers satisfying
d2 − 4ng > 0 and (d, g) �= (2n+ 1, n+ 1). Then there exists a projective K3
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surface X of degree 2n in Pn+1 containing a smooth curve C of degree d and
genus g. Furthermore, we can find an X such that PicX = ZH ⊕ZC, where H
is the hyperplane section of X, and X is scheme-theoretically an intersection
of quadrics if n ≥ 4.

Proof. The case g = 0 is Theorem 4.1, so we can assume g > 0. Since
| disc(H,C)| = d2 − 4n(g − 1) > 4n, the H constructed as in Proposition
4.2 is very ample, since the existence of such divisors as in (I) and (III) in
Lemma 2.4(b) implies that | disc(H,C)| must divide | disc(H,E)| = 1, 4, 4n,
respectively. Now Proposition 4.4 gives the rest.

To prove that X is an intersection of quadrics when n ≥ 4, by Prop 2.6 it is
sufficient to show that there cannot exist any divisor E such that E2 = 0 and
E.H = 3.

Such an E would give

| disc(E,H)| = 9

but we have | disc(H,C)| > 4n ≥ 16, when n ≥ 4.

Now we only have to investigate the pairs (d, g) for which

0 < d2 − 4n(g − 1) ≤ 4n.

We proceed as follows. For given n, d, g we use the construction of Propos-
ition 4.2 and then investigate whether H is very ample by using Lemma 2.4.
Then two cases may occur:

(1) Using the fact that PicX = ZH + ZC and H 2 = 2n, C.H = d, C2 =
2(g − 1), we find that there cannot exist any divisor E ∼ xH + yC

as in cases (I) and (III) of Lemma 2.4(b), so H is very ample and by
Proposition 4.4, |C| contains a smooth irreducible member and there
exists a projectiveK3 surfaceX of degree 2n in Pn+1 containing a smooth
curve C of degree d and genus g.

(2) Using the numerical properties H 2 = 2n, C.H = d and C2 = 2(g− 1),
we find a divisor E ∼ aH + bC for a, b ∈ Z satisfying case (I) or (III)
of Lemma 2.4(b), thus contradicting the very ampleness of H . This then
implies that there cannot exist any projective K3 surface of degree 2n
in Pn+1 containing a divisor of degree d and genus g.

(To prove the statement in Remark 1.2, we proceed in an analogous way,
but check the conditions for H to be birationally very ample instead. We
then have to investigate whether any of the smooth curves in |C| are mapped
isomorphically to a smooth curve. See Remark 4.7 below.)
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For any triple of integers (n, d, g) such that n ≥ 2, d > 0, g ≥ 1 and
0 < d2 − 4n(g − 1) ≤ 4n, define

"(n, d, g) := d2 − 4n(g − 1) = | disc(H,C)|.
We check conditions (I) and (III) in Lemma 2.4. We let

E ∼ xH + yC,

and use the values of E2 = 2nx2 + 2dxy + 2(g − 1)y2 and E.H = 2nx + dy

to find the integers x and y (if any).
We get the two equations

n"(n, d, g)x2 − (E.H)"(n, d, g)x − (g − 1)(E.H)2 + d2

2
E2 = 0

and
y = (E.H) − 2nx

d
.

(a) If E.H = 1 and E2 = 0, then

x = "(n, d, g) ± d
√
"(n, d, g)

2n"(n, d, g)
,

y = ∓ 1√
"(n, d, g)

,

and the only possibility is "(n, d, g) = 1, so

x = 1 ± d

2n
, y = ∓1,

and we must have d ≡ ±1 (mod 2n).

(b) If E.H = 2 and E2 = 0, then

x = "(n, d, g) ± d
√
"(n, d, g)

n"(n, d, g)
,

y = ∓ 2√
"(n, d, g)

,

and the only possibilities are "(n, d, g) = 1 or 4.
If "(n, d, g) = 1, then

x = 1 ± d

n
, y = ∓2,
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and we must have d ≡ ±1 (mod 2n) or d ≡ n ± 1 (mod 2n).
If "(n, d, g) = 4, then

x = 2 ± d

2n
, y = ∓1,

and we must have d ≡ ±2 (mod 2n).

(c) Finally, if E.H = 0 and E2 = −2, we get

−2 = E2 = E.(xH + yC) = yE.C,

so y = −1 or −2 (since C is nef), and by E.H = 2nx + dy = 0, we get

d ≡ 0 (mod 2n) and x = d

2n
, or d ≡ 0 (mod n) and x = d

n

respectively.
One now easily calculates (using E.C = 2 (resp. 1))

"(n, d, g) = 4n and n

respectively. Furthermore, in the latter case, if d ≡ 0 (mod 2n), writing d =
2nk, for some integer k ≥ 1, we get from E.C = 1 the absurdity g = nk2 + 3

4 .
So we actually have d ≡ n (mod 2n) in this case.

What we have left to prove in Theorem 1.1 is that X can be chosen as an
intersection of quadrics in case (iii) and under the given assumptions in case
(ii).

We have to show, by Proposition 2.6, that there cannot exist any divisor E
such thatE.H = 3 andE2 = 0. Since such anE would give | disc(E,H)| = 9,
and we have | disc(H,C)| = d2 − 4n(g − 1) = 4n ≥ 16 if n ≥ 4 in case (iii),
this case is proved.

For case (ii), we proceed as above and set E ∼ xH + yC, and try to find
the integers x and y. We find

x = 3("(n, d, g) ± d
√
"(n, d, g))

2n"(n, d, g)
,

y = ∓ 3√
"(n, d, g)

,

so we must have "(n, d, g) = 1 or 9.
If "(n, d, g) = 1, then

x = 3(1 ± d)

2n
, y = ∓3,
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and E exists if and only if 3d ≡ ±3 (mod 2n).
If "(n, d, g) = 9, then

x = 3 ± d

2n
, y = ∓1,

and E exists if and only if d ≡ ±3 (mod 2n).
So, under the given assumptions, the constructed X is an intersection of

quadrics. Conversely, given a K3 surface X of degree 2n containing a smooth
curve C of degree d and genus g such that d2 − 4(n − 1) = 1 and 3d ≡ ±3
(mod 2n) or d2 − 4(n − 1) = 9 and d ≡ ±3 (mod 2n), then the divisor E
above, which is a linear combination of C and the hyperplane section H , will
be a divisor such that E.H = 3 and E2 = 0. Hence X must be an intersection
of both quadrics and cubics.

This concludes the proof of Theorem 1.1.

Remark 4.7. If we allowφH (X) to be a birational projective model ofX (i.e.
we require H to be birationally very ample only), we can allow the existence
of a divisor E such that E2 = −2 and E.H = 0. That is, we can allow the
cases

d2 − 4n(g − 1) = n and d ≡ n (mod 2n),

and
d2 − 4n(g − 1) = 4n and d ≡ 0 (mod 2n).

In the first case, with a lattice as in Proposition 4.2, the only contracted curve �
satisfies�.C = 1, whence every smooth curve in |C| is mapped isomorphically
by φH to a smooth curve of degree d and genus g.

In the second case, define

� := d

2n
H − C.

Then �2 = −2, �.H = 0 and �.C = 2, so any irreducible member of |C|
contains a length two scheme where H fails to be very ample. Thus φH (C) is
singular for all irreducible C ′ ∈ |C|.

This shows the statement in Remark 1.2.

5. Proof of Proposition 1.3

This section is devoted to the proof of Proposition 1.3.
Let C ′ ∈ |C|. By the exact sequence

0 → OX(kH − C) → OX(kH) → OC ′(kH) → 0,
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and using that H 1(OX(kH)) = H 2(OX(kH)) = 0 by the Kodaira vanishing
theorem, we see that (using Serre duality)

h1(OC ′(k)) = h0(C − kH).

If d ≤ 2nk, then (C−kH).H = d−2nk ≤ 0, which impliesh0(C−kH) =
0, since H is ample.

If d > 2nk and dk ≤ nk2+g, we have (C−kH)2 ≥ −2 and (C−kH).H >

0. So by Riemann-Roch, C − kH > 0.
To finish the proof, let d > 2nk and dk > nk2 + g and assume that there is

an element D ∈ |C − kH |. Then D2 < −2, so D has to contain an irreducible
curve � such that D.� < 0 and �2 = −2. As seen above, we can assume that
PicX is either generated by some rational multiple of the hyperplane section or
generated by H and C. Clearly, in the first case, all divisors have non-negative
self-intersection, so we can assume PicX = ZH ⊕ ZC.

We can write
D = m� + E,

with � not appearing as a component of E and E ≥ 0.
If E = 0, then m = 1 since D is a part of a basis of PicX, but then

D2 = −2, which is a contradiction, so E > 0. We then see that D.� ≥ −2m
and �.H < D.H/m.

Now we define the divisor

D′ := D + (D.�)�.

Then D′2 = D2 and

−D.H < D′.H = D.H + (D.�)(�.H) < D.H.

By the Hodge index theorem and the fact that D′2 < 0, we get D′2H 2 <

(D′.H)2, so we have

0 �= (D′.H)2 − D′2H 2 = | disc(H,D′)|
< (D.H)2 − D2H 2 = | disc(H,D)|,

a contradiction, since clearly PicX = ZH ⊕ ZD.
This concludes the proof of Proposition 1.3.

6. Application to complete intersection K3 surfaces

K3 surfaces of degree 4 in P3 or of degree 6 in P4 have to be smooth quartics
and smooth complete intersections of type (2, 3) respectively. Furthermore,
by Proposition 2.6 a complete intersection K3 surface of degree 8 in P5 has
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to be either an intersection of quadrics, in which case it is easily seen to be a
complete intersection of type (2, 2, 2), or an intersection of both quadrics and
cubics, in which case it cannot be a complete intersection.

Applying Theorem 1.1 to the three kinds of complete intersection K3 sur-
faces, one gets:

Theorem 6.1. Let d > 0 and g ≥ 0 be integers. Then:

(1) (Mori [9]) There exists a smooth quartic surface X in P3 containing a
smooth curve C of degree d and genus g if and only if a) g = d2/8 + 1,
or b) g < d2/8 and (d, g) �= (5, 3). Furthermore, a) holds if and only if
OX(1) and OX(C) are dependent in PicX, in which case C is a complete
intersection of X and a hypersurface of degree d/4.

(2) There exists a K3 surface X of type (2, 3) in P4 containing a smooth
curve C of degree d and genus g if and only if a) g = d2/12 + 1, b)
g = d2/12 + 1/4 or c) g < d2/12 and (d, g) �= (7, 4). Furthermore, a)
holds if and only if OX(1) and OX(C) are dependent in PicX, in which
caseC is a complete intersection of X and a hypersurface of degree d/6.

(3) There exists a K3 surface X of type (2, 2, 2) in P5 containing a smooth
curve C of degree d and genus g if and only if a) g = d2/16+1 and d is
divisible by 8, b) g = d2/16 and d ≡ 4 (mod 8), or c) g < d2/16 and
(d, g) �= (9, 5). Furthermore, a) holds if and only if OX(1) and OX(C)

are dependent in PicX, in which case C is a complete intersection of X
and a hypersurface of degree d/8.

Note added in proof. In remark 1.2, in case (ii)-(c) X can be chosen to be
scheme-theoretically an intersection of quadrics unless n = 5, in which case
X has to be an intersection of both quadrics and cubics. The reason for this is
that only for n = 5 we have H ∼ 2B +�, for two divisors B and � satisfying
B2 = 2, �2 = −2 and B.� = 1 (see [14, Thm. 7.2]).
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