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THE NEVANLINNA PARAMETRIZATION FOR
A MATRIX MOMENT PROBLEM

PEDRO LOPEZ-RODRIGUEZ∗

Abstract

We obtain the Nevanlinna parametrization for an indeterminate matrix moment problem, giving
a homeomorphism between the set V of solutions to the matrix moment problem and the set V
of analytic matrix functions in the upper half plane such that V (λ)∗V (λ) ≤ I . We characterize
the N-extremal matrices of measures (those for which the space of matrix polynomials is dense in
their L2-space) as those whose corresponding matrix function V (λ) is a constant unitary matrix.

1. Introduction

Let (sn)n≥0 be an indeterminate Hamburger moment sequence and let V be the
set of positive Borel measures µ on R satisfying

∫
R t
n dµ(t) = sn, n ≥ 0. It

is clear that V is an infinite convex set, and well-known that V is compact in
the weak topology. Let (pn)n be the corresponding orthonormal polynomials
satisfying

∫
R
pn(t)pm(t) dµ(t) = δn,m, for any µ ∈ V.

(pn)n is uniquely determined if we assume that pn is of degree n with positive
leading coefficient. The polynomials (qn)n of the second kind are given by

qn(t) =
∫

R

pn(t)− pn(x)

t − x
dµ(x), for any µ ∈ V.

It is well-known that the series
∑ |pn(λ)|2,

∑ |qn(λ)|2 converge uniformly on
compact subsets of C, which makes it possible to define four important entire
functions on C by

a(λ) = λ

∞∑
k=0

qk(0)qk(λ), b(λ) = −1 + λ

∞∑
k=0

qk(0)pk(λ),
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c(λ) = 1 + λ

∞∑
k=0

pk(0)qk(λ), d(λ) = λ

∞∑
k=0

pk(0)pk(λ).

These functions depend only on the moment sequence (sn)n≥0 (or equivalently
on V ).

The setV of all solutionsµ to the indeterminate moment problem was para-
metrized by Nevanlinna in 1922 using these functions. The parameter space
is the one-point compactification of the set P of Pick functions, which are
holomorphic functions in the upper half-plane H with non-negative imagin-
ary part. Pick functions are also called Herglotz or Nevanlinna functions. The
Nevanlinna parametrization is the homeomorphism ϕ → νϕ of P ∪{∞} onto
V given by

(1.1)
∫

R

dνϕ(t)

t − λ
= − a(λ)ϕ(λ)− c(λ)

b(λ)ϕ(λ)− d(λ)
, for λ ∈ C \ R,

which means that the Stieltjes transform of any solution ν ∈ V is given by
(1.1) for a unique Pick function ϕ or by the point ∞ (see [1] or [14]).

Strictly speaking it is not the set V which is parametrized but the set of its
Stieltjes transforms

I (µ)(λ) =
∫

R

dµ(t)

t − λ
, λ ∈ C \ R,

which are holomorphic functions in C\R. This is just as good, sinceµ → I (µ)

is a one-to-one mapping from the set M(R) of finite complex measures on R
to the set H (C \ R) of holomorphic functions in C \ R. The inverse mapping is
given by the Perron-Stieltjes inversion formula

µ = lim
ε→0+

1

2πi
{I (µ)(x + iε)− I (µ)(x − iε)} ,

where the convergence is in the weak topology on the space M(R) as dual
space of C0(R) (continuous functions on R vanishing at infinity).

The measures in V for which the set P of polynomials is dense in its cor-
responding space L2(µ) are those whose corresponding Pick functions are
real constants or ∞. These constant real functions are extremal in P in an
obvious sense. In honour of Nevanlinna these measures are called N-extremal
(Nevanlinna-extremal). Nevanlinna also proved that for a fixed λ ∈ C \ R, the
set

I (V )(λ) =
{∫

R

dν(t)

t − λ
: ν ∈ V

}
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is a circle in the complex plane, and in 1923 M. Riesz gave a beautiful geometric
characterization of the N-extremal measures, proving that a measure ν is N-
extremal if and only if I (ν)(λ) lies on the boundary of the circle I (V )(λ), and
that this property does not depend on the chosen λ (see [1] or [16]). In the
parametrization (1.1), these N-extremal measures are obtained when ϕ(λ) is
taken to be a constant real number.

If we define V to be the set of holomorphic functions v(λ) in the upper
half-plane H such that |v(λ)|2 = v(λ)v(λ) ≤ 1, then the mapping

v(λ) = −[ϕ(λ)+ i]−1[ϕ(λ)− i]

transforms the set P ∪ {∞} onto V bijectively, if we accept that the limit
function ϕ(λ) = ∞ is transformed into v(λ) = −1. Its inverse is given by

(1.2) ϕ(λ) = i[1 − v(λ)][1 + v(λ)]−1.

If we make this change in (1.1) we obtain the expression∫
R

dν(t)

t − λ
= − a(λ)i[1 − v(λ)] − c(λ)[1 + v(λ)]

b(λ)i[1 − v(λ)] − d(λ)[1 + v(λ)]
, for λ ∈ H,

and the N-extremal measures are obtained when v(λ) is a constant complex
number a with |a| = 1. This expression is more suitable to be generalized to
the matrix case. The reason is that, whereas in the scalar case there is only one
limit Pick function ϕ(λ) = ∞, in the matrix case a Pick matrix function can
be “big” in many different ways, as we will see later.

The purpose of this paper is to generalize the parametrization of Nevanlinna
to the matrix case, and to characterize those matrices of measures for which
the matrix polynomials are dense in the corresponding L2-space, that is, the
N-extremal matrices of measures.

Given ν = (νi,j )1≤i,j≤N a positive definite matrix of measures (for any
Borel set A the numerical matrix ν(A) is positive semidefinite) with finite
matrix moments Sk = ∫

R t
k dν(t) of any order k ≥ 0, we denote by V the set

of positive definite matrices of measures having the same matrix moments as
those of ν, and by Vn the set of positive definite matrices of measures having
the same moments as those of ν up to degree n.

By (Pn)∞n=0 we denote the sequence of orthonormal matrix polynomials
with respect to ν, Pn of degree n and with non-singular leading coefficient.

These polynomials (Pn)n satisfy a three term recurrence relation of the form

(1.3) tPn(t) = An+1Pn+1(t)+ BnPn(t)+ A∗
nPn−1(t), n ≥ 0,

(An and Bn being N ×N matrices such that det(An) �= 0 and B∗
n = Bn), with

initial condition P−1(t) = θ (here and in the rest of this paper, we write θ for
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the null matrix, the dimension of which can be determined from the context.
For instance, here θ is the N × N null matrix). It is well-known that this
recurrence relation is equivalent to the orthogonality with respect to a positive
definite matrix of measures: this is the matrix version of Favard’s Theorem
(see [3] or [7]).

We denote by Qn(t) the corresponding sequence of polynomials of the
second kind,

Qn(t) =
∫

R

Pn(t)− Pn(x)

t − x
dν(x), n ≥ 0,

which also satisfy the recurrence relation (1.3), with initial conditionsQ0(t) =
θ and Q1(t) = A−1

1 .
As in the scalar case the determinacy or indeterminacy of the matrix moment

problem is also related to the indices of deficiency of the operator J defined
by the infinite N -Jacobi matrix

J =



B0 A1

A∗
1 B1 A2

A∗
2 B2 A3

. . .
. . .

. . .




on the space '2, whereAn andBn are the coefficients which appear in the three
term recurrence relation (1.3). In this case the indices of deficiency can be any
natural number from 0 toN , being both equal to 0 in the determinate case and
both equal to N in the completely indeterminate case.

In this paper we assume the matrix moment problem has the highest possible
degree of indetermination, that is, these indices are both equal toN . In section
3 we will prove that in this case the two series

(1.4)
∞∑
k=0

Q∗
k(λ)Pk(η) and

∞∑
k=0

P ∗
k (λ)Pk(η)

converge uniformly in the variables λ and η on every bounded set of the com-
plex plane.

This permits to define four holomorphic matrix functionsA(λ), B(λ),C(λ)
andD(λ) which depend only on the sequence (Sn)n≥0 and play a fundamental
role in the parametrization of the solutions to the matrix moment problem (see
(2.16)).

In the matrix case the parameter space is the space V of holomorphic matrix
functions V (λ) in the upper half-plane H such that V (λ)∗V (λ) ≤ I . We will
prove the following theorem:
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Theorem 1.1. There exists a homeomorphism between the set V and the
set V given by

(1.5)
∫

R

dν(t)

t − λ
= − {

C∗(λ)[I + V (λ)] − iA∗(λ)[I − V (λ)]
}

{
D∗(λ)[I + V (λ)] − iB∗(λ)[I − V (λ)]

}−1
.

The N-extremal matrices of measures in V correspond to the constant unitary
matrices in V .

In most cases this expression can be given in terms of a Pick matrix function.
A Pick matrix function is a holomorphic matrix function +(λ) in the upper
half-plane H such that for any z in H the matrix

Im+(λ) = +(λ)−+(λ)∗

2i

is positive semidefinite.
If we suppose the matrix function [I + V (λ)] to be invertible for every λ

in H, then we can define

(1.6) +(λ) = i[I − V (λ)][I + V (λ)]−1,

which is a Pick matrix function:

(1.7)

+(λ)−+(λ)∗

2i
= 1

2i

{
i[I − V (λ)][I + V (λ)]−1

+ i[I + V (λ)∗]−1[I − V (λ)∗]
}

= 1

2
[I + V (λ)∗]−1

{
[I + V (λ)∗][I − V (λ)]

+ [I − V (λ)∗][I + V (λ)]
}

[I + V (λ)]−1

= [I + V (λ)∗]−1
{
I − V (λ)∗V (λ)

}
[I + V (λ)]−1

≥ 0

because V (λ) belongs to V . In this case (1.5) becomes
∫

R

dν(t)

t − λ
= − {

C∗(λ)− A∗(λ)+(λ)
} {
D∗(λ)− B∗(λ)+(λ)

}−1
,

which is the matrix version of (1.1). For any given Pick matrix function+(λ),
the inverse mapping of (1.6) is

V (λ) = −[+(λ)+ iI ]−1[+(λ)− iI ].
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Observe that [+(λ) + iI ] is always invertible, for if there exists λ0 in H such
that det[+(λ0)+ iI ] = 0, then there exists a non-zero vector v in CN such that
+(λ0)v

∗ = −iv∗ (vectors v in CN are considered as row vectors, and v∗ is the
column of complex conjugate entries of v) . Using this we get

v

(
+(λ0)−+(λ0)

∗

2i

)
v∗ = −vv∗ < 0

which is absurd because +(λ) is a Pick matrix function.
For V (λ) defined in this way, we have

I + V (λ) = I − [+(λ)+ iI ]−1[+(λ)− iI ] = [+(λ)+ iI ]−12iI,

which is always invertible. Consequently (1.7) holds for every λ in H and it
immediately gives that V (λ)∗V (λ) ≤ I , that is, V (λ) belongs to V .

If ν is N-extremal, then its Stieltjes transform is

(1.8)
∫

R

dν(t)

t − λ
= − {

C∗(λ)[I + U ] − iA∗(λ)[I − U ]
}

{
D∗(λ)[I + U ] − iB∗(λ)[I − U ]

}−1

for a certain unitary matrix U . If I + U is invertible, then

H = i[I − U ][I + U ]−1

is hermitian, and (1.8) reduces to

(1.9)
∫

R

dν(t)

t − λ
= − {

C∗(λ)− A∗(λ)H
} {
D∗(λ)− B∗(λ)H

}−1
,

but observe that not every N-extremal matrix of measures can be represented
in this way for a hermitian matrix.

During the forties the matrix moment problem appears mentioned in several
papers by a few soviet authors, who obtained some results using operator
theory. Indeed, Theorem 1.1 appears without proof in the 1949 paper [10] by
Krein, who refers to previous papers on operator theory by himself and M.
Krasnoselskii ([11] and [12]) and to a paper by Nagel ([15]) from 1936. As
far as we know, no proof of Theorem 1.1 has ever appeared published. We can
only think that Krein saw this result as a consequence of his investigations in
operator theory. The proof we present in this paper is obtained without using
any techniques of operator theory, and together with our previous paper ([13]),
it gives a direct extension and a geometric interpretation to the matrix case of
the 1922 and 1923 results of R. Nevanlinna and M. Riesz.
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2. Preliminaries

In what follows, if P(λ) is a matrix polynomial, we denote by P ∗(λ) the
polynomial obtained from P(λ) by replacing each of its matrix coefficients
by its hermitian conjugate, so that P(λ)∗ = P ∗(λ). If F(λ) is a holomorphic
function on a domain 1 containing 0 we denote by F ∗(λ) the matrix function
obtained from F(λ) by replacing each of the matrix coefficients in its power
series expansion at zero by its hermitian conjugate, and similarly we have
F(λ)∗ = F ∗(λ). We say that λ0 is a zero of the analytic matrix function F(λ)
if det F(λ0) = 0.

The set of positive definite matrices of measures is endowed with the vague
and weak topologies. The vague topology is the coarsest topology for which
the mappings µ → ∫

R f dµ are continuous, where f ∈ Cc(R) is arbitrary. By
Cc(R)we denote the set of continuous functions with compact support defined
on R. The weak topology is the coarsest topology for which the mappings
µ → ∫

R f dµ are continuous, where f ∈ Cb(R) is arbitrary. By Cb(R) we
denote the set of continuous and bounded functions defined on R.

Since Cc(R) is strictly included in Cb(R) it is clear that the vague topology
is coarser, that is, it has fewer open sets than the weak topology. It is not hard
to see that both topologies are Hausdorff. V is a compact and convex set for
these topologies which coincide on V (see [8]).

For µ a positive definite matrix of measures, the space L2(µ) is defined as
the set ofN×N matrix functionsf :R→MN×N(C) such that τ(f (t)M(t)f (t)∗)
∈ L1(τµ), whereM(t) is the Radon-Nikodym derivative of µ with respect to
its trace (τµ) (for a matrix A = (ai,j )1≤i,j≤N , we denote τA for its trace, i.e.
τA = ∑N

i=1 ai,i):

M = (mi,j )
N
i,j=1 =

(
dµi,j

dτµ

)
1≤i, j≤N

.

The space L2(µ) is endowed with the norm

∥∥f ∥∥
2,µ = ∥∥τ(f (t)M(t)f (t)∗) 1

2
∥∥

2,τµ =
(∫

R
τ(f (t)M(t)f (t)∗) dτµ(t)

) 1
2

and is a Hilbert space. The duality works as for the scalar case (see [17] or
[8] for more details). For the definition of the Lp spaces associated to µ,
1 ≤ p < ∞, see also [8].

We include here the matrix version of some classical formulae for orthonor-
mal scalar polynomials. The proofs are easily verified using the three term
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recurrence relation (1.1).

(2.1)
An(u, v) = (v − u)

n−1∑
k=0

Q∗
k(u)Qk(v)

= Q∗
n−1(u)AnQn(v)−Q∗

n(u)A
∗
nQn−1(v), for u, v ∈ C,

(2.2)
Bn(u, v) = −I + (v − u)

n−1∑
k=0

Q∗
k(u)Pk(v)

= Q∗
n−1(u)AnPn(v)−Q∗

n(u)A
∗
nPn−1(v), for u, v ∈ C,

(this is Green’s formula),

(2.3)
Cn(u, v) = I + (v − u)

n−1∑
k=0

P ∗
k (u)Qk(v)

= P ∗
n−1(u)AnQn(v)− P ∗

n (u)A
∗
nQn−1(v), for u, v ∈ C,

(2.4)
Dn(u, v) = (v − u)

n−1∑
k=0

P ∗
k (u)Pk(v)

= P ∗
n−1(u)AnPn(v)− P ∗

n (u)A
∗
nPn−1(v), for u, v ∈ C,

(this is Christoffel-Darboux formula).
By using the Liouville-Ostrogradsky formula

(2.5) Qn(λ)P
∗
n−1(λ)− Pn(λ)Q

∗
n−1(λ) = A−1

n , for λ ∈ C,

and

(2.6) Pn(λ)Q
∗
n(λ) = Qn(λ)P

∗
n (λ), for λ ∈ C,

one can obtain the three following formulae strightforwardly:

(2.7) An(u, v)D
∗
n (u, v)− Bn(u, v)C

∗
n (u, v) = I, for u, v ∈ C,

(2.8) Cn(u, v)D
∗
n (u, v) = Dn(u, v)C

∗
n (u, v), for u, v ∈ C,

and

(2.9) An(u, v)B
∗
n(u, v) = Bn(u, v)A

∗
n (u, v), for u, v ∈ C.
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We define the four matrix functions

(2.10)
An(λ) = An(0, λ),

Cn(λ) = Cn(0, λ),

Bn(λ) = Bn(0, λ),

Dn(λ) = Dn(0, λ).

For u = 0 and v = λ in (2.7), (2.8) and (2.9) we get the identities

(2.11) An(λ)D
∗
n(λ)− Bn(λ)C

∗
n(λ) = I, for λ ∈ C,

(2.12) Cn(λ)D
∗
n(λ) = Dn(λ)C

∗
n(λ), for λ ∈ C,

and

(2.13) An(λ)B
∗
n(λ) = Bn(λ)A

∗
n(λ), for λ ∈ C.

By using (2.5) and (2.6) we obtain the four following formulae:

(2.14)

Pn(λ) = Qn(0)Dn(λ)− Pn(0)Bn(λ),

Pn−1(λ) = Qn−1(0)Dn(λ)− Pn−1(0)Bn(λ),

Qn(λ) = Qn(0)Cn(λ)− Pn(0)An(λ),

Qn−1(λ) = Qn−1(0)Cn(λ)− Pn−1(0)An(λ),

for λ ∈ C,

for λ ∈ C,

for λ ∈ C,

for λ ∈ C.

We also have

(2.15) B∗
n(λ)Dn(λ)−D∗

n(λ)Bn(λ) = 2i Im λ
n−1∑
k=0

P ∗
k (λ)Pk(λ),

for λ ∈ C.
As we explained in the Introduction, we can define four holomorphic matrix

functions A(λ), B(λ), C(λ) and D(λ) by taking limit in (2.10) for n tending
to ∞:

(2.16)

A(λ) = λ

∞∑
k=0

Q∗
k(0)Qk(λ),

C(λ) = I + λ

∞∑
k=0

P ∗
k (0)Qk(λ),

B(λ) = −I + λ

∞∑
k=0

Q∗
k(0)Pk(λ),

D(λ) = λ

∞∑
k=0

P ∗
k (0)Pk(λ).

By taking limit in (2.11), (2.12), (2.13) and (2.15) we get the following for-
mulae:

(2.17) A(λ)D∗(λ)− B(λ)C∗(λ) = I, for λ ∈ C,
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(2.18) C(λ)D∗(λ) = D(λ)C∗(λ), for λ ∈ C,

(2.19) A(λ)B∗(λ) = B(λ)A∗(λ), for λ ∈ C,

and

(2.20) B∗(λ)D(λ)−D∗(λ)B(λ) = 2i Im λ
∞∑
k=0

P ∗
k (λ)Pk(λ),

for λ ∈ C.
If we suppose Qn−1(0) is invertible we can express

Bn(λ) = Q∗
n−1(0)An{Pn(λ)− A−1

n Q
∗
n−1(0)

−1Q∗
n(0)A

∗
nPn−1(λ)}.

Putting u = v = 0 in (2.1) we get that the matrix Q∗
n−1(0)

−1Q∗
n(0)A

∗
n is

hermitian and then remark 2.3 of [7] gives that the zeros of Bn(λ) are all real.
If Qn−1(0) is not invertible, then Qn−1(t) is invertible, for |t | sufficiently

small, for the number of zeros of Qn−1(t) is at most (n − 1)N , and then we
can express

Q∗
n−1(t)AnPn(λ)−Q∗

n(t)A
∗
nPn−1(λ)

= Q∗
n−1(t)An{Pn(λ)− A−1

n Q
∗
n−1(t)

−1Q∗
n(t)A

∗
nPn−1(λ)}.

Again, putting u = v = t in (2.1) we see that the matrixQ∗
n−1(t)

−1Q∗
n(t)A

∗
n is

hermitian and consequently the zeros ofQ∗
n−1(t)AnPn(λ)−Q∗

n(t)A
∗
nPn−1(λ)

are real. Since the zeros of Bn(λ) are obtained for |t | tending to 0, these
must be real as well. As a consequence the zeros of the limit matrix function
B(λ) = limn→∞ Bn(λ) are also real.

In a similar way, taking into account thatQn(t) is also a sequence of ortho-
gonal matrix polynomials we deduce that the zeros of An(λ), Cn(λ), Dn(λ),
A(λ), C(λ) and D(λ) are all real.

In [13] the sets Bn(λ) and B∞(λ) were defined and used. For λ ∈ C \ R,
Bn(λ) is the set of N ×N complex matrices ω such that the matrix inequality

(2.21) [ω +Gn(λ)]Rn−1(λ)
−1[ω +Gn(λ)]

∗ ≤ |λ− λ|−2Rn−1(λ)

holds, where Gn(λ) = Bn(λ, λ)Dn(λ, λ)
−1 and

Rn(λ) =
( n∑
k=0

P ∗
k (λ)Pk(λ)

)−1

.
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Equation (2.21) is equivalent to

(2.22)
n−1∑
k=0

(Q∗
k(λ)+ ωP ∗

k (λ))(Qk(λ)+ Pk(λ)ω
∗) ≤ ω − ω∗

λ− λ
.

The set B∞(λ) is the intersection of all the sets Bn(λ), for n ∈ N. Its equation
is

(2.23) [ω +G(λ)]R(λ)−1[ω +G(λ)]∗ ≤ |λ− λ|−2R(λ),

where G(λ) = B(λ, λ)D(λ, λ)−1 and R(λ) is the limit matrix

R(λ) = lim
n→∞Rn(λ),

or equivalently

(2.24)
∞∑
k=0

(Q∗
k(λ)+ ωP ∗

k (λ))(Qk(λ)+ Pk(λ)ω
∗) ≤ ω − ω∗

λ− λ
.

By using formulae (2.1), (2.2), (2.3) and (2.4) in (2.22) it is straightforward
to see that Bn(λ) is also the set of N ×N complex matrices ω such that

(2.25)
Im{[Q∗

n−1(λ)+ ωP ∗
n−1(λ)]An[Pn(λ)ω

∗ +Qn(λ)]}
Im λ

≥ θ.

The condition forω to be an extremal point of Bn(λ) (in the sense of convexity)
is that the matrix

[Q∗
n−1(λ)+ ωP ∗

n−1(λ)]An[Pn(λ)ω
∗ +Qn(λ)]

is hermitian.
By substituting formulae (2.14) in (2.25) we get that Bn(λ) is also described

by the matrix inequality

(2.26)
Im{[C∗

n(λ)+ ωD∗
n(λ)][An(λ)+ Bn(λ)ω

∗]}
Im λ

≥ θ,

and by taking limit for n tending to ∞ we get that B∞(λ) is described by the
inequality

(2.27)
Im{[C∗(λ)+ ωD∗(λ)][A(λ)+ B(λ)ω∗]}

Im λ
≥ θ.
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In [13] it is proved that for a fixed non-real λ the image through the Stieltjes
transform of all the matrices of measures of V in the point λ

I (V )(λ) =
{∫

R

dµ(t)

t − λ
: µ ∈ V

}

is the set B∞(λ). This is the generalization to the matrix case of the same
theorem proved by Nevanlinna in 1922 for the scalar case.

The extremal points (in the sense of convexity) of the set I (V )(λ) = B∞(λ)
are the matrices ω for which equality is attained in (2.27), that is the N × N

complex matrices ω such that the matrix

[C∗(λ)+ ωD∗(λ)][A(λ)+ B(λ)ω∗]

is hermitian. Ifµ is a matrix of measures inV for which I (µ)(λ) is an extremal
point of I (V )(λ), we call this matrix of measures N -extremal, as in the scalar
case.

Finally, [13] generalizes Riesz’s theorem by proving that the matrices of
measures of V for which the set P of matrix polynomials is dense in the
corresponding spaceL2(µ) are precisely theN -extremal matrices of measures,
and that the N -extremality of a matrix of measures does not depend on the
non-real λ chosen. The questions of density for the truncated matrix moment
problem were solved in [9].

3. The indices of deficiency

Given a complex λ in the upper half-plane, the index of deficiency δ+ is the
dimension of the kernel of the operator J ∗ −λI . The index δ− is defined in the
same way for λ in the lower half-plane. It is a well-known result in operator
theory (see [2]) that the indices δ+ and δ− do not depend on the λ chosen in
the upper or lower half-plane respectively.

If we solve the equation (J ∗ − λI)x∗ = θ (x∗ denotes an infinite column
vector), we obtain that the solutions x∗ must be necessarily of the form

x∗ =


P0(λ)v

∗
P1(λ)v

∗
...


 ,

for a certain vector v in CN . The condition for x∗ to belong to '2 is

∞∑
k=0

‖Pk(λ)v∗‖2
2 < ∞,
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and consequently the index of deficiency δ+ is

δ+ = dim

{
v ∈ CN :

∞∑
k=0

‖Pk(λ)v∗‖2
2 < ∞

}

= dim
{
v ∈ CN : vRn(λ)

−1v∗ is bounded
}
.

We have the following results:

Theorem 3.1. The index of deficiency of the operator J ∗ − λI is equal to
the rank of the limit matrix R(λ).

This theorem appears in [18]. For the convenience of the reader we include
a proof of it here. A more general result can be found in [6, Th. 2.6].

Proof. We prove that a vector v in CN belongs to the image of R(λ) if
and only if vRn(λ)−1v∗ is a bounded sequence. Observe that since R(λ) is a
hermitian matrix, the subspaces Im(R(λ)) and Ker(R(λ)) of CN are orthogonal
complements of each other.
(�⇒)We prove first that for any n ≥ 1 we have

(3.1) R(λ)Rn(λ)
−1R(λ) ≤ R(λ).

To see this observe that for n ≥ 1 we have Rn(λ) ≥ R(λ) and thus for any
ε > 0 we have Rn(λ) + εI ≥ R(λ) + εI . Since R(λ) + εI is invertible, we
obtain

(Rn(λ)+ εI )−1 ≤ (R(λ)+ εI )−1,

and thus

(R(λ)+ εI )(Rn(λ)+ εI )−1(R(λ)+ εI ) ≤ (R(λ)+ εI ).

Now (3.1) is obtained by letting ε → 0.
We prove now the first implication. Given v ∈ Im(R(λ)), there exists w in

CN such that v = wR(λ), and we have

vRn(λ)
−1v∗ = wR(λ)Rn(λ)

−1R(λ)w∗ ≤ wR(λ)w∗,

which is bounded.
(⇐�)We choose a unitary matrix Un(λ) such that

Un(λ)Rn(λ)
−1Un(λ)

∗ = diag(λ(n)1 , . . . , λ
(n)
N ),

with λ(n)1 ≤ λ
(n)
2 ≤ · · · ≤ λ

(n)
N . A subsequence Unp(λ) of Un(λ) converges to a

unitary matrix U(λ), and without loss of generality we can assume Unp(λ) is
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the same Un(λ). We suppose now v is a vector in CN such that vRn(λ)−1v∗ is
bounded, that is,

vUn(λ)
∗ diag(λ(n)1 , . . . , λ

(n)
N )Un(λ)v

∗ ≤ K,

for a certain constant K .
We know that λ(n)1 , . . . , λ

(n)
N are all increasing sequences, and thus they are

convergent, respectively to certain λj , for n → ∞, and

vU(λ)∗ diag(λ1, . . . , λN)U(λ)v
∗ ≤ K.

We call ṽ = vU(λ)∗ = (ṽ1, . . . , ṽN ), and we get

N∑
j=1

λj |ṽj |2 ≤ K.

If we call I = {j = 1, . . . , N : λj = ∞}, we have that ṽj = 0 for j ∈ I .
Now,

Un(λ)Rn(λ)Un(λ)
∗ = diag

(
1

λ
(n)
1

, . . . ,
1

λ
(n)
N

)
,

and hence
U(λ)R(λ)U(λ)∗ = diag

(
1

λ1
, . . . ,

1

λN

)
,

where 1/λj = 0 for j ∈ I . To finish we see now that v ∈ Im(R(λ)), by proving
that vw∗ = 0, for any w ∈ Ker(R(λ)). For w ∈ Ker(R(λ)) we have

0 = wR(λ)w∗ =
N∑
j=1

1

λj
|w̃j |2,

with w̃ = wU(λ)∗, hence w̃j = 0 for j /∈ I , and consequently

vw∗ = vU(λ)∗U(λ)w∗ = ṽw̃∗ =
N∑
j=1

ṽj w̃j = 0

because ṽj = 0 for j ∈ I and w̃j = 0 for j ∈ I .

Theorem 3.2. If for a fixed complex λ0 the series

∞∑
k=0

P ∗
k (λ0)Pk(λ0)
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is convergent, then

(1) The series ∞∑
k=0

Q∗
k(λ0)Qk(λ0)

is also convergent, and

(2) The series

∞∑
k=0

P ∗
k (λ)Pk(λ) and

∞∑
k=0

Q∗
k(λ)Qk(λ)

are both uniformly convergent in any compact subset of the complex
plane.

Proof. (1) In the hypothesis, the set B∞(λ0) described by 2.23 is iso-
morphic to H ∗H ≤ I . Formula 2.24 gives that for any matrix ω0 in B∞(λ0),
the series ∞∑

k=0

(Q∗
k(λ0)+ ω0P

∗
k (λ0))(Qk(λ0)+ Pk(λ0)ω

∗
0)

is convergent. To deduce the result it is enough to choose any ω0 in B∞(λ0)

and to take into account that the sequences of N × N matrices Mn for which
the series

∑∞
n=1M

∗
nMn is convergent form a vector space.

(2) The proof known for the scalar case (see [1, p. 16]) works for the matrix
case with minimal adjustments, so we omit it.

By virtue of Theorem 3.2 the claim about the series (1.4) stated in the
Introduction follows, which permits to define the four important holomorphic
matrix functions (2.16).

4. Pick matrix functions

We denote by P the set of Pick matrix functions, that is, the set of holomorphic
matrix functions+(λ) defined on H = {Im λ > 0} such that for any λ in H the
matrix

Im+(λ) = +(λ)−+(λ)∗

2i

is positive semidefinite. Any Pick matrix function can be extended to the half
plane H∗ = {Im z < 0} by putting +(z) = +(z)∗. Of course the functions
obtained in this way are not in general analytic continuation of each other. Thus



260 pedro lopez-rodriguez

we can assume the space P to consist of all the functions +(λ) holomorphic
in C \ R such that

+(λ) = +(λ)∗ and
+(λ)−+(λ)∗

i Im λ
≥ θ, for Im λ �= 0.

For example, if ν(t) is a positive matrix of measures with τν(R) < ∞ (τ

denotes the trace of the matrix), then its Stieltjes transform ω(λ) =
∫

R

dν(t)

t − λ
is a Pick matrix function, for

ω(λ)− ω(λ)∗

2i
=

∫
R

Im λ

|t − λ|2 dν(t).

We now give some results about Pick matrix functions. We only give the
proof of the fourth theorem. For the first three theorems the proofs work as
in the scalar case (see [1]). The presentation here follows the treatment of the
classical theory as given in [4].

Theorem 4.1. The formula

(4.1) +(λ) = αλ+ β +
∫

R

tλ+ 1

t − λ
dν(t), λ ∈ H

establishes a one-to-one correspondence between Pick matrix functions+(λ)
and triples (α, β, ν), where α is a positive semidefinite numerical matrix, β is
a hermitian matrix and ν is a positive definite matrix of measures such that
τν(R) < ∞.

Theorem 4.2. The matrix functions I (σ ), where σ is a positive definite
matrix of measures with τσ (R) < ∞ are characterized as the Pick matrix
functions + for which

(4.2) +(iy) = O

(
1

y

)
for y → ∞.

Theorem 4.3. Let (Sn)n be a matrix moment sequence. For every repres-
enting matrix of measures σ , the Pick matrix function +(λ) = I (σ )(λ) has
the asymptotic expansion

(4.3) +(λ) ∼
∞∑
n=0

− Sn

λn+1
, for |λ| → ∞

in any Vδ , 0 < δ ≤ π
2 , where the set Vδ is

Vδ = {z ∈ C \ {0} such that δ ≤ arg z ≤ π − δ} , 0 < δ ≤ π

2
.
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Reciprocally, if (Sn)n≥0 is a sequence of matrices and +(λ) is a Pick matrix
function such that (4.3) holds in Vπ

2
, then (Sn)n is a matrix moment sequence

and +(λ) = I (σ )(λ) for some representing measure σ .

We define the set N of holomorphic functions to be

N = {F ∈ H (H) : ∀λ ∈ H, F (λ) ∈ B∞(λ)},

endowed with the usual topology of uniform convergence on compact subsets
of H.

Theorem 4.4. The mapping I : V → N given by

I (σ )(λ) =
∫

R

dσ(t)

t − λ

is a homeomorphism. As a consequence N is compact.

Proof. We already know that if σ ∈ V then I (σ )(λ) ∈ B∞(λ) (see Prelim-
inaries). The mapping is one-to-one by the Perron-Stieltjes inversion formula.
To see it is onto it suffices to show that any F ∈ N has the asymptotic expan-
sion

F(iy) ∼
∞∑
n=0

− Sn

(iy)n+1
, for y → ∞.

Since every I (σ ) has this asymptotic expansion for σ ∈ V , it is enough to
prove that

lim
y→∞ y

n[I (σ )(iy)− F(iy)] = θ, for n ∈ N.

We have

(4.4) yn[I (σ )(iy)−F(iy)] = yn[I (σ )(iy)+G(iy)] − yn[G(iy)+F(iy)].

We consider the Frobenius norm ‖A‖ = τ(AA∗) 1
2 . We have to prove that the

norms of the two matrices summing in the right hand side of (4.4) tend to
0 when y → ∞. For the first one, observe that I (σ )(iy) ∈ B∞(iy) (2.23)
implies that

∥∥[ω +G(iy)]R(−iy)− 1
2
∥∥ ≤ 1

2|y|
∥∥R(iy) 1

2
∥∥.
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Using this we have
∥∥yn[I (σ )(iy)+G(iy)]

∥∥
= |y|n∥∥yn[I (σ )(iy)+G(iy)]R(−iy)− 1

2R(−iy) 1
2
∥∥

≤ 1

2
|y|n−1

∥∥R(iy) 1
2
∥∥∥∥R(−iy) 1

2
∥∥

= 1

2
|y|n−1

{
τ

( ∞∑
k=0

P ∗
k (−iy)Pk(iy)

)−1} 1
2
{
τ

( ∞∑
k=0

P ∗
k (iy)Pk(−iy)

)−1} 1
2

≤ 1

2
|y|n−1

{
τ(P ∗

n (−iy)Pn(iy))−1
} 1

2
{
τ(P ∗

n (iy)Pn(−iy))−1
} 1

2 .

Since Pn(λ) has a non-singular leading coefficient, {τ(P ∗
n (−iy)Pn(iy))−1} 1

2

and {τ(P ∗
n (iy)Pn(−iy))−1} 1

2 are both equivalent to y−n for y → ∞, and
consequently the above expresion tends to 0 for y → ∞.

For the second matrix the proof works the same since by hypothesisF(iy) ∈
B∞(iy).

We see now that the mapping is continuous. Let’s suppose σn → σ weakly
for σn, σ in V . This gives that I (σn)(λ) → I (σ )(λ) for all λ ∈ H. We have to
show that I (σn)(λ) converges to I (σ )(λ) uniformly on any compact subsetK
of H. If δ = inf{Im z : z ∈ K}, then δ > 0 and |t − λ| ≥ δ, for t ∈ R, z ∈ K .
For a given ε > 0, there exists finitely many points z1, . . . , zp in K such that

K ⊆
p⋃
i=1

D(zi, ε),

and we can choose N in N such that

‖I (σ )(zi)− I (σn)(zi)‖ < ε, for n ≥ N, i = 1, . . . p.

For z ∈ K we choose i so that z ∈ D(zi, ε) and get for n ≥ N

‖I (σ )(z)− I (σn)(z)| ≤ ∥∥I (σ − σn)(z)− I (σ − σn)(zi)
∥∥ + ε

≤
∥∥∥∥
∫

R

∣∣∣∣ 1

t − z
− 1

t − zi

∣∣∣∣ d(σ + σn)(t)

∥∥∥∥ + ε

=
∥∥∥∥
∫

R

|z− zi |
|t − z||t − zi |d(σ + σn)(t)

∥∥∥∥ + ε

≤ ε

(
2

δ2
‖S0‖ + 1

)
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which shows that

lim
n→∞

sup
z∈K

∥∥I (σ )(z)− I (σn)(z)
∥∥ = 0.

A continuous bijection of a compact space onto a Hausdorff space is a homeo-
morphism and the image N is compact. This completes the proof.

5. Proof of Theorem 1.1

By virtue of Theorem 4.4, to finish proving Theorem 1.1, we only have to
prove that there is a bijection between V and N given by

(5.1) ω(λ) = − {
C∗(λ)[I + V (λ)] − iA∗(λ)[I − V (λ)]

}
{
D∗(λ)[I + V (λ)] − iB∗(λ)[I − V (λ)]

}−1
,

where ω(λ) belongs to N and V (λ) belongs to V . This bijection clearly
respects uniform convergence on compact subsets of H.

To begin with, let’s see that for a given V (λ) in V , (5.1) defines ω(λ)
holomorphic in H. For this it is enough to prove that the zeros of the matrix
function {

D∗(λ)[I + V (λ)] − iB∗(λ)[I − V (λ)]
}

are all real. Suppose on the contrary that there exists λ0 in H and a non-zero
vector v in CN such that

(5.2)
{
D∗(λ0)[I + V (λ0)] − iB∗(λ0)[I − V (λ0)]

}
v∗ = θ.

Since B∗(λ0) is invertible, this is equivalent to

B∗(λ0)
−1D∗(λ0)[I + V (λ0)]v

∗ = i[I − V (λ0)]v
∗.

Using this and (2.20) we obtain

v[I + V (λ0)
∗]

{
D(λ0)B(λ0)

−1 − B∗(λ0)
−1D∗(λ0)

}
[I + V (λ0)]v

∗

= v[I + V (λ0)
∗]B∗(λ0)

−1
{
B∗(λ0)D(λ0)

−D∗(λ0)B(λ0)
}
B(λ0)

−1[I + V (λ0)]v
∗

= 2i(Im λ0)v[I + V (λ0)
∗]B∗(λ0)

−1

( ∞∑
k=0

P ∗
k (λ0)Pk(λ0)

)
B(λ0)

−1 − [I + V (λ0)]v
∗
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which is i multiplied by a non negative number. This must be equal to

−iv {
[I − V (λ0)

∗][I + V (λ0)] + [I + V (λ0)
∗][I − V (λ0)]

}
v∗

= −2iv[I − V (λ0)
∗V (λ0)]v

∗,

which is i multiplied by a non-positive number. For these two expressions to
coincide it must be [I + V (λ0)]v∗ = θ , which together with (5.2) gives

θ = D∗(λ0)[I + V (λ0)]v
∗ = 2iB∗(λ0)v

∗,

which is absurd because B∗(λ0) is an invertible matrix.
The inverse mapping of (5.1) is given by

(5.3) V (λ) = − {
[C∗(λ)+ ω(λ)D∗(λ)] + i[A∗(λ)+ ω(λ)B∗(λ)]

}−1

· {
[C∗(λ)+ ω(λ)D∗(λ)] − i[A∗(λ)+ ω(λ)B∗(λ)]

}
.

Let’s see that if ω(λ) belongs to N , then (5.3) defines V (λ) holomorphic in
H, for which it is enough to prove that the zeros of the matrix{

[C∗(λ)+ ω(λ)D∗(λ)] + i[A∗(λ)+ ω(λ)B∗(λ)]
}

are all real. Suppose on the contrary that there exists λ0 in H and a non-zero
vector v in CN such that

v
{
[C∗(λ0)+ ω(λ0)D

∗(λ0)] + i[A∗(λ0)+ ω(λ0)B
∗(λ0)]

} = θ,

which gives

(5.4) v[C∗(λ0)+ ω(λ0)D
∗(λ0)] = −iv[A∗(λ0)+ ω(λ0)B

∗(λ0)].

From this we deduce that

(5.5)

v
Im

{
[C∗(λ0)+ ω(λ0)D

∗(λ0)][A(λ0)+ B(λ0)ω
∗(λ0)]

}
Im λ0

v∗

= 1

2i Im λ0

{
v[C∗(λ0)+ ω(λ0)D

∗(λ0)][A(λ0)+ B(λ0)ω
∗(λ0)]v

∗

− v[A∗(λ0)+ ω(λ0)B
∗(λ0)][C(λ0)+D(λ0)ω

∗(λ0)]v
∗}

= − 1

Im λ0
v[A∗(λ0)+ ω(λ0)B

∗(λ0)][A(λ0)+ B(λ0)ω
∗(λ0)]v

∗.

But ω(λ0) belongs to B∞(λ0) because ω(λ) is a function in N , and this means
that

Im
{
[C∗(λ0)+ ω(λ0)D

∗(λ0)][A(λ0)+ B(λ0)ω
∗(λ0)]

}
Im λ0

≥ θ.
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Together with (5.5) this gives the only possibility

v[A∗(λ0)+ ω(λ0)B
∗(λ0)] = θ,

and (5.4) yields
v[C∗(λ0)+ ω(λ0)D

∗(λ0)] = θ.

From these two equations we get

−vω(λ0) = vC∗(λ0)D
∗(λ0)

−1 = vA∗(λ0)B
∗(λ0)

−1,

which using (2.18) and (2.17) leads to

θ = v[A∗(λ0)B
∗(λ0)

−1 − C∗(λ0)D
∗(λ0)

−1]

= v[A∗(λ0)B
∗(λ0)

−1 −D(λ0)
−1C(λ0)]

= vD(λ0)
−1[D(λ0)A

∗(λ0)− C(λ0)B
∗(λ0)]B

∗(λ0)
−1

= vD(λ0)
−1B∗(λ0)

−1

which is absurd because B(λ0) and D(λ0) are both invertible matrices and
v �= θ .

Finally, let’s see that V (λ) belongs to V if and only if ω(λ) belongs to N .
For this, observe that for V (λ) given by (5.3), we have

V (λ)∗V (λ) ≤ I

⇐⇒{
[C(λ)+D(λ)ω∗(λ)] + i[A(λ)+ B(λ)ω∗(λ)]

}
· {[C(λ)+D(λ)ω∗(λ)] − i[A(λ)+ B(λ)ω∗(λ)]

}−1

· {[C∗(λ)+ ω(λ)D∗(λ)] + i[A∗(λ)+ ω(λ)B∗(λ)]
}−1

· {[C∗(λ)+ ω(λ)D∗(λ)] − i[A∗(λ)+ ω(λ)B∗(λ)]
} ≤ I

⇐⇒{
[C(λ)+D(λ)ω∗(λ)] − i[A(λ)+ B(λ)ω∗(λ)]

}−1

· {[C∗(λ)+ ω(λ)D∗(λ)] + i[A∗(λ)+ ω(λ)B∗(λ)]
}−1

≤ {
[C(λ)+D(λ)ω∗(λ)] + i[A(λ)+ B(λ)ω∗(λ)]

}−1

· {[C∗(λ)+ ω(λ)D∗(λ)] − i[A∗(λ)+ ω(λ)B∗(λ)]
}−1

⇐⇒
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{
[C∗(λ)+ ω(λ)D∗(λ)] + i[A∗(λ)+ ω(λ)B∗(λ)]

}
· {[C(λ)+D(λ)ω∗(λ)] − i[A(λ)+ B(λ)ω∗(λ)]

}
≥ {

[C∗(λ)+ ω(λ)D∗(λ)] − i[A∗(λ)+ ω(λ)B∗(λ)]
}

· {[C(λ)+D(λ)ω∗(λ)] + i[A(λ)+ B(λ)ω∗(λ)]
}

⇐⇒
2i

{
[A∗(λ)+ ω(λ)B∗(λ)][C(λ)+D(λ)ω∗(λ)]

− [C∗(λ)+ ω(λ)D∗(λ)][A(λ)+ B(λ)ω∗(λ)]
} ≥ θ

⇐⇒
Im

{
[C∗(λ)+ ω(λ)D∗(λ)][A(λ)+ B(λ)ω∗(λ)]

} ≥ θ,

which is precisely the condition for ω(λ) to belong to B∞(λ).

The above calculations show that ν is a N-extremal matrix of measures if
and only if its correspondingV (λ) verifiesV (λ)∗V (λ) = I . But a holomorphic
matrix function V (λ) on H such that V (λ)∗V (λ) = I reduces to a constant
unitary matrix. To see this, observe that for any unitary vector v in CN , the
vector function

F(λ) = vV (λ)∗ = (f1(λ), . . . , fN(λ))

satisfies F(λ)F (λ)∗ = vV (λ)∗V (λ)v∗ = 1, so if we take any point λ0 in H
and define

G(λ) = f1(λ0)f1(λ)+ . . .+ fN(λ0)fN(λ),

G(λ) is holomorphic in H, and Cauchy-Schwarz inequality yields that for any
λ in H, |G(λ)| ≤ 1. We have G(λ0) = 1, so the maximum modulus theorem
gives thatG(λ) = 1, for every λ in H. Now, Cauchy-Schwarz inequality gives
that fi(λ) = fi(λ0), for every 1 ≤ i ≤ N and for every λ in H. Thus we have
that for any vector v on CN , vV (λ)∗ is constant, which immediately gives that
V (λ) is constant and equal to a unitary matrix U .

REFERENCES

1. Akhiezer, N. I., The classical moment problem and some related questions in analysis, english
translation, Oliver and Boyd, Edinburgh, 1965.

2. Akhiezer, N. I. and Glazman, I. M., Theory of linear operators in Hilbert Space, english
translation, Vol. II, Frederick Ungar Publishing Co., New York, 1966.

3. Aptekarev, A. I. and Nikishin, E. M., The scattering problem for a discrete Sturm-Liouville
operator, Math. USSR-Sb. 49 (1984), 325–355.

4. Berg, C., Moment problems and orthogonal polynomials, Lecture Notes, Department of
Mathematics, University of Copenhagen, 1994.



the nevanlinna parametrization for a matrix moment problem 267

5. Bauer, H., Probability theory and elements of measure theory, Academic Press, New York,
London, 1978.

6. Berezanskii, Ju. M., Expansions in eigenfunctions of selfadjoint operators, Translations of
Mathematical Monographs, American Mathematical Society, Providence, Rhode Island,
1968.

7. Duran, A. J. and Lopez-Rodriguez, P., Orthogonal matrix polynomials: zeros and Blu-
menthal’s Theorem, J. Approx. Theory 84 (1996), 96–118.

8. Duran, A. J. and Lopez-Rodriguez, P., The Lp space of a positive definite matrix of measures
and density of matrix polynomials in L1, J. Approx. Theory 90 (1997).

9. Duran, A. J. and Lupez-Rodriguez, P., Density questions for the truncated matrix moment
problem, Canad. J. Math. 49 (1997), 708–721.

10. Krein, M., Infinite J -matrices and a matrix moment problem, Dokl. Akad. Nauk SSSR 69,
nr. 2 (1949), 125–128 (translation from russian by Walter Van Assche in a personal note).

11. Krein, M., Fundamental aspects of the representation theory of Hermitian operators with
deficiency index (m,m), Ukrain. Mat. Zh. 1 (1949), 3–66; (English translation in Amer.
Math. Soc. Transl. (2) 97 (1970), 75–143).

12. Krein, M. and Krasnoselskii, M., Fundamental theorems of the extension of Hermitian op-
erators and some applications to the theory of orthogonal polynomials and the moment
problem, Uspehi Mat. Nauk 2 (1947), nr. 3 (19), 60–106

13. Lopez-Rodriguez, P., Riesz’s theorem for orthogonal matrix polynomials, Constr. Approx. 15
(1) (1999), 135–151.

14. Nevanlinna, R., Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche
Momentenproblem, Ann. Acad. Sci. Fenn. A 18 5 (1922).

15. Nagel, H., Über die quadrierbaren Hermiteschen Matrizen entstehenden Operatoren, Math.
Ann. 112 (1936), 247–285.

16. Riesz, M., Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt.
ac Sci. (Szeged) 1 (1922), 209–225.

17. Rosenberg, M., The square-integrability of matrix-valued functions with respect to a non-
negative hermitian measure, Duke Math. J. 31 (1964), 291–298.

18. Zhani, D., Problème des moments matriciels sur la droite: construction d’une famille de solu-
tions et questions d’unicité, Publications du Departement de Mathématiques, Université
Claude-Bernard-Lyon I Nouvelle serie 21 (1984), 1–84.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE SEVILLA
APDO. 1160
41080-SEVILLA
SPAIN
E-mail: plopez@cica.es


