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EXTREMAL GRAPHS OF ORDER DIMENSION 4

GEIR AGNARSSON

Abstract

We study the maximal number of edges of a graph on p vertices of order dimension 4. We will
show that the lower bound for this number is greater than 3

8p
2 + 2p− 13. In particular the Turán-

4 graph on p vertices does not have the maximal number of edges among the graphs of order
dimension 4.

1. Introduction

Although the main result in this article is stated graph theoretically, it was
discovered in an algebraic and geometric setting. We start by discussing the
graph theoretical view point, then the geometric one, and finally the original
algebraic one, together with a brief history.

Graph theory. Any order of a given set X can be viewed as a subset P of
X×X, which satisfies certain conditions. By a partially ordered set, or simply
a poset, we mean a tuple (X, P ) where P defines a partial order of X. The
order dimension of this poset is defined as the least number n of linear orders
(or total orders) L1, . . . , Ln of X such that P = L1 ∩ · · · ∩ Ln as a subset of
X×X. We say that the linear orders L1, . . . , Ln realize the poset (X, P ). For
every simple finite graph G = (V ,E), we can view V ∪ E as a poset, where
the partial order is defined by letting each pair of distinct vertices and each
pair of distinct edges be incomparable, and by letting each edge be greater
than its endvertices and no other vertices. The order dimension of our graph
G = (V ,E) is then the order dimension of the poset V ∪ E as described
above. A more comprehensive treatment can be found in William T. Trotter’s
treatise [8].

Geometry. Perhaps this view will explain the use of the word dimension
here better. Assume that a graph G has order dimension n, and is realized
by linear orders L1, . . . , Ln. Let N0 = {0, 1, 2, . . .} and provide the cartesian
product Nn

0 with the usual component-wise partial order. If we list the elements
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of V increasingly w. r. t. Li for each i, then, for each v ∈ V , let li(v) be the
place number of v in the list Li . Consider the map ρ : V → Nn

0 defined by

ρ(v) = (l1(v), . . . , ln(v)).

This map is an embedding of V into Nn
0, such that

1. ρ(V ) is a set of incomparable elements of Nn
0.

2. For each edge e = {u, v} in G, the corresponding join satisfies ρ(u) ∨
ρ(v) ≥ ρ(w) ⇔ w ∈ {u, v}.

In this way we get a natural geometrical realization of G as a sub-poset in Nn
0.

Conversely, every collection of incomparable points in Nn
0 corresponds to some

graph G as a poset, by letting the points correspond to vertices and by letting
each join of two points, that is not greater than any other point than those two,
correspond to an edge.

Since the example provided in the proof of our main result, Theorem 2.1,
will be presented in geometrical form, let us explain what we will do, before
discussing the algebraic point of view.

For natural numbers, n and p, let en(p) be the maximal number of edges
of a graph of order dimension n, on p vertices. The purpose of this paper is
to give a lower bound for e4(p). First let us consider the cases n ≤ 3. By the
definition of order dimension, we see that e1(p) = 1, and that a connected
graph has order dimension ≤ 2 if and only if it is a simple path. Therefore
we have e2(p) = p − 1. A strong theorem by Schnyder, [8, Theorem (2.1) p.
128], states that a graph has order dimension ≤ 3 if and only if it is planar.
This theorem, together with Eulers formula [5, Corollary 4.2.8], which relates
the number of vertices, edges and regions formed by a planar embedding of
the graph, yields that e3(p) = 3p − 6. Hence, for n ≤ 3, we know the values
of en(p) for all p ≥ 1. The first case where no exact formula is known, is
n = 4. Clearly e4(p) is bounded from above by

(
p

2

)
, the number of edges in

the complete graph, Kp, on p vertices. We will, in the last section, discuss
the upper bound better. In the second section we provide a class of concrete
examples of points in Nn

0 such that for p ≥ 8 we have

e4(p) ≥ p2 + 5p − 24

2
−

(⌊p
4

⌋
+ 1

) (
p − 2

⌊p
4

⌋)
,

where �x� denotes the largest integer ≤ x. This implies that e4(p) >
3
8p

2 +
2p − 13 for all p ≥ 8.

Algebra. Because it is easier, and more natural from an algebraic point
of view, we will consider a geometrical object called filter generated by a
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collection of points in Nn
0, and then count the number of outer corners of this

filter:

Definition 1.1. Let n be a natural number.

1. A filter in Nn
0 is a subset U of Nn

0 such that U + Nn
0 ⊆ U .

2. The outer corners of a filter U in Nn
0 are the maximal points (w.r.t. the

component-wise partial order) that are not contained in U .

If k is a field we note that the semigroup consisting of monomials of the
k-algebra R = k[X1, . . . , Xn] is isomorphic to the additive semigroup Nn

0, via
the isomorphism φ(X

i1
1 · · ·Xin

n ) = (i1, . . . , in). With this isomorphism, we get
a one-to-one correspondence between monomial ideals of R and filters of Nn

0.
Before discussing the algebraic aspect, let us display some definitions that

we will use in our discussion. For a given monomial ideal M , we say that a
generator is minimal if it is contained in every set of generators for M .

Definition 1.2. Let k be a field, and let M be a monomial ideal of the
k-algebra R = k[X1, . . . , Xn].

1. The ideal M is artinian if each indeterminate Xi appears to some power in
M .

2. The ideal M is generic if no variable Xi appears with the same non-zero
exponent in two distinct minimal generators of M .

3. The ideal M is generic artinian if it is both generic and artinian.

Note. M is artinian if and only if the quotient algebra R/M has finite
dimension as a vector space over k.

We now explain briefly how our problem of determining the maximal num-
ber of edges of a graph of order dimension n on p vertices, is the same as
finding the maximal number of 1-faces of a simplicial complex of order di-
mension n on p vertices, and is therefore just a small part of a much more
fundamental algebraic question.

As we saw earlier, every graph G = (V ,E) of order dimension n, has an
embedding, as a poset, in Nn

0 via ρ. The points in the set ρ(V ) are incomparable
and generate a filter in Nn

0, and hence (φ−1◦ρ)(V ) is a set of minimal generators
for a monomial ideal MG of k[X1, . . . , Xn], which, as described in detail in
[3], yields a very special kind of simplicial complex called Scarf complex, due
to Herbert Scarf, who first defined it in [6]. A Scarf complex of a monomial
idealM ⊆ k[X1, . . . , Xn] with minimal generatorsW1, . . . ,Wp, is an abstract
simplicial complex �M on {1, . . . , p} of dimension ≤ n − 1, constructed in
the following way: For a subset S ⊆ {1, . . . , p} let WS be the least common
multiple of Wi, i ∈ S. We let S be a face of �M if
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1. for all i �∈ S, Wi does not divide WS , and

2. for all i ∈ S, the support of WS/Wi is a strict subset of {X1, . . . , Xn}.
In a Scarf complex derived from a graph, the vertices of the graph corres-

pond to the vertices (or 0-faces) of the complex, and the edges of the graph
correspond to the 1-faces of the complex. According to [3, sections 5 and 6],
the maximal number βk(n, p) of k-faces of a simplicial complex of order di-
mension n on p vertices, is obtained among the Scarf complexes of monomial
ideals which are generated by p monomials in n variables, and which can be
assumed to be generic artinian. Therefore, to determine the maximal number
of edges of a graph on p vertices of order dimension n is the same as finding
the maximal number of 1-faces of a simplicial complex on p vertices of order
dimension n. Hence, this problem is a special case of a fundamental algebraic
question posed by Prof. Bernd Sturmfels [3] of U. C. Berkeley: Determine
how many k-faces a simplicial complex on p vertices of order dimension n

can have.
Recall the correspondence φ above. For a monomial idealM ofR, let S be a

face of �M and BS be the n-dimensional hyper-box in Nn
0 spanned by φ(WS).

From the definition of �M we see that S is a face of �M if BS is the least
hyper-box containing {φ(Wi) : i ∈ S} in its boundary (i.e. the union of the
(n−1)-dimensional sides of BS), and BS contains no other φ(Wj). It turns out
that for each maximal simplex S∗ of the Scarf complex �M , the points φ(Wi),
i ∈ S∗, bound exactly one outer corner point of the filter φ(M). Hence, the
facets, or the maximal simplices of�M , are in one-to-one correspondence with
the outer corners of the filter φ(M). In the proof of Theorem 2.1, it is exactly
the outer corners of the resulting filter that we count.

If cn(p) is the maximal number of outer corners of a filter in Nn
0 generated

by p or fewer points, then we soon will see that c4(p) and e4(p) both grow
quadratically in p, and their difference is a linear polynomial in p.

We can view the present paper as a continuation of [1], where it is shown that
c4(p) is not a quadratic polynomial for p ≥ 4. One of the main conclusions
[1, Theorem 35] is that for p ≥ 4 we have

(1)

c4(p) = p2 − 3p − 2

2
for p ∈ {4, 5, . . . , 12},

c4(13) = 63,

c4(p) ≤ p2 − 3p − 4

2
for p ≥ 13.

We note that c4(p) is given by a quadratic polynomial for 4 ≤ p ≤ 12. We
then get a “break-point” at p = 13, where previous polynomial expression
does not hold.
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This led the algebraist Bernd Sturmfels to establish a relation with William
T. Trotter’s graph theory result, that the order dimension of the complete graph
on 12 vertices,K12, is 4, but the order dimension ofK13 is 5 [7]. We now attempt
to explain how: Given an integer p ≥ 4. We bear in mind the correspondence
between filters in N4

0 and monomial ideals in four variables. That the order
dimension ofKp is 4, is, according to our previous discussion, equivalent to the
existence of a generic artinian monomial idealM , generated byp elements in 4
variables, whose Scarf-complex �M has precisely p vertices and

(
p

2

)
edges [3,

Theorem 6.5, p. 13]. The corresponding simplicial Scarf-polytope PM whose
boundary is �M , has therefore also f0(PM) = p vertices and f1(PM) = (

p

2

)
edges. If fk(PM) is the number of k-faces of the Scarf polytope PM in the case
n = 4, then we get by the Dehn-Sommerville equations [9, p. 252] that

f0(PM)− f1(PM)+ f2(PM)− f3(PM) = 0,

f2(PM)− 2f3(PM) = 0.

From these equations we get that the number of facets of PM is f3(PM) =
f1(PM) − p = (p2 − 3p)/2, and hence the outer corner points of M are one
less, or f3(PM)−1 = (p2 −3p−2)/2. Since now the number of outer corner
points of M is ≤ c4(p) we have by (1.2) that p ≤ 12.

By carrying on in the setup from above, we have in fact for arbitrary p ≥
4, that a generic artinian monomial ideal M in 4 variables generated by p

monomials with c4(p) outer corner points, has a Scarf polytope PM with
f3(PM) = c4(p)+ 1 facets, and hence by the Dehn-Sommerville equations it
has f1(PM) = f3(PM) + p = (c4(p) + 1) + p edges. We have therefore the
following:

Proposition 1.3. The maximal number, e4(p), of edges of a graph on p

vertices which has order dimension 4 is c4(p)+ p + 1.

2. The lower bound

Recall that if x is a real number then �x� denotes the largest integer ≤ x. We
have the following:

Theorem 2.1. For p ≥ 8 we have

c4(p) ≥ p2 + 3p − 26

2
−

(⌊p
4

⌋
+ 1

) (
p − 2

⌊p
4

⌋)
.

Proof. Note that the statement of this theorem is equivalent to say that for
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each q ≥ 2 we have

c4(4q) ≥ 6q2 + 4q − 13,

c4(4q + 1) ≥ 6q2 + 7q − 12,

c4(4q + 2) ≥ 6q2 + 10q − 10 and

c4(4q + 3) ≥ 6q2 + 13q − 7.

Hence it suffices to provide examples of filters generated by 4q, 4q+1, 4q+2
and 4q+3 points in N4

0 that have 6q2 +4q−13, 6q2 +7q−12, 6q2 +10q−10
and 6q2 + 13q − 7 outer corner points, respectively.

A filter U4q generated by 4q points:

(4q − 3, 0, 0, 0), (3q − 2 − i, 3q − 3 + i, 2q − 1 − i, i) i = 1, . . . , q − 1,
(0, 4q − 3, 0, 0), (3q − 3 + i, 3q − 2 − i, i, 2q − 1 − i) −,
(0, 0, 4q − 3, 0), (i, 2q − 1 − i, 3q − 3 + i, 3q − 2 − i) −,
(0, 0, 0, 4q − 3), (2q − 1 − i, i, 3q − 2 − i, 3q − 3 + i) −.
A filter U4q+1 generated by 4q + 1 points:

(4q − 2, 0, 0, 0), (3q − 1 − i, 3q − 3 + i, 2q − i, i) i = 1, . . . , q,
(0, 4q − 2, 0, 0), (3q − 2 + i, 3q − 2 − i, i, 2q − i) i = 1, . . . , q − 1,
(0, 0, 4q − 2, 0), (i, 2q − 1 − i, 3q − 2 + i, 3q − 1 − i) −,
(0, 0, 0, 4q − 2), (2q − 1 − i, i, 3q − 1 − i, 3q − 2 + i) −.
A filter U4q+2 generated by 4q + 2 points:

(4q − 1, 0, 0, 0), (3q − 1 − i, 3q − 2 + i, 2q + 1 − i, i) i = 1, . . . , q,
(0, 4q − 1, 0, 0), (3q − 2 + i, 3q − 1 − i, i, 2q + 1 − i) −,
(0, 0, 4q − 1, 0), (i, 2q − 1 − i, 3q − 1 + i, 3q − i) i = 1, . . . , q − 1,
(0, 0, 0, 4q − 1), (2q − 1 − i, i, 3q − i, 3q − 1 + i) −.
A filter U4q+3 generated by 4q + 3 points:

(4q, 0, 0, 0), (3q − i, 3q − 1 + i, 2q + 1 − i, i) i = 1, . . . , q,
(0, 4q, 0, 0), (3q − 1 + i, 3q − i, i, 2q + 1 − i) −,
(0, 0, 4q, 0), (i, 2q − i, 3q − 1 + i, 3q + 1 − i) −,
(0, 0, 0, 4q), (2q − i, i, 3q − i, 3q + i) i = 1, . . . , q − 1.

These filters, U4q, U4q+1, U4q+2 and U4q+3, turn out to have 6q2 + 4q −
13, 6q2 + 7q − 12, 6q2 + 10q − 10 and 6q2 + 13q − 7 outer corner points
respectively.

For a filter U in N4
0, let MU be the unique corresponding monomial ideal

of the k-algebra R = k[X1, X2, X3, X4], and let m be the maximal ideal
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generated by the four indeterminates of R. Recall that (m : MU) is the ideal
of R consisting of all the elements r ∈ R with mr ∈ MU . By the definition
of m, we see that (m : MU) consists of all r ∈ R, satisfying Xir ∈ MU

for each i ∈ {1, 2, 3, 4}. Hence, (m : MU) is a monomial ideal of R, whose
basis, as a vector space over k, consists of the monomials of MU , together
with those monomials r = X

a1
1 X

a2
2 X

a3
3 X

a4
4 ∈ R, which are such, that when

we increase any power ai by at least 1, then the resulting element will fall in
MU . It is precisely these elements that correspond to the outer corners of U .
Therefore, the corresponding ideal (m : MU)/MU in the quotient k-algebra
R/MU , has a k-basis which is in one to one correspondence with the outer
corners of the filter U . We conclude that the number of outer corner points of
U is dimk ((m : MU)/MU), which can be calculated using a computer algebra
system. The package [4] will be more than sufficient.

By Proposition 1.3 and Theorem 2.1 we get the following corollary:

Corollary 2.2. For p ≥ 8 we have that

e4(p) ≥ p2 + 5p − 24

2
−

(⌊p
4

⌋
+ 1

) (
p − 2

⌊p
4

⌋)
.

The above corollary implies in particular that e4(p) >
3
8p

2 + 2p − 13 for
all p ≥ 8.

3. Final remarks

We now discuss what consequences the result in previous section has in graph
theoretic setting.

Definition 3.1. Let n and p be positive integers, and assume p = qn+ r

where r ∈ {0, 1, . . . , n−1}. The Turán-n graph, T n(p), is a complete n-partite
graph on p vertices that has n− r parts of size q, and r parts of size q + 1.

Consider now the Turán-4 graph, T 4(p), on p vertices for p ≥ 8. By [2,
Theorem 3.1], every 4-partite graph has order dimension at most 4, and hence
T 4(p), being a 4-partite graph, has order dimension 4. If t4(p) denotes the the
number of edges in T 4(p), and p = 4q + r , where r ∈ {0, 1, 2, 3}, then

t4(p) =
(

4 − r

2

)
q2 +

(
r

2

)
(q + 1)2 + r(4 − r)q(q + 1).

Turán’s theorem states in particular that the maximal number of edges of a
graph that does not contain K5, the complete graph of size 5 as subgraph, is
t4(p). By considering all the values of r , where p = 4q + r , we see that
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e4(p)− t4(p) ≥ 2p− 12 for all p ≥ 8 and hence the set of Turán-4 graphs on
p vertices is strictly contained in the set of graphs of order dimension 4 on p
vertices.

Remark 3.2. (K. Reuter): Since the order dimension of K13 is 5, every
graph of order dimension 4 can not contain K13 as a subgraph, and is therefore
a subgraph of the Turán-12 graph. The maximal number, t12(p), of edges of the
Turán-12 graph on p vertices satisfies limp→∞ t12(p)/p

2 = 11/24 [5, Lemma
7.1.4]. Hence lim sup e4(p)/p

2 ≤ 11/24. So for large p, the set of graphs of
order dimension 4, on p vertices, is strictly contained in the set of all Turán-12
graphs on p vertices.

A stronger asymptotic result than in the above remark, can be found in [2],
where it is shown that limp→∞ e4(p)/p

2 = 3/8. This supports the statement
that equality might actually hold in the inequality stated in Corollary 2.2.

Acknowledgements. The author would like to thank Klaus Reuter and
Bernd Sturmfels for their valuable help improving the introduction of this
paper. Thanks also to Günter M. Ziegler for his encouragement.

REFERENCES

1. Agnarsson, Geir, The Number of Outside Corners of Monomial Ideals, J. Pure Appl. Algebra
117 & 118 (1997), 3–21.

2. Agnarsson, G., Felsner, S., Trotter, W. T., The Maximum Number of Edges in a Graph of
Bounded Dimension, with Applications To Ring Theory, Discrete Math. 201 (1999), Issue
no. 1–3, p. 5–19.

3. Bayer, Dave, Peeva, Irena and Sturmfels, Bernd, Monomial Resolutions, Math. Res. Lett. 5
(1998), p. 31–46, MR 99c:13029.

4. Bayer, Dave, Stillman, Michael, Macaulay: a computer algebra system available by anonym-
ous ftp from zariski.harvard.edu. (1987).

5. Diestel, Reinhard, Graph Theory, Grad. Texts in Math. 173 (1997).
6. Scarf, Herbert, The Computation of Economic Equilibria, Cowles Foundation Monograph

24, Yale University Press, (1973).
7. Trotter, William T., Some Combinatorial Problems for Permutations, Congr. Numer. 19

(1978), 619–632.
8. Trotter, William T., Combinatorics and Partially Ordered Sets, Dimension Theory, Johns

Hopkins Ser. Math. Sci. (1992).
9. Ziegler, Günter M., Lectures on Polytopes, Grad. Texts in Math. 152 (1995).

SCIENCE INSTITUTE
UNIVERSITY OF ICELAND
REYKJAVÍK
ICELAND
E-mail: geira@raunvis.hi.is


