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FAITHFUL REPRESENTATIONS OF CROSSED
PRODUCTS BY ACTIONS OF Nk

NADIA S. LARSEN and IAIN RAEBURN∗

Abstract
We study a family of semigroup crossed products arising from actions of Nk by endomorphisms of
groups. These include the Hecke algebra arising in the Bost-Connes analysis of phase transitions
in number theory, and other Hecke algebras considered by Brenken. Our main theorem is a
characterisation of the faithful representations of these crossed products, and generalises a similar
theorem for the Bost-Connes algebra due to Laca and Raeburn.

Crossed products of C∗-algebras by semigroups of endomorphisms were
introduced to model Cuntz and Toeplitz algebras, and many of the main results
concerning these algebras have been formulated as characterisations of faith-
ful representations of semigroup crossed products [1], [10]. More recently, the
Hecke algebra arising in the Bost-Connes analysis of phase-transition phenom-
ena in number theory [3] has been identified as a crossed productC∗(Q/Z)�αN∗
by the semigroup N∗ of positive integers under multiplication [11]. This im-
mediately showed that two of the relations in the presentation of the Hecke
algebra used in [3] were redundant, and the techniques developed in [10] for
studying Toeplitz algebras carried over to this crossed product without sub-
stantial difficulty. The resulting characterisation of faithful representations of
C∗(Q/Z) �α N∗ improves a fundamental result used by Bost and Connes to
switch between different Hilbert-space realisations.

Several generalisations of the Bost-Connes algebra have been considered:
the field Q has been replaced by other number fields [2], [8], [9], and Brenken
has realised a wider class of Hecke algebras as semigroup crossed products [5].
The analysis of [11] was extended to number fields in [2], and used extensively
by Laca in [9]; while the techniques of [2] should also work for the algebras
in [8], it is not so clear how they apply to the general situation of [5]. We shall
formulate a theorem which covers the algebras of [3], [11], [8] and the most
important of the other examples in [5], which derive from Brenken’s work in
topological dynamics [4].
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To prove results of this sort there is a standard path, going back at least
to Douglas [7] and Cuntz [6]. Following this path is not always easy: there
are several technical variations, and it can be surprisingly hard to formulate
general results which encompass different applications. Here we are looking
for a theorem which is general enough to cover the main examples, transparent
enough to add insight to these examples, and specific enough to avoid nasty
technical hypotheses.

We have found that the examples in [5], [8], [11] share a common structure:
the underlying semigroup is a direct sum Nk of copies of the additive semigroup
N (in the case of [11], prime factorisation gives an isomorphism of N∗ onto N∞),
and it acts on theC∗-algebra of an abelian group which is a direct limit over the
same partially ordered set Nk . This direct limit structure allows us to construct
actions in which there is interaction between the different copies of N of the
sort important in [3], [9]. And because the semigroup Nk has minimal elements,
we can avoid some of the technical difficulties encountered in [10, §3].

In our first section, we describe our class of dynamical systems (C∗(G∞/G),
Nk, α). We start with an action of Nk by injective endomorphisms of a groupG,
and by forming a direct limit G∞ convert these to automorphisms (for recent
applications of this standard technique to C∗-algebras, see [15], [12]). The re-
sulting automorphic action on G∞ leaves the canonical image of G invariant,
and hence induces an action β of Nk onG∞/G by surjective endomorphisms;
the action α is obtained by averaging in the group algebra over the solutions
of equations β(s) = r in G∞/G (see Proposition 1.3). The notation set up in
this section will be used throughout the paper; to help keep it consistent, we
have resisted temptations to generalise basic lemmas.

In Section 2, we discuss our main theorem. The proof follows the stand-
ard path, but is basically self-contained. The key ingredient is an estimate
which says that killing off-diagonal terms in a sum decreases the norm, and
whose proof requires an analysis of (G∞/G)∧. The necessary properties of
(G∞/G)∧ hold because it is an inverse limit over Nk; the relative simplicity of
this argument compared with those in [2, §3] or [8, §5.1] allows us to claim
that our level of generality adds insight.

We finish by showing how the situations of [11], [8] and [5] fit our model.
In particular, we prove using the results of [5] that each of our semigroup
crossed products is the enveloping C∗-algebra of a Hecke algebra, and apply
our theorem to the algebra of [5, §4.5]. Not all the situations in [2] or [5]
do fit: some involve actions of semigroups with invertible elements, and our
techniques would require substantial modification to deal with these.

Conventions. By Nk we mean the direct sum of k copies of the additive
semigroup (N,+), where 0 ∈ N and we allow either k ∈ N or k = ∞. We write
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a typical element m of Nk as m = (m1,m2, . . . , m|m|, 0, . . .). The semigroup
Nk is partially ordered by m ≤ n ⇐⇒ mi ≤ ni for all i; we denote the
maximum of m, n ∈ Nk by m ∨ n, so that (m ∨ n)i := max(mi, ni), and their
minimum bym∧ n. We denote by {ei} the usual basis elements for Nk , so that
m = ∑

i miei for m ∈ Nk .
Our dynamical systems will consist of an action α of the semigroup Nk

by endomorphisms of a C∗-algebra A with identity. The crossed products
appearing here are those of [10], [11]: a covariant representation of (A,Nk, α)
consists of a unital representation π of A and a representation W of Nk by
isometries on the same space such that π(αm(a)) = Wmπ(a)W

∗
m for a ∈ A,

m ∈ Nk , and the crossed product A �α Nk is the C∗-algebra generated by a
universal covariant pair. Thus there is a bijection (π,W) �→ π ×W between
the covariant representations of the system and the representations ofA�α Nk .

1. The dynamical system (C∗(G∞/G), Nk, α)

Our construction begins with an action η of Nk by injective endomorphisms of
a (discrete, additive) abelian group G satisfying

(1.1) |G : ηm(G)| < ∞,
and

(1.2) ηm(G)+ ηn(G) = ηm∧n(G)

for allm, n ∈ Nk . We can form a direct system (G(m), ηnm) over the directed set
Nk by taking G(m) := G and ηnm := ηn−m : G(m) → G(n) for m ≤ n ∈ Nk; let

(1.3) G∞ := lim−→ (G
(m), ηnm)

denote the direct limit. Since all the bonding maps ηn−m are injective, so are
the canonical maps im of G(m) into G∞; we view the direct limit as a union
by writing Gm = im(G

(m)), so that G∞ = ⋃
Gm. Notice that passing to this

direct limit has converted the endomorphisms ηm into inclusions; indeed, since
in ◦ ηnm = im and ηnm is really just ηn−m, the index of Gm in Gn is precisely
|G : ηn−m(G)|. Similarly, Equation (1.2) translates into:

Lemma 1.1. For all m, n ∈ Nk , we have Gm +Gn = Gm∨n.

Proof. We just need to apply im∨n to the equation

η(m∨n)−m(G)+ η(m∨n)−n(G) = G,

which follows from (1.2) because
(
(m ∨ n)−m) ∧ (

(m ∨ n)− n) = 0.
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For fixed m, the maps ηm : G = G(p) → G = G(p) are compatible with
the bonding maps ηqp:

ηm ◦ ηqp = ηm ◦ ηq−p = ηm+q−p = ηq−p ◦ ηm = ηqp ◦ ηm.
Thus there is a well-defined endomorphism η∞

m of G∞ such that

(1.4) η∞
m (ip(g)) = ip(ηm(g)) for g ∈ G(p) = G.

In fact, each η∞
m is an automorphism: the identity maps ζm : G = G(p) →

G = G(p+m) induce an endomorphism ζ∞
m which is an inverse for η∞

m . To see
this, we compute that

ζ∞
m

(
η∞
m (ip(g))

) = ζ∞
m

(
ip(ηm(g))

) = ip+m(ηm(g)) = ip(g),

and similarly that η∞
m

(
ζ∞
m (ip(g))

) = ip(g). It follows immediately from (1.4)
that η∞

m ◦ η∞
n = η∞

m+n, so that η∞ is an action of Nk by automorphisms ofG∞.
Equation (1.4) implies that each η∞

m leaves the subgroup G = i0(G
(0))

invariant, and hence induces an endomorphism βm of the quotient G∞/G
such that

βm(g +G) = η∞
m (g)+G for g ∈ G∞.

This in turn induces an action β of Nk by endomorphisms of the group C∗-
algebra C∗(G∞/G), which is characterised on the canonical generators {δr :
r ∈ G∞/G} by βm(δr) = δβm(r).

Example 1.2. Let p and q be distinct prime numbers, and define η :
N2 → End Z by ηm,n(x) := pmqnx. We have |Z : ηm,n(Z)| = pmqn, and (1.2)
holds because xZ + yZ is the set (x, y)Z of multiples of the g.c.d. (x, y), and
(pmqn, pkq�) = pm∧kqn∧�. The maps φm,n of G(m,n) = Z into Q defined by
φm,n(x) = p−mq−nx satisfy φm,n ◦ ηm−k,n−� = φk,�, and induce an isomorph-
ism φ ofG∞ onto the additive groupH of rational numbers with denominators
pmqn, which converts the maps im,n into the inclusions ofGm,n = p−mq−nZ in
H . The automorphism η∞

m,n is multiplication by pmqn on H , and the induced
endomorphism βm,n ofG∞/G = H/Z ⊂ Q/Z is multiplication by pmqn mod-
ulo Z.

A listing p1, p2, . . . of the prime numbers gives an isomorphism m �→∏
p
mi
i of N∞ with the multiplicative semigroup N∗, which converts ∧ to the

g.c.d. and ∨ to the l.c.m. Thus the action η of N∗ on Z defined by ηk(x) = kx

also satisfies our hypotheses. As in the previous paragraph, we can identify
G∞/G with Q/Z, and βk is the map r �→ kr .

The action of particular interest to us will be a right inverse for β ∈
EndC∗(G∞/G) obtained by averaging over the solutions of βm(s) = r in
the group G∞/G.
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Proposition 1.3. There is an action α of Nk by endomorphisms of
C∗(G∞/G) such that

(1.5) αm(δr) = 1

|G : ηm(G)|
∑

{s∈G∞/G :βm(s)=r}
δs

for r ∈ G∞/G and m ∈ Nk . The projections αm(1) = αm(δ0) satisfy

(1.6) αm(1)αn(1) = αm∨n(1);
the endomorphism βm of C∗(G∞/G) is a left inverse for αm, and αm ◦ βm is
multiplication by αm(1).

This proposition can be deduced from the analysis of [5, §1] and [5, Propos-
ition 3.2]; see the proof of Proposition 3.5 below. It can also be proved directly
by following the argument of [11, Proposition 2.1], whereby one deduces the
existence of αm by showing that the map r �→ αm(δr) defined in (1.5) is a
unitary representation of G∞/G in a corner of C∗(G∞/G) and invoking the
universal property of C∗(G∞/G). The only tricky bit is then to verify (1.6).
However, as in [11], one can reduce to the case m ∧ n = 0; then a count-
ing argument using Lemma 1.1 shows that (r, s) �→ r + s is a surjection of
ker βm × ker βn onto ker βm∨n, and (1.6) follows.

Remark 1.4. The identity αm(1)αn(1) = αm∨n(1) implies that, whenever
(π,W) is a covariant representation of (C∗(G∞/G),Nk, α), W is itself cov-
ariant in the sense of Nica [13]:

(1.7) WmW
∗
mWnW

∗
n = Wm∨nW ∗

m∨n,

or equivalently

(1.8) WmW
∗
nWpW

∗
q = Wm−n+n∨pW ∗

q−p+n∨p,

for m, n, p, q in Nk .

Lemma 1.5. There is an isometric representation L of Nk on l2(G∞/G)
such that

Lm(εr) = 1

|G : ηm(G)|1/2
∑

{s :βm(s)=r}
εs,

where {εr : r ∈ G∞/G} is the usual basis of l2(G∞/G). Together with the
regular representation λ of C∗(G∞/G), L forms a covariant representation
(λ, L) of (C∗(G∞/G),Nk, α).
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Proof. As in [11, Example 2.3], one sees thatLm is an isometry by verifying
that {Lm(εr)} is orthonormal, and L∗

m(εt ) = |G : ηm(G)|−1/2εβm(t), and the
proof of αm ◦ αn = αm+n shows that LmLn = Lm+n. To verify covariance, we
let m ∈ Nk , r, t ∈ G∞/G and compute:

Lmλ(δr)L
∗
m(εt ) = 1

|G : ηm(G)|
∑

{u :βm(u)=r+βm(t)}
εu

= 1

|G : ηm(G)|
∑

{s :βm(s)=r}
εt+s .

Thus

λ(αm(δr))(εt ) = 1

|G : ηm(G)|
∑

{s :βm(s)=r}
λ(δs)(εt ) = Lmλ(δr)L

∗
m,

from which covariance follows by linearity and continuity.

2. Faithful representations

Since the system (C∗(G∞/G),Nk, α) has a nontrivial covariant representation
by Lemma 1.5, it has a crossed product C∗(G∞/G)�α Nk , which is generated
by a universal covariant pair (ι, V ) and is unique up to isomorphism [10,
Proposition 2.1]. Our main theorem characterises the faithful representations
of this crossed product.

Theorem 2.1. Let (π,W) be a covariant representation of the dynamical
system (C∗(G∞/G),Nk, α) of Section 1. Then the representation π × W of
C∗(G∞/G)�α Nk is faithful if and only if π is faithful.

The canonical homomorphism ι of C∗(G∞/G) into the crossed product is
faithful, because λ is and (λ×L)◦ ι = λ. This immediately gives one direction
of the Theorem: if π ×W is faithful, so is π = (π ×W) ◦ ι.

For the other direction, we shall follow the strategy developed in [10]. To
do this, we need a simple spanning set for the crossed product.

Lemma 2.2. We have

C∗(G∞/G)�α Nk = span{ι(δr )VmV ∗
n : r ∈ G∞/G,m, n ∈ Nk}.

Proof. It is enough to show that {ι(δr )VmV ∗
n } is closed under multiplication

and adjoints, since it contains the generators ι(δr ) and Vm. We first notice that

(2.1) Vmι(βm(δr)) = ι(αm(βm(δr)))Vm = ι(δr )ι(αm(1))Vm = ι(δr )Vm.
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Using this and the covariance property (1.8), we find

(ι(δr )VmV
∗
n )(ι(δs)VpV

∗
q ) = ι(δr )Vmι(βn(δs))V

∗
n VpV

∗
q

= ι(δr )Vmι(βn(δs))V
∗
mVmV

∗
n VpV

∗
q

= ι
(
δrαm ◦ βn(δs)

)
Vm−n+n∨pV ∗

q−p+n∨p.

Another calculation using (2.1) gives
(
ι(δr )VmV

∗
n

)∗ = ι
(
αn ◦ βm(δ−r )

)
VnV

∗
m.

The uniqueness of the crossed product implies that there is a strongly con-
tinuous dual action α̂ of Ẑk on C∗(G∞/G)�α Nk such that

α̂γ
(
ι(δr )VmV

∗
n

) = γ (m− n)ι(δr)VmV ∗
n for γ ∈ Ẑk

(see [10, Remark 3.6]). Averaging over this dual action gives a faithful positive
linear map * of C∗(G∞/G)�α Nk onto ι

(
C∗(G∞/G)

)
such that

(2.2) *
(
ι(δr )VmV

∗
n

) =
{
ι(δr )VmV

∗
m = ι

(
δrαm(1)

)
if m = n

0 otherwise.

Now suppose (π,W) is covariant and π is faithful. We aim to prove The-
orem 2.1 by constructing a positive contractionφ ofπ×W (

C∗(G∞/G)�αNk
)

onto π(C∗(G∞/G)) such that π ◦* = φ◦(π×W), and running the argument
of [10, §3]. As in [11] and [2], this depends on an analysis of the dual of the
abelian group G∞/G. In this analysis we write γ |Gm ≡ 1 to mean that γ is
trivial on Gm/G.

Lemma 2.3. Let γ ∈ Ĝ∞/G and define S := {m ∈ Nk : γ |Gm ≡ 1}. Then
there exist ni ∈ N ∪ {∞} such that

(2.3) S = {m ∈ Nk : mi ≤ ni for all i ≥ 1}.

Proof. Since 0 ∈ S, S is nonempty. Let

ni := max{n ∈ N : n = qi for some q ∈ S},
or ni := ∞ if the set is unbounded. Then by definition every m in S belongs
to the right-hand side of (2.3). Next, note that if m and n are in S, then so
is m ∨ n; indeed, since γ is a character, this follows immediately from the
decomposition Gm∨n = Gm +Gn of Lemma 1.1. Now suppose m belongs to
the right-hand side of (2.3). Let J := {i : i ≤ |m| and ni < ∞}. For each
i ∈ J , there exists p(i) ∈ S such that p(i)i = ni , and for each i /∈ J there exists
q(i) ∈ S such that q(i)i ≥ mi . Then p := ∨

i∈J p(i) ∨ ∨
i /∈J q(i) belongs to S.

But m ≤ p, so Gm ⊂ Gp, and γ |Gp ≡ 1 implies γ |Gm ≡ 1. Thus m ∈ S.
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Proposition 2.4. Suppose γ ∈ (G∞/G)∧, N ∈ N and U is a neigh-
bourhood of γ . Then there exist χ ∈ U and m ∈ Nk such that χ ∈ G⊥

m and
χ /∈ G⊥

m+ei for i ≤ N .

Proof. Since G∞/G is the union of the subgroups Gm/G,

(G∞/G)∧ = lim←− (Gm/G)
∧ :

the canonical maps of (G∞/G)∧ into (Gm/G)∧ are just restriction. Since the
groups (Gm/G)∧ are finite and hence discrete, we deduce that there exists
p ∈ Nk such that

{χ ∈ (G∞/G)∧ : χ |Gp = γ |Gp } ⊂ U.

Let mi := min{ni, pi} and m(i) := (m1,m2, . . . , mi, 0, . . .). We shall prove
by induction over i that there exist γi ∈ (G∞/G)∧ such that γi |Gp = γ |Gp and
γi ∈ G⊥

m(i) \G⊥
m(i)+ej for 1 ≤ j ≤ i.

If n1 ≤ p1, take γ1 = γ . Then we trivially have γ1|Gp = γ |Gp , and
γ1 ∈ G⊥

m(1) \ G⊥
m(1)+e1

by Lemma 2.3. If n1 > p1, choose γ ′ in G⊥
p \ G⊥

p+e1

and take γ1 = γ ′γ ; the identity Gm(1)+e1 +Gp = Gp+e1 means γ1 cannot be
trivial on G⊥

m(1)+e1
. Suppose now that we have γi with the stated properties.

If ni+1 < pi+1, take γi+1 = γi . Then γi+1|Gp = γi |Gp = γ |Gp . For 1 ≤ j ≤
i, we haveGm(i)+ej ⊂ Gm(i+1)+ej , so γi /∈ G⊥

m(i+1)+ej . Sincem(i+ 1) ≤ p and
m(i + 1) ≤ n, we have γi+1|Gm(i+1) = γ |Gm(i+1) ≡ 1; on the other hand, since
m(i + 1)+ ei+1 ≤ p and m(i + 1)i+1 = ni+1, we have

γi+1|Gm(i+1)+ei+1
= γ |Gm(i+1)+ei+1

�≡ 1.

Next suppose ni+1 ≥ pi+1. If γi /∈ G⊥
m(i+1)+ei+1

, then γi+1 := γi will do. If
γi ≡ 1 on Gm(i+1)+ei+1 , pick

γ ′ ∈ G⊥
p+∑i

j=1 ej
\G⊥

p+∑i+1
j=1 ej

and take γi+1 = γ ′γi . Since

Gm(i+1)+ei+1 +Gp+∑i
j=1 ej

= Gp+∑i+1
j=1 ej

by Lemma 1.1, we must have γ ′ /∈ G⊥
m(i+1)+ei+1

, and hence γi+1 /∈ G⊥
m(i+1)+ei+1

.
Because γ ′ ≡ 1 onGp+∑i

j=1 ej
andm(i+1) ≤ p, we have γi+1 = γi onGm(i+1)

and Gm(i+1)+ej whenever j ≤ i. In particular, this implies that γi+1 ≡ γi ≡ 1
onGm(i+1); becauseGm(i+1)+Gm(i)+ej = Gm(i+1)+ej and γi does not annihilate
Gm(i)+ej , it also implies

γi+1 ∈ G⊥
m(i+1) \G⊥

m(i+1)+ej for 1 ≤ j ≤ i.
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Thus γi+1 has the desired properties, and we have proved the claim.
To finish off, let i = max(|p|, N), and take χ = γi .

Since the expectation * kills off-diagonal terms in our spanning set, to
construct φ we have to do this spatially without increasing the norm of the
sum. Usually, we fix a finite sum and kill these terms by compressing with a
suitable projection (cf. [1, Theorem 2.4] or [10, Lemma 3.2]). Here, as in [11]
and [2], we have to allow small changes in the norm of the diagonal terms.

Lemma 2.5. LetE be a finite subset of Nk , and {fn,p : n, p ∈ E} a subset of
C∗(G∞/G). Then for each ε > 0, there is a projection q = qε in C∗(G∞/G)
satisfying

(2.4) ι(q)ι(fn,p)VnV
∗
p ι(q) = 0

if n �= p in E, and

(2.5)
∥∥∥q(∑

n∈E
fn,nVnV

∗
n

)
q

∥∥∥ ≥
∥∥∥∑
n∈E

fn,nVnV
∗
n

∥∥∥ − ε.

Proof. Let f be the element
∑
n∈E fn,nαn(1) ofC∗(G∞/G), which is iso-

morphic to C((G∞/G)∧) via the Fourier transform g �→ ĝ. Since (G∞/G)∧
is compact, there exists γ ∈ (G∞/G)∧ such that |f̂ (γ )| = ‖f̂ ‖∞ = ‖f ‖. Let
U be a neighbourhood of γ such that |f̂ (χ)| ≥ ‖f ‖ − ε for χ ∈ U , and let
N = max{|n| : n ∈ E}.

By Proposition 2.4, there exist χ ∈ U and m ∈ Nk such that χ ∈ G⊥
m and

χ /∈ G⊥
m+ei for i ≤ N . Let

q := αm

( N∏
i=1

(
1 − αei (1)

)) =
N∏
i=1

(
αm(1)− αm+ei (1)

);
notice that q is a product of projections in the commutative C∗-algebra
C∗(G∞/G), and hence is itself a projection.

We claim that ι(q)VnV ∗
p ι(q) = 0 if n �= p; since q commutes with each

fn,p, this will establish (2.4). If m� n, say n1 > m1, then from (1.8) we have

V ∗
mVn = V−m+m∨nV ∗

−n+m∨n = Ve1V−m+m∨n−e1V
∗
−n+m∨n,

and ι(q)Vn = ∏N
i=1 Vm(1 − VeiV

∗
ei
)V ∗
mVn vanishes because it contains (1 −

Ve1V
∗
e1
)Ve1 as a factor. Similarly, V ∗

p ι(q) = 0 if m� p. If m ≥ n and m ≥ p,
(1.8) gives

(V ∗
mVn)(V

∗
p Vm) = V−m+m∨nV ∗

−n+m∨nV−p+p∨mV ∗
−m+p∨m = V ∗

m−nVm−p
= V−(m−n)+(m−n)∨(m−p)V ∗

−(m−p)+(m−n)∨(m−p).
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Since n �= p, there exists j such that nj �= pj , say nj > pj . Then( − (m− n)+ (m− n)∨ (m− p))
j

= −mj + nj +mj − pj = nj − pj > 0,

so that −(m−n)+(m−n)∨(m−p)−ej still belongs to Nk . Thus ι(q)VnV ∗
p ι(q)

contains a term of the form (1−Vej V ∗
ej
)Vej , which is zero. Similarly, ifpj > nj ,

it contains a term of the form V ∗
ej
(1 − Vej V ∗

ej
). This justifies our claim that q

annihilates the off-diagonal terms.
We now claim that q̂(χ) = 1. This is equivalent to

N∏
i=1

(
α̂m(1)− ̂αm+ei (1)

)
(χ) = 1,

which is further equivalent to

(2.6) α̂m(1)(χ) = 1 and ̂αm+ei (1)(χ) = 0 for 1 ≤ i ≤ N,
because the Fourier transforms of projections only attain the values 0 and 1.
For µ ∈ (G∞/G)∧ and n ∈ Nk , we compute:

α̂n(1)(µ) = 1

|G : ηn(G)|
∑

{s :βn(s)=0}
δ̂s(µ) = 1

|G : ηn(G)|
∑

{s :βn(s)=0}
µ(s).

If µ �≡ 1 on ker βn = Gn/G, the set {µ(s) : βn(s) = 0} is a finite subgroup of
T, and hence sums to 0. Because | ker βn| = |G : ηn(G)|, we therefore have

α̂n(1)(µ) =
{

1 if µ|Gn ≡ 1
0 otherwise.

Thus the properties χ ∈ G⊥
m and χ /∈ G⊥

m+ei for i ≤ N imply (2.6), and
q̂(χ) = 1, as claimed. This is enough to finish off:∥∥∥q( ∑

n∈E
fn,nVnV

∗
n

)
q

∥∥∥ ≥ |q̂f q(χ)| = |f̂ (χ)| ≥ ‖f ‖ − ε,

so q satisfies (2.5).

Corollary 2.6. Let (π,W) be a covariant representation of (C∗(G∞/G),
Nk, α), and suppose that π is faithful. Then there is a well-defined contractive
linear map φ of the range of π ×W onto the range of π such that

(2.7) φ

( ∑
n,p∈E

π(fn,p)WnW
∗
p

)
=

∑
n∈E

π(fn,n)WnW
∗
n .
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Proof. Given a finite sum a := ∑
fn,pVnV

∗
p and ε > 0, we choose q

as in Lemma 2.5. Then compressing with q gives the diagonal f , and hence
compressing π ×W(a)with π(q) gives π(f ). Now the estimate (2.5) implies
that ‖π×W(a)‖ ≥ ‖f ‖ = ‖π(f )‖, soπ×W(a) �→ π(f ) is norm-decreasing.
(See the proof of [11, Lemma 3.6] for further details.)

Proof of Theorem 2.1. Suppose (π,W) is a covariant representation with
π faithful, and π×W(b) = 0. Then φ◦(π×W)(b∗b) = 0. The formulas (2.7)
and (2.2) imply that φ ◦ (π ×W) = π ◦*, so we have π(*(b∗b)) = 0. Since
π is faithful, and * is faithful on positive elements, we deduce that b = 0.

3. Examples and Applications

Example 3.1. Since the dynamical system (C∗(Q/Z),N∗, α) of [11] arises
by applying our construction to the action η of N∗ by multiplication onG = Z
(see Example 1.2), Theorem 3.7 of [11] is a special case of our Theorem 2.1.

Example 3.2. For the system (C∗(H/Z),N2, α) obtained by applying Pro-
position 1.3 to the action of N2 discussed in Example 1.2, our theorem is tech-
nically new. However, it was obvious when writing [11] that the techniques
would work here too.

Example 3.3. Let O be the ring of integers in a number field K of class
number hK = 1, and let O× denote the multiplicative semigroup of nonzero
elements in O . Choosing a sequence of generators {pi} for the prime ideals of
O gives an embedding m �→ ∏

p
mi
i of N∞ in O× whose image S consists of

a generator for each ideal. (The hypothesis hK = 1 says precisely that each
ideal in O is principal.) Let η be the action of N∞ by multiplication on the ad-
ditive group O . Since everything takes place in a field, these endomorphisms
are injective; the index |O : nO| is the norm N(n) of the ideal nO; and since
the identification of N∞ with ideals in O reflects the prime decomposition of
ideals, the identity (1.2) follows from the formula for the prime decomposition
of the g.c.d. (mO, nO). As in Example 1.2, the maps O → ∏

p
−mi
i O induce

an isomorphism of O∞ onto K , our construction yields the dynamical system
(C∗(K/O), S, α) considered in [2, §5], and Theorem 2.1 gives [2, Theorem
5.1]. It is curious that we have apparently replaced the number-theoretic ana-
lysis of (K/O)∧ used in [2, §5] with a general analysis of (G∞/G)∧; it is
intriguing to wonder if there is a parallel framework which encompasses the
main results of [2] on arbitrary number fields.

Example 3.4. Let O be one of the principal subrings of a global field K
considered in [8]. Thus if K has class number hK = 1, O could be the ring
of integers; in general, O is a principal localisation of the ring of integers. As
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above, a choice of generators for the prime ideals of O identifies N∞ with a
subsemigroup of O× comprising a generator for each ideal of O , and we define
η : N∞ → End O by ηn(a) = na, which satisfies our basic hypotheses by the
argument of the previous example. The maps in : O → 1

n
O identify O∞ with

K , and our construction yields an action α of N∞ on C∗(K/O). One can see
from the presentation in [8, Proposition 3.1], or from the Proposition below,
that the crossed product C∗(K/O) �α N∞ is the C∗-enveloping algebra of
the Hecke algebra H (P+

K ;P+
O ) of [8]; our theorem thus extends [2, Theorem

5.1] to the situation considered in [8]. It implies in particular that the reduced
Hecke C∗-algebra used there is universal for representations of H (P+

K ;P+
O )

[8, Proposition 3.2].

Before applying our theorem to some of the examples discussed in [5], we
deduce from the results of [5] that our semigroup crossed products can be
realised as Hecke algebras. Since each η∞

m is an automorphism, we can define
an action of Zk on G∞ by ψm = (η∞

m )
−1, and form the semi-direct product

G∞ �ψ Zk in which (g,m)(h, n) := (g+ψm(h),m+ n). We denote by ν the
splitting m �→ (0,m) for the quotient map (g,m) �→ m.

Proposition 3.5. Let < := G∞ �ψ Zk and <0 := {(g, 0) : g ∈ G =
i0(G)}. Then (<, <0) is an almost normal subgroup pair, and the enveloping
C∗-algebra of the Hecke algebra H (<, <0) is isomorphic toC∗(G∞/G)�αNk .

Proof. The right cosets of <0 are the sets (g+Gm,m) form ∈ Nk , and the
sets

(
g + i0(ηn(G)),−n

)
for n ∈ Nk . Because G = i0(G) ⊂ Gm = im(G),

the left action of <0 fixes the cosets (g+Gm,m). On the other hand, if h, k ∈
G ∼= <0 then

h · (
g + i0(ηn(G)),−n

) = k · (
g + i0(ηp(G)),−p

)
iff n = p and h − k ∈ ηn(G), so the orbit of

(
g + i0(ηn(G)),−n

)
has

|G : ηn(G)| elements. Thus the hypothesis (1.1) implies that (<, <0) is almost
normal, with, in Brenken’s notation, R(ν(−n)) = |G : ηn(G)|.

We now verify the hypotheses of [5, Theorem 3.12]. The elements of Zk

which leave<0 invariant are precisely those in Nk , soG∞ = {(g, 0) : g ∈ G∞}
is the normaliserN<0 of <0 and the semigroup T of [5] is Nk . The action ad ◦ν
of Nk on N = G∞ is just ψ , and the equation Gm + Gn = Gm∨n of Lemma
1.1 (which is a restatement of (1.2)) says that ψm(<0)+ψn(<0) = ψm∨n(<0),
so m ∨ n is a solvable upper bound for m and n in the sense of [5, §2]. We
trivially have Zk = Nk − Nk . Thus Theorem 3.12 of [5] applies, and it only
remains to identify our action of Nk with Brenken’s. But since ψm is (η∞

m )
−1,

the action on G∞/G = N/<0 induced by ad ◦ν(−m) = η∞
m is βm. Since

we have already seen that R(ν(−n)) = |G : ηn(G)|, this implies that the
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endomorphism ?̃(−n) = ?(ν(−n)) described following Remark 1.6 in [5] is
our αn.

Example 3.6. Let F and M be commuting matrices in GLd(Z) such
that det F �= 1, detM �= 1 and (det F, detM) = 1, and define η : N2 →
End Zd by ηm,n = FmMn. The identity |Zd : T Zd | = det T for T ∈ GLd(Z)
(from, for example, [14, p. 49]) immediately implies that η satisfies (1.1),
and it is proved in [5, §4.4] that η satisfies (1.2). As in the number-theoretic
examples, we can identify the direct limitG∞ with the additive subgroupN :=⋃
m,n F

−mM−nZd of Qd andGm,n withF−mM−nZd , and we obtain a dynamical
system (C∗(N/Zd),N2, α) to which our theorem applies. Proposition 3.5 says
that, modulo replacing F and M by their transposes, the crossed product
C∗(N/Zd) �α N2 is the Hecke C∗-algebra C∗(<, <0) considered by Brenken
in [5, §4.5], in which < := N �φ Z2 is the semidirect product for the action
φm,n(x) := F−mM−nx, and <0 := G0,0 = Zd ⊂ N . We therefore have a
characterisation of the faithful representations of these algebras.
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