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SIMULTANEOUS APPROXIMATION IN THE
DIRICHLET SPACE

ARNE STRAY

1. Introduction

Let D denote all analytic functions f in the unit disc D such that the Dirichlet
integral

D(f ) =
∫∫

|f ′|2 dx dy < ∞

is finite. We characterize the subsets F of D with the following property:
Whenever f ∈ D , there are polynomials pn, n = 1, 2, . . . such that

D(f − pn) → 0

and
sup(|pn(z)|, z ∈ F) → sup(|f (z)|, z ∈ F)

as n → ∞. We also characterize those sets F ⊂ D with the property

sup(|f (z)|, z ∈ F) = sup(|f (z)|, z ∈ D)

for all f ∈ D . The characterizations involve geometric properties of F as well
as certain concepts from potential theory. Let T denote the unit circle. The set
F ∩ T , consisting of all limit points of F on T is split into a disjoint union

F ∩ T = Ft ∪ Fnt

where Ft and Fnt are called the tangential and non-tangential part of F ∩ T .
A point w belongs to Fnt if and only if there is zn ∈ F converging to w such
that |w − zn|(1 − |zn|)−1 remains bounded as n → ∞. If z ∈ D, z �= 0, let
Iz = {w ∈ T : |w − z| < 2(1 − |z|) }. For m = 1, 2, . . . , let

Sm(F ) = ∪Iz, z ∈ F, |z| > 1 − m−1

We shall identify T with the interval [−π, π) on the real line R when speaking
about the capacity cap(B) or the linear measure |B| of a subset B of T . The
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capacity we use is the so called Bessel capacity C
1
2 ,2(B) as defined in [1],

page 21. We remark that this capacity is equivalent to logaritmic capacity. We
can now formulate our main results:

Theorem 1.1. If F is a subset of the unit disc D, the following statements
are equivalent

(a) If f ∈ D , there are polynomialspn, n = 1, 2, . . ., such thatD(f −pn) →
0 and sup(|pn|, z ∈ F) → sup(|f (z)|, z ∈ F) as n → ∞.

(b) For m = 1, 2, . . ., Sm(F ) ∪ Fnt is thick at almost all z ∈ F ∩ T . The
exceptional set has zero capacity.

(c) For m = 1, 2, . . ., Sm(F ) is thick at allmost all z ∈ F ∩ T . The excep-
tional set has zero capacity.

The word “thick” in Theorem 1.1 should be understood in the sense of
potential theory in connection with Wiener’s criterion. See Section 2 for more
details. Theorem 1.1 solves the problem of characterizing the Farrell sets for D .
This is part of a general problem in approximation theory raised by L.A. Rubel.
See [16] and [18]. Results about Farrell sets for other function spaces can for
example be found in [12], [11], [17] and [20].

Theorem 1.2. Let F be a subset of D. The following statements are equi-
valent

(a) For allf ∈ D the supremum of |f | onF equals the supremum of |f | onD.
(b) cap(T ) = cap(T \ Ft).

Condition (b) in Theorem 1.2 appeared in a theorem by L. V. Ahlfors and
A. Beurling characterizing removable singularities for analytic functions with
finite Dirichlet integral. See [8], page 82–85, for details. We use their theorem
as well as Theorem 1.1 to deduce Theorem 1.2.

If A is any space of functions in D, a set F ⊂ D is called a set of determ-
ination for A if

sup{ |f (z)|, z ∈ F } = sup{ |f (z)|, z ∈ D }
wheneverf ∈ A . Sets of determination are known for various function spaces.
In particular we mention [5] (bounded harmonic functions), [13] (differences
of positive harmonic functions) and [6], (bounded analytic functions). For ex-
tensions to higher dimensions see [10]. It is interesting to compare Theorem 1.2
with the result L. Brown, A. L. Shields and K. Zeller found: F in a set of de-
termination for H∞(D) if and only if |T \ Ft| = |T |. (H∞ denotes the space
of all bounded analytic functions in D). The rest of the paper is organized as
follows: In Section 2 we give some background about D and potential the-
ory. In Section 3 we state and prove a theorem relating Farrell sets to other
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approximation problems. Then Theorem 1.1 is proved in Section 4. We make
extensive use of the Bessel potential spaceL

1
2 ,2 (R). A convenient reference in

this connection is the recent book [1]. In Section 5 we add some final remarks
including a proof of Theorem 1.2.

2. Potential theory and the space D

If w ∈ T and α > 1, we define

�α(w) = { z ∈ D : |w − z| ≤ α(1 − |z|) }
Lemma 2.1. If f ∈ D , the limit f (w) = lim f (z), z → w, z ∈ �α(w),

exists for almost all w ∈ T . The exceptional set has zero capacity.

Proof. See [4] or [21] page 344. More general results can be found in [1]
page 161 or [8] page 55.

We shall need that the Dirichlet integral can be expressed as a boundary
integral

(1) D(f ) =
∫ π

−π

∫ π

−π

|f̃ (s − t) − f̃ (s)|2
|eit − 1|2 ds dt

where f̃ denotes the 2π periodic function corresponding to f by f̃ (t) =
f (eit ), t ∈ R.

We also consider the Bessel potential space L
1
2 ,2(R) and recall that a func-

tion g belongs to L
1
2 ,2(R) if and only if

(2)
∫ ∞

−∞

∫ ∞

−∞
|g(x − y) − g(x)|2

y2
dx dy

is finite.
If φ ∈ C∞(R) has compact support , it follows directly from (2) that

φg ∈ L
1
2 ,2(R)whenever g ∈ L

1
2 ,2(R).Our next result is certainly well known

and easy to prove.

Lemma 2.2. Let φ ∈ C∞(R) have compact support on (−π, π)

(a) If g is defined on R by g = f̃ for some f ∈ D , then φg ∈ L
1
2 ,2(R).

(b) Let h ∈ L
1
2 ,2(R) be real-valued. Define u = φg on (−π, π). Then

u = �f̃ for some f ∈ D .

Proof. Since | eit−1
t

| → 1 as t → 0, the integrals (1) and (2) are simultan-
eously bounded for φg. The same argument applies to u = φh as defined in
(b) and then Douglas formula (See [3]), gives

(3)
∫∫

D

|∇u|2 dx dy < ∞
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where u is extended to D by Poissons formula. If v is a harmonic conjugate to
u in D, the Cauchy-Riemann equations give u + iv ∈ D .

The reason why we formulated Lemma 2.2 is that we wish to apply various
results aboutL

1
2 ,2(R) as expressed in the recent book [1] to the Dirichlet space

D . The corresponding results for the Bessel potential space L
1
2 ,2(T ) do not

seem equally accessible through the existing literature.
If B ⊂ R and x0 ∈ R, we say that B is thin at x0 if

∫ 1

0

cap(B ∩ (x0 − r, x0 + r))

r
dr < ∞

If the above integral diverges, we say that B is thick at x0. See [1] page 166
for more details.

We end this section by a remark about truncation of functions in L
1
2 ,2(R)

and D . If u ∈ L
1
2 ,2(R) is realvalued and M is a real constant, the function

uM(x) = min(u(x),M), x ∈ R

is called a truncation of u. From (2) it is easy to see that uM ∈ L
1
2 ,2(R).

From (1) it follows that �f may be truncated in the same way if f ∈ D . Even
functions in D may be truncated. For more details see [7].

3. Farrell sets and other approximation problems

We use the notation ‖g‖B = sup(|f (z)|, z ∈ B) if g is a function defined on
a set B. We also use the norm

‖f ‖ =
[
|f (0)|2 +

∫∫
D

|f ′|2 dx dy
] 1

2

, f ∈ D

making D a Hilbert space.
The main result in this section is

Theorem 3.1. The following statements are equivalent for a subsetF ofD:

(a) If f ∈ D there are polynomials pn such that ‖pn − f ‖ → 0 and
‖pn‖F → ‖f ‖F as n → ∞.

(b) If f ∈ D and u is a uniformly continuous function on F , there are
polynomials pn such that ‖pn − f ‖ → 0 and ‖pn − u‖F → ‖f − u‖F
as n → ∞.

Proof. We only need to prove (a) ⇒ (b). We follow an idea that previously
was used in a similar situation for the Hardy space Hp(D), 0 < p < ∞. (See
[12]). Our next lemma is useful in order to localize the approximation problem
in Theorem 3.1.
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Lemma 3.2. Let F be a Farrell set for D . Suppose f ∈ D is bounded on F

and that |f | ≤ t on F ∩', for some disc ' and some t > 0. Then |f (eiθ )| ≤ t

for almost all eiθ ∈ F ∩ ' ∩ T . The exceptional set has zero capacity.

Proof. Let z0 ∈ F ∩ ' ∩ T and choose a smooth function φ such that
φ = 0 near z0, φ ≤ 0 on T , and define fφ = f eφ+iφ̃ where φ̃ is a harmonic
conjugate to the (harmonic) extension of φ to D. We may choose φ such that
|fφ| ≤ t on F and fφ ∈ D . If {qν} are polynomials such that ‖fφ − qν‖ → 0,
it is well known that cap{ θ : |fφ(eiθ ) − qν(e

iθ )| > ε } → 0 as ν → ∞ for
any ε > 0. See for example ([1], Prop 2.3.8). Hence if ‖qν‖F → ‖fφ‖F ≤ t ,
it follows that |fφ| ≤ t on F ∩ T , except for a set of zero capacity. Since
|fφ| = |f | on T near z0, Lemma 3.2 follows.

Our next lemma is the key both to prove Theorem 3.1 and to obtain the
geometric characterization in Theorem 1.1.

Lemma 3.3. Let F be a subset of the unit disc D. The following statements
are equivalent:

(a) F is a Farrell set for D .
(b) If f ∈ D , then |f | ≤ ‖f ‖F on F ∩ T with the exception of a set of zero

capacity.
(c) If f ∈ D is bounded on F and ' is an open disc, there are polynomials

{qν} such that ‖f −qν‖ → 0, ‖qν‖F → ‖f ‖F and ‖qν‖F∩' → ‖f ‖F∩'

Proof. By Lemma 3.2, we only have to prove (b) ⇒ (c). Let f ∈ D be
bounded on F and assume ‖f ‖ = 1. Given ε > 0, we define

Pε = {p ∈ P : ‖p‖ ≤ 1, ‖p‖F ≤ ‖f ‖F + ε, ‖p‖F∩' ≤ ‖f ‖F∩' + ε }.
Here P denotes the set of polynomials. If K ⊂ D is compact, we prove that f
is uniformly approximable onK by functions fromPε . Letµ denote a measure
on K satisfying

|µ(p)| ≤ 1, p ∈ Pε

The restrictions of functions in Pε to the space C(K) consisting of all continu-
ous functions on K , is a convex set. By the separation theorem for convex sets
and the Riesz representation theorem, it is sufficient to prove that |µ(f )| ≤ 1.

To obtain this we consider the Banach space

L = D × C(F\') × C(F ∩ ')

with the norm

N{a, b, c} = max
{ ‖a‖, (t1 + ε)−1‖b‖F\', (t2 + ε)−1‖c‖F∩'

}
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where t1 = ‖f ‖F and t2 = ‖f ‖F∩'. By the Hahn-Banach theorem the linear
functional p → µ(p) admits a normpreserving extension from P to L. We
represent this extension by a triple (g, µ1, µ2) where g ∈ D (note that D is its
own dual), and µ1 and µ2 are measures on F\' and F ∩ ' respectively.

Since we are dealing with a normpreserving extension, we can write (with
〈h, g〉 = h(0)g(0) + ∫∫

D
h′g′ dx dy for f, g ∈ D)

(4) µ(zn) = 〈zn, g〉 + µ1(z
n) + µ2(z

n), n ≥ 0

and

(5) ‖g‖ + (t1 + ε)|µ1| + (t2 + ε)|µ2| ≤ 1

where |λ| denotes the total variation of the measure λ.
By (4) and a “restoration theorem” of S. Hruscev ([15], page 440), it follows

that µ1(B) = µ2(B) = 0 if B ⊂ T has zero capacity. Actually we can not
apply Hruscev’s theorem directly since it deals with measures supported on T .
But if we define measures λ1 and λ2 on T by

λi(φ) =
∫∫

D

φ dµi, i = 1, 2.

for all continuous φ on D being harmonic in D, then λ1 and λ2 are uniquely
defined measures on T being absolutely continuous with respect to linear
measure on T . The desired conclusion about µ1 and µ2 follows by applying
Hruscev’s theorem to λ given by

λ =
2∑

i=1

λi(B) + µi(B)

if B is a Borel set contained in T .
To complete the proof, let us first assume f is bounded on D. Let fr ∈ D

be defined by fr(z) = f (rz), z ∈ D, 0 < r < 1. Since the Taylor series of fr
converge uniformly to fr near D, we conclude that

µ(fr) = 〈fr, g〉 + µ1(fr) + µ2(fr)

for all r, 0 < r < 1. Letting r → 1 we get by dominated convergence that

µ(f ) = 〈f, g〉 + µ1(f ) + µ2(f )

By combining the hypothesis (b) in Lemma 3.3 and the inequality (5), we
conclude that |µ(f )| ≤ 1.
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Since ε and K were arbitrary, we can so far conclude that there are polyno-
mials qν converging weakly to f in D and satisfying the two last requirements
in (c) in Lemma 3.3. By taking convex combinations of polynomials from {qν}
we get (c) in Lemma 3.3 provided f is bounded. By a representation formula
for the Dirichlet integral due to L. Carleson [7], any f in D may be approxim-
ated pointwise in D by bounded functions fn ∈ D such that‖fn‖ is bounded
and |fn(z)| ≤ |f (z)| for z ∈ D. Hence (c) follows and Lemma 3.3 is proved.

We now prove (a) ⇒ (b) in Theorem 3.1 by a constructive argument. Let
φ denote a smooth function with compact support in the complex plane C . If
h is locally integrable on C , we recall the definition of the Tφ-operator (See
[9], page 210)

Tφh(w) = φ(w) + 1

π

∫∫
h(z)

z − w

∂φ

∂z
dx dy(z)

If h belongs to Lp(dx dy) locally, p > 2, we have

(6)
∂

∂w
Tφh = φ

∂h

∂w

and

(7)
∂

∂w
Tφh = ∂

∂w
(φh) + T h

where
T h(w) = −1

π

∫∫
h(z)

(z − w)2
dx dy(z)

denotes the planar Hilbert transform. We refer to [2], page 85–90 and [9] for
more details.

Let us now considerf ∈ D being bounded onF andg uniformly continuous
on F . For the moment we assume f admits analytic continuation across T \F .
Given ε > 0, we cover F by a finite collection of open discs {'j } such that
|g(z)−g(w)| < ε if z,w ∈ 'j ∩F for some j . We select constants gj = g(zj )

where zj ∈ 'j ∩ F .
By Lemma 3.2 and Lemma 3.3, we find for each j polynomials qjν such

that
‖qjν − (f − gj )‖ → 0

and
‖qjν ‖F∩'j

→ ‖f − gj‖F∩'j

and such that ‖qjν ‖F is bounded independent of ν and j .
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Since f is analytic near D\ ∪'j , there are polynomials pν approximating
f uniformly near D\ ∪ 'j . Let qν be given by qν = pν on D\ ∪ 'j , and

qν(z) = qjν (z) + gj , z ∈ 'ν\ ∪ν−1
1 'k

for ν = 1, 2, . . . , j . These “P-splines” qν converge to f in the sense that

(8)
∫∫

D

|f ′ − q
′
ν |2 dx dy → 0

as ν → ∞. Moreover, it is easy to verify that

(9) ‖qν − g‖F ≤ ‖f − g‖F + 2ε

for ν sufficiently large.
The only problem with {qν} is the discontinuity near E = ∪∂'j ∩ { z :

|z| ≤ 1 }. We modify qν near E using the Tφ-operator introduced above.
Let {Dk} denote a finite covering of E by open discs Dk and let {φk} denote

smooth functions supported in Dk such that
∑

φk = 1

near E. We assume Dk ∩ T = ∅ if 1 ≤ k ≤ k0 and if k > k0 we assume Dk is
centered at ζk ∈ T and that the nontangential limit

λk = lim f (z), z → ζk, z ∈ �α(ζk)

exists for some large α to be specified. This is possible to obtain by Lemma 2.1.
We define

q̃ν = qν −
k0∑
k=1

Tφk (qν − f ) −
∑
k>k0

Tφk
(
(qν − λk)χδ

)

where χδ is the characteristic function of { z : |z| < 1 + δ } and δ = δ(ν) is a
small number to be specified.

Claim 1. q̃ν is analytic near D.

Proof. By (6) we have

∂

∂w
q̃ν = ∂

∂w
qν

(
1 −

∑
k

φk

)
= 0

near D.
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Claim 2. ‖q̃ν − g‖F ≤ ‖f − g‖F + 3ε.

Proof. Recall thatDk is centered at ζk ∈ T if k > k0. We assume that either
ζk ∈ T \F or that ζk is an interior point relative to F ∩ T . When estimating
‖q̃ν − g‖F , the essential contribution comes from

‖qν −
∑
k>k0

φk(qν − λk) − g‖F

The terms we have neglected in doing this approximation are∑
1≤k≤k0

Tφ(qν − f )

and ∑
k>k0

∫∫
(qν − λk)

(z − w)

∂φ

∂z
χδ dx dy(z)

The first of these sums is small when ν is large since qν → f uniformly on
compact subsets of D. The second sum is uniformly small in w if α is large
and δ is small, and the discs Dk have small radii for k > k0. We proceed to
estimate ‖qν − ∑

k>k0
φk(qν − λk) − g‖F :

We may assume that the discsDk are pairwise disjoint and thatDk∩F = ∅ if
the center ζk /∈ F . By (9) we only have to estimate ‖qν−φk(qν−λk)−g‖F∩Dk

.
But

‖qν − φk(qν − λk) − g‖F∩Dk
≤ ‖(qν − g)(1 − φk) + φk(λk − g)‖F∩Dk

≤ max{ ‖qν − g‖F∩Dk
, ‖λk − g‖F∩Dk

‖ } ≤ ‖f − g‖F + 2ε

provided the radius dk of Dk is sufficiently small. (To get the last inequality, it
is essential that ζk is interior relative to F ∩ T ).

Claim 3. ‖q̃ν − f ‖ ≤ ε provided {Dk} are chosen properly and ν is
sufficiently large.

Proof. We first remark that the planar Hilbert transform is an isometry on
L2(C ) ([2], page 89). From (6) and (7) it follows that the Tφ-operator maps D
into itself. By (8) we need only estimate∫∫

D\E
|q̃ν ′ − q

′
ν |2 dx dy

which equals

(10)
∫∫

D\E

∣∣∣∣
k0∑
k=1

{
Tφk (qν − f ) −

∑
k>k0

Tφk ((qν − λk)χδ)
}′ ∣∣∣∣

2

dx dy
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The first sum in (10) is easily estimated since qν → f and q
′
ν → f

′

uniformly on the support of φk for 1 ≤ k ≤ k0.
The second sum in (10) is easily estimated using (6), (7) and the isometric

property of the planar Hilbert transform. By construction we may choose Dk ,
k > k0, so small that ‖qν‖D∩Dk

is bounded independently of k and ν. Using
this bound and (8) and that δ = δ(ν) may be chosen as small as we wish, the
second sum in (10) gives a small contribution provided the area of ∪k>k0Dk

is sufficiently small.
In the proof we assumed f to admit analytic continuation across T \F . If

f1 ∈ D is arbitrary it is sufficient to find f as above such that

‖f − f1‖ + ‖f − f1‖F
is as small as we please. This is easy to obtain since the Tφ-operator maps D
into itself. Indeed put f1 = 0 outside D and define

f = f1 −
∑
j

Tψj
(f1) − Rj

Here ψj ars smooth functions with compact support disjoint from F such that∑
j ψj ≡ near T \F . We may assume ψj is supported on a disc Kj and that

no more than M of these discs overlap, where M is a numerical constant.
Moreover, if hj=Tψj

f1 then Rj denotes the map in D given by

Rj(z) = hj (rj z)

for some rj < 1. We may choose {rj } such that

‖hj − Rj‖ + ‖hj − Rj‖F ≤ ε2−j

for j = 1, 2, . . . . The basic property (6) now gives that our function f admits
analytic continuation across T \F and satisfies

‖f1 − f ‖ + ‖f1 − f ‖F ≤ ε

For an alternative method to find f ∈ D approximating f1 as above we
refer to the proof of Lemma 3.2 in [19].

4. Proof of Theorem 1.1

In the proof of Theorem 1.1 we find it convenient to introduce another concept
from potential theory: If B and S are Borel sets in R and B ⊂ S, we say that
B is representative for S if cap(B ∩') = cap(S∩') for any disc '. We refer
to Theorem 11.4.2 and Remark 11.4 on page 327 in [1] for more about these
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sets. By Theorem 11.4.2 in [1], condition (c) in Theorem 1.1 can be restated
as: Sm(F ) is representative for Sm(F ) ∪ F ∩ T for any m ≥ 1.

To prove (a) ⇒ (c), we assume (c) fails while (a) holds. Then L = Sm(F )

fails to be representative for L1 = Sm(F ) ∪ F ∩ T for some m. By The-
orem 11.4.2 in [1] there is a disc ' such that cap' ∩ L < cap' ∩ L1. By
the definition of Bessel capacity there is u ∈ L

1
2 ,2(R) such that u ≥ 1 on

L ∩ ' and u ≤ t < 1 on a set K ⊂ (L1\L) ∩ ' having positive capacity. We
choose φ ∈ C∞

0 (') such that 0 ≤ φ ≤ 1 and define v by v = φ(1 − u). Then
v ≥ 1 − t on a set K1 ⊂ K with capK1 > 0. Replacing v by min{v, 1 − t} if
necessary, we may assume v ≤ (1 − t) everywhere and v ≤ 0 on Sm(F ). By
Lemma 2.2, w defined by

w(eiθ ) = v(θ), −π ≤ θ < π

extends by Poisson’s integral formula to a harmonic function inD having finite
Dirichlet integral. It is evident that‖w‖F < 1−t since if z ∈ F, |z| > 1− 1

m
, the

contribution to w(z) coming from integrating the Poisson kernel over Sm(F )
is significant.

If w̃ is a harmonic conjugate to w in D and f = ew+iw̃, then f ∈ D ,
‖f ‖F < e1−t , while |f | ≥ e1−t on a set K1 ⊂ F ∩T having positive capacity.
By Lemma 3.3 this contradicts F being a Farrell set and (a) ⇒ (c) is proved.
That (c) ⇒ (b) is trivial.

To prove (b)⇒ (a), we assume (b) holds while (a) fails. Again by Lemma 3.3
there is f ∈ D with ‖f ‖F < 1 and |f | ≥ 1 on a set B ⊂ F ∩ T with
cap(B) > 0. By truncatingf if necessary (See [7]), we may assume‖f ‖D = 1.
Given ε > 0, we may even assume ‖f ‖F < ε by replacing f by f N for some
integer N .

If u = �( 1
2 (1+eiαf )), we can choose α real such that u ≥ 1− ε

2 on a subset
B ′ of B with cap(B ′) > 0. We also have ‖u‖F < 1

2 (1 + ε) and 0 ≤ u ≤ 1 on
[−π, π).

Recall that by assumption (b) the set Sm(F ) ∪ Fnt is representative for
Sm(F ) ∪ F ∩ T for any m ≥ 1. For each m there is a subset Dm ⊂ Ft with
capDm = 0, such that Sm(F ) ∪ Fnt is thick at z0 for any z0 ∈ Ft\Dm. Let

D0 = ∪∞
1 Dm

Then cap(D0) = 0 and any set Sm(F ) ∪ Fnt is thick at any z0 ∈ Ft\D0.
Given such z0, we may choose m so large that if Iz ∩Br(z0) �= ∅, then Iz ⊂

B2r (z0) whenever z ∈ F and |z| > 1 − 1
m

. (Here Bt(z) = {w : |w − z| < t })
We fix such an integer m and shall use the function u constructed above

to get a contradiction at our point z0 ∈ Ft\D0. Since u(z) < 1
2 (1 + ε) if

Iz ∈ Sm(F ), it follows by elementary estimates for the Poisson integral that
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u ≤ (1 − ε) on a set Ez ⊂ Iz with |Ez| ≥ d|Iz| and d is independent of z.
Since u is finely continuous outside a subset of T having zero capacity ([1],
page 177), we assume in the following that u is finely continuous at z0.

Let
E =

⋃
z∈F,|z|>1− 1

m

Ez

Claim 4. There is a subset E′ of E such that E′ ∪ Fnt is thick at z0.

Taking the claim for granted and using thatu ≤ (1−ε) onE
′ ∪Fnt, it follows

by fine continuity that u(z0) ≤ (1 − ε). But this contradicts that u ≥ (1 − ε
2 )

on a set B
′ ⊂ Ft of positive capacity.

It remains to prove the claim. With m fixed as above, let {Jν} denote a
countable subcollection of { Iz : z ∈ F, |z| > 1 − 1

m
} such that

⋃
ν

Jν =
⋃

z∈F, |z|>1− 1
m

Iz

Also let Eν ⊂ Jν be the corresponding subset with |Eν | ≥ d|Jν | and define

E
′ =

⋃
ν

Eν

Since Sm(F )∪Fnt is thick at z0, the above claim follows from Wieners criterion
(See [1], page 166) if we can show that

(11) cap((E
′ ∪ Fnt) ∩ B2r (z0)) ≥ C0 cap((Sm(F ) ∪ Fnt) ∩ Br(z0))

for all sufficiently small r and with C0 > 0 independent of r . By regularity
properties of capacity ([1], page 28), it is sufficient to prove (11) if Sm(F ) is
replaced by an arbitrary finite union J = ∪N

1 Jν and E
′

is replaced by ∪N
1 Eν .

By subadditivity of capacity we may even replace {Jν}Nν=1 by a subcollection
of pairwise disjoint intervals.

The following lemma immediately gives (11) and completes the proof of
Theorem 1.1. (Recall that m was large enough to guarantee Iν ⊂ B2r (z0) if
Iν ∩ Br(z0) �= ∅)

Lemma 4.1. Let {Jν} be a finite collection of disjoint intervals and let
for each ν, Kν be a subset of Jν such that |Kν | ≥ d|Jν | with d > 0. Then
cap(∪νKν) ≥ C(d) cap(∪νJν) where C(d) depends only on d.

The proof of Lemma 4.1 will not be given in detail since it is an immediate
consequence of the definition ofC 1

2 ,2
-capacity and the lower bounds for the ca-

pacitary potential V ν
α,p given in Lemma 9.8.3 in [1]. The set F in Lemma 9.8.3
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corresponds to our set ∪νKν and the measure “ν” in Lemma 9.8.3 is the ca-
pacitary measure for F .(see [1], page 21 for more about these concepts). That
Lemma 9.8.3 applies in our situation follows since

cap(Kν) ≥ c

(
log

2

|Kν |
)

for some constant c and any Kν ⊂ (−π, π ].

5. Concluding remarks

We indicate the proof of Theorem 1.2: IfF ⊃ T , we have Sm(F )∪Fnt = T \Fm

where Fm = Ft\Sm(F ). By Theorem 1.1 and Theorem 13 in [14], we only
have to prove

{ cap T = cap(T \Fm),m = 1, 2, . . . } ⇒ cap T = cap(T \Ft)

So we assume cap T = cap(T \Fm), m = 1, 2, . . . and that

(12) cap T > cap(T \K)

for some compact subset K of Ft . Then there is an analytic function hK in
C \K having finite Dirichlet integral in C \K and being non constant. In fact,
a theorem by L. V. Ahlfors and A. Beurling tells that (12) is necessary and
sufficient for the existence of such a function hK .(See [8], page 82–84).

In the following we assumeK is minimal in the sense thathK doesn’t extend
to be analytic near any z ∈ K . This minimal set is still denoted by K and (12)
will hold because of the Ahlfors-Beurling theorem. Let Km = K ∩ Fm. Then
Km is compact and cap T = cap(T \Km) for all m. Let z ∈ Km and assume '
is a disc centered at z such that ' ∩ K ⊂ Km. If φ is a smooth function with
compact support in ' and φ ≡ 1 near z, we define

h' = Tφ(hK)

By the Ahlfors-Beurling theorem and property (6) of the Tφ-operator, h' = 0,
but on the other handhK−h' is analytic near z and this contradicts the assumed
minimality of K .

We may therefore conclude thatK\Km is dense inK for allm. By the Baire
category theorem, the intersection of all K\Km is dense in K , but on the other
hand ∞⋂

m=1

K\Km = ∅
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We conclude that our initial assumption cap T > cap(T \K) was false and
this proves Theorem 1.2.

We finally show that in general the m-condition in Theorem 1.1 involving
Sm(F ) cannot be removed. At the same time we get an example of a Farrell
set for D where |Ft| > 0. We start with a compact totally disconnected subset
K of T such that |K| > 0 and cap T = cap(T \K). Such sets exists (see [1],
Remark 2, on page 314). Let

T \K =
⋃

Iν

where the open arcs Iν are disjoint. We push each Iν slightly into D and obtain
an arc @ν , ν = 1, 2, . . . . Now let

F =
⋃
ν

@ν

We can choose @ν such that Ft = K while Fnt = ∅. Since cap T =
cap(T \K) it follows that T \K is thick at almost all z ∈ K with respect to
capacity (see [1], Theorem 11.4.2 combined with [14], Theorem 13). But we
can choose the sets@ν so close to T that Sm(F ) = (

⋃
ν @ν)\Lm, m = 1, 2, . . .

for some compact set Lm of
⋃

ν @ν). This means that Sm(F ) is thick at almost
all z ∈ F and F is a Farrell set for D by Theorem 1.1.

Let us finally remark that Sm(f ) could be replaced by

Sk
m(F ) = {w : |w − z| < k(1 − |z|) for some z ∈ F, |z| ≥ 1 − m−1 }

in Theorem 1.1 for any k > 1, and the theorem would still remain true. This
follows easily from Lemma 4.1.
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