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KOSZUL PROPERTY FOR POINTS IN
PROJECTIVE SPACES

ALDO CONCA, NGÔ VIÊT TRUNG and GIUSEPPE VALLA

Abstract

A graded K-algebra R is said to be Koszul if the minimal R-free graded resolution of K is linear.
In this paper we study the Koszul property of the homogeneous coordinate ring R of a set of s
points in the complex projective space Pn. Kempf proved that R is Koszul if s ≤ 2n and the points
are in general linear position. If the coordinates of the points are algebraically independent over
Q, then we prove that R is Koszul if and only if s ≤ 1 + n + n2/4. If s ≤ 2n and the points are
in linear general position, then we show that there exists a system of coordinates x0, . . . , xn of Pn

such that all the ideals (x0, x1, . . . , xi ) with 0 ≤ i ≤ n have a linear R-free resolution.

Introduction

Let X be a set of s (distinct) points of the projective space Pn over the field C
of complex numbers and let R denote the coordinate ring of X. Kempf proved
that if s ≤ 2n and the points are in general linear position then the ring R is
Koszul, see [11]. In Section 2 and 4 we extend Kempf result in two directions.
We first prove that if s ≤ 2n and the points are in general linear position then
there exists a system of generators x0, . . . , xn of the maximal homogeneous
ideal of R such that all the ideals (x0, . . . , xj ) with 0 ≤ j ≤ n have linear
R-free resolution. Secondly we prove that if one takes points with generic
coordinates (i.e. algebraically independent over Q), then R is Koszul if and
only if s ≤ 1 +n+n2/4. Note that our bound is quadratic in n while Kempf’s
bound is linear. On the other hand, we do not have a geometric description of
the Koszul locus; we do not even know whether it is Zariski open.

Our results have nice applications to the theory of non-commutative graded
algebras. Namely, we can compute the Hilbert series of non-commutative
algebras defined by the squares of s ≤ 1 + n+ n2/4 linear forms with generic
coefficients in n+ 1 indeterminates.

The results of Section 4 are based on results of Section 3 which is devoted to
the study of Artinian algebras. Given a series H(z) one may ask whether there
exists a Koszul algebra with Hilbert seriesH(z). If such an algebra exists, then
we will say that H(z) is Koszul admissible. A necessary condition for H(z) to
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be Koszul admissible is the positivity of the coefficients of the series 1/H(−z),
while a sufficient condition is the existence of an algebra with Hilbert series
H(z) and whose relations are quadratic monomials. We show that if H(z) is a
polynomial of degree 2, sayH(z) = 1+nz+mz2, then the Koszul admissibility
of H(z), the positivity of 1/H(−z), the existence of an algebra with quadratic
monomial relations and Hilbert seriesH(z) are equivalent conditions and they
are also equivalent to the conditionm ≤ n2/4. This result has some interesting
consequences like, for instance, Turán’s theorem for triangles.

We would like to thank Ralf Fröberg and Clas Löfwall for helpful discus-
sions and suggestions concerning the results of this paper.

1. Notation and generalities

In this paper K will denote the field of complex numbers. This assumption is
not essential for most of the results of the paper but we adopt it for the sake of
simplicity.

A graded commutative Noetherian K-algebra R = ⊕
i∈N Ri is said to be

standard graded (or homogeneous) if R0 = K and R is generated (as a K-
algebra) by elements of degree 1. A standard graded K-algebra R is said
to be Koszul if the field K has a linear R-free resolution as an R-module.
Equivalently,R is Koszul if and only if TorRi (K,K)j = 0 for all i �= j . Denote
by HR(z) and by PR(z) respectively the Hilbert series and the Poincaré-Betti
series of R, i.e.

HR(z) =
∑
i≥0

dimK Riz
i

and
PR(z) =

∑
i≥0

dimK TorRi (K,K)zi.

It is known that if R is Koszul then the two series satisfy the following
relation:

(1) PR(z)HR(−z) = 1

Equation (1) is indeed equivalent to the Koszulness ofR, see for instance [3, p.
87]. We may present R as a quotient of a polynomial ring S = K[x1, . . . , xn]
by a homogeneous ideal I . If R is Koszul then I is generated by quadrics (and
linear forms if the presentation is not minimal). Not all the algebras defined by
quadrics are Koszul; for instance the algebraK[x, y, z, t]/(x2, y2, z2, t2, xy+
zt) is not Koszul. It is a theorem of Fröberg that R is Koszul if its defining
ideal I is generated by monomials of degree 2 [5]. More generally,R is Koszul
if I has a Gröbner basis of quadrics (see for instance [4, Thm. 2.2]). For an
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updated survey on Koszul algebras we refer the reader to the paper of Fröberg
[8].

We will define now Koszul filtrations. This notion was inspired by the work
of Herzog, Hibi and Restuccia ([10]) on strongly Koszul algebras. This class
of algebras was introduced to study mainly semigroup rings. Since semig-
roup rings have a specified system of generators (the semigroup generators),
strongly Koszul algebras were defined in terms of a given system of generators.
For the applications we have in mind we need to be more flexible.

Definition 1.1. Let R be a standard graded K-algebra. A family F of
ideals of R is said to be a Koszul filtration of R if:

1) Every ideal I ∈ F is generated by linear forms,

2) The ideal 0 and the maximal homogeneous ideal M of R belong to F.

3) For every I ∈ F different from 0 there exists J ∈ F such that J ⊂ I ,
I/J is cyclic and J : I ∈ F.

One has:

Proposition 1.2. Let F be a Koszul filtration ofR. Then TorRi (R/I,K)j =
0 for all i �= j and for all I ∈ F. In particular, the homogeneous maximal
ideal M of R has a system of generators x1, . . . , xn such that all the ideals
(x1, . . . , xj )with j = 1, . . . , n have a linearR-free resolution andR is Koszul.

Proof. The second statement follows immediately from the first. To prove
that TorRi (R/I,K)j = 0 for all i �= j and for all I ∈ F we may argue by
induction on i and on I (by inclusion). If i = 0 or if I = 0 then the assertion
clearly holds. So assume i > 0 and I �= 0. Then there exists J ∈ F such that
J ⊂ I , I/J is cyclic and J : I ∈ F. Set H = J : I . The short exact sequence

0 → R/H [−1] 
 I/J → R/J → R/I → 0

yields the exact sequence

TorRi (R/J,K)j → TorRi (R/I,K)j → TorRi−1(R/H,K)j−1

By induction the first and the third term of the sequence vanish for all j �= i.
Then the middle term vanishes for all j �= i.

An important class of rings with a Koszul filtration are rings defined by
quadratic monomial relations. If R = K[x1, . . . , xn]/I where I is generated
by monomials of degree 2 then it is easy to see that the family of all the ideals
generated by subsets of {x1, . . . , xn} is a Koszul filtration. This was observed
already in [4, Sect. 2].
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2. Koszul filtration for points

The goal of this section is to show that the coordinate ring R of a set X of s
points of Pn in general linear position has a Koszul filtration provided s ≤ 2n.
In particular we have:

Theorem 2.1. Let X be a set of points in Pn and let R be the coordinate
ring of X. Assume that |X| ≤ 2n and that the points of X are in general
linear position. Then there exists a system of generators x0, x1, . . . , xn of the
maximal ideal M ofR such that the ideals (x0, x1, . . . , xj ) have a linearR-free
resolution for all j = 0, 1, . . . , n.

We need some preliminary results. To this end we introduce a piece of
notation. Let S be the coordinate ring of Pn. Set s = |X|, and denote by
P1, . . . , Ps ∈ Pn the points in X. Further denote by ℘1, . . . , ℘s the corres-
ponding prime ideals of S. The defining ideal ofX is the ideal I = ∩s

i=1℘i and
its coordinate ring is R = S/I . In this section we will always assume that:

i) The points of X are in general linear position: if s ≤ n then it means that the
points span a Ps−1, while if s ≥ n + 1 then it means that no subset of n + 1
points of X is contained in a hyperplane of Pn.

ii) n+ 1 ≤ s ≤ 2n.

The assumption n + 1 ≤ s is not restrictive: if s ≤ n, then we may as-
sume that the points are indeed coordinate points so that their defining ideal is
generated by quadratic monomials and some variables. It is well-known that a
set of s points in general linear position in Pn have maximal Hilbert function
provided s ≤ 2n+ 1; this means that for all i ∈ N

dimK Ri = min

{(
n+ i

n

)
, s

}
.

It is clear that we can find an hyperplane L = 0 passing through the
points P1, . . . , Pn and avoiding the points Pn+1, . . . , Ps and another hyper-
plane M = 0 passing through the points Ps−n+1, . . . , Ps and avoiding the
points P1, . . . , Ps−n.

Lemma 2.2. With the above notation we have

I + (L) = ∩n
i=1℘i.

Proof. The inclusion I + (L) ⊆ ∩n
i=1℘i is obvious. So it is enough to

prove that the two ideals have the same Hilbert series. The Hilbert series of
S/ ∩n

i=1 ℘i is
1 + (n− 1)z

1 − z
.
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One has the short exact sequence

0 → (S/I : L)[−1] → R → S/I + (L) → 0

Note that

I : L = (∩s
i=1℘i) : L = ∩s

i=1(℘i : L) = ∩s
i=n+1℘i.

It follows that the Hilbert series of S/I : L is

1 + (s − n− 1)z

1 − z
.

Hence the Hilbert series of S/I + (L) is

1 + nz + (s − n− 1)z2

1 − z
− z(1 + (s − n− 1)z)

1 − z
= 1 + (n− 1)z

1 − z
.

Let T ∈ S1 be a linear form which is a non-zerodivisor on R = S/I . We
denote by x, y and z the residue classes of T , L and M respectively in S/I .
Since LM ∈ I, we have yz = 0 in R.

Lemma 2.3. With the above notation the Hilbert series of R/(x, y) is 1 +
(n− 1)z.

Proof. By assumption T �∈ ∪s
i=1℘i and hence T is also a non-zerodivisor

modulo I + (L) = ∩n
i=1℘i . Since the points of X are in general linear position

it follows that the Hilbert series of R/(x, y) is 1 + (n− 1)z.

As a corollary we have:

Corollary 2.4. Every homogeneous ideal of R containing x and y is
generated by linear forms.

Proof. Let J be an ideal of R containing x and y. By virtue of Lemma 2.3
the ideal (x, y) contains R2, hence the minimal generators of J have degree 1.

Now we are in the position to define a family F of ideals of linear forms
of R and to show that it is a Koszul filtration for R. We will denote by M the
homogeneous maximal ideal of R.

Since by construction yz = 0, we have (x, y) ⊆ (x) : (z). By virtue of
Corollary 2.4, the ideal (x) : (z) is generated by linear forms. Hence there
exist linear forms y2, . . . , yk such that

(x) : (z) = (x, y, y2, . . . , yk).
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Exchanging the role between y and z, there exist linear forms z2, . . . , zh such
that

(x) : (y) = (x, z, z2, . . . , zh).

Indeed h = k = s − 2n + 1 but we do not need this. We may now extend
x, z, z2, . . . , zh to a system of generators of M by adding linear forms, say
zk+1, . . . , zn. Then define

F =




0, (x),

(x, y), (x, y, y2), . . . , (x, y, y2, . . . , yh),

(x, z), (x, z, z2), . . . , . . . , (x, z, z2, . . . , zn−1),

M = (x, z, z2, . . . , zn)




Proposition 2.5. The family F is a Koszul filtration for R.

Proof. Conditions 1) and 2) of Definition 1.1 are clearly satisfied. One
notes that:

∗) 0 : (x) = 0,

1.1) (x) : (y)= (x, z, z2, . . . , zh), 2.1) (x) : (z)= (x, y, y2, . . . , yk),

1.2) (x, y) : (y2)= M, 2.2) (x, z) : (z2)= M,

...
...

...
...

1.h) (x, y, y2, . . . , yh−1) : (yk)= M, 2.h) (x, z, z2, . . . , zh−1) : (zh)= M,

...
...

2.n) (x, z, z2, . . . , zn−1) : (zn)= M

where ∗) holds because x is a non-zerodivisor, 1.1) and 2.1) hold by construc-
tion, 1.2), 1.3), . . . , 1.h) hold because R2 ⊂ (x, y), 2.2), 2.3),. . . ,2.n − 1),
2.n) hold because R2 ⊆ (x, z). This shows that condition 3) of Definition 1.1
is satisfied.

Now Theorem 2.1 is a consequence of Proposition 2.5 and Proposition 1.2.

3. Short Hilbert series compatible with the Koszul property

In this section we consider (a special case of) the following problem: Given a
series H(z) does there exist a Koszul algebra R whose Hilbert series is H(z)?
If yes, then we will say that H(z) is Koszul admissible.
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It follows from Equation (1) of Section 1 that a necessary condition forH(z)

to be Koszul admissible is that the series 1/H(−z) has positive coefficients.
For Artinian algebras of socle degree 2 this condition is also sufficient.

Theorem 3.1. Let n,m be non-negative integers and let H(z) = 1 + nz+
mz2. Set A = K[x1, . . . , xn]. The following conditions are equivalent:

1) There exists an ideal I ⊂ A generated by monomials of degree 2 such
that the Hilbert series of A/I is H(z).

2) H(z) is Koszul admissible.

3) The coefficients of the series 1/H(−z) are positive.

4) m ≤ n2/4.

Proof. 1) ⇒ 2) ⇒ 3) hold by virtue of Fröberg’s theorem [5] and equation
(1) in Section 1 (no matter what H(z) is).

To show that 3) implies 4) we consider the roots, say α1 and α2 of the
polynomial H(−z). Then H(−z) = (1 − z/α1)(1 − z/α2) and hence

1

H(−z) = 1

(1 − z/α1)

1

(1 − z/α2)
=

∑
i≥0

zi

αi1

∑
j≥0

zj

α
j

2

It follows that the k-th coefficient, say βk , of 1/H(−z) is given by

βk =
k∑

i=0

1

αi1α
k−i
2

= αk+1
1 − αk+1

2

αk1α
k
2(α1 − α2)

By contradiction, assume thatm > n2/4. Then α1 and α2 = ᾱ1 are non-real
complex numbers. Then

βk = Im(αk+1
1 )

N(α1)k Im(α1)

where Im(w) denotes the imaginary part of a complex number w and N(w) =
ww̄ denotes its norm. It is easy to see that Im(αk+1

1 ) changes sign as k vary,
and hence βk cannot be positive for all k.

It remains to show that 4) implies 1). To this end assume that m ≤ n2/4
and let us first consider the case when n is even, say n = 2k. Take J to be the
ideal

J = (x1, . . . , xk)
2 + (xk+1, . . . , x2k)

2.

Then J is generated by 2
(
k+1

2

) = k(k + 1) monomials and J3 = A3.
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Hence the Hilbert series of A/J is 1 + nz + (n2/4)z2. Now let H be the
ideal generated by any set of n2/4 −m distinct monomials of degree 2 not in
J , and set I = J +H . By construction I is generated by monomials of degree
2 and the Hilbert series of A/I is 1 + nz +mz2.

If n is odd, say n = 2k + 1, then let J be the ideal

J = (x1, . . . , xk)
2 + (xk+1, . . . , x2k+1)

2.

The conclusion follows by using the same arguments as before.

Remark 3.2. The relationship between conditions 2), 3) and 4) of the the-
orem has been observed also by Anick, see [2, Lemma 5.10]

Remark 3.3. A (surprising) corollary of the above theorem is Turán’s
theorem for triangles (see for instance [12, Sect. 4]). Turán’s theorem for
triangles says that the maximum number of edges that a graph with n vertices
and without triangles can have is [n2/4]. That the number is at least [n2/4]
follows immediately from the fact that the complete bipartite graphs Ka,a and
Ka,a+1 do not contain triangles.

Let nowG be a graph withn vertices {1, 2, . . . , n},m edges and no triangles.
Let I be the ideal of S = k[x1, . . . , xn] generated by x2

1 , . . . , x
2
n and xixj where

i �= j and (i, j) is not an edge of G.
Then I is minimally generated by n + (

n

2

) − m = (
n+1

2

) − m monomials.
Since G does not contain triangles, I3 = S3 so that the Hilbert series of S/I is
1 + nz +mz2.

By virtue of Theorem 3.1 we have m ≤ n2/4 and this proves the theorem.
The connection between Turán’s theorem and the positivity of a series re-

lated to 1/H(−z) was observed also by Stanley [15, 2.5, 2.6], see also [16, p.
481].

Let now I = (f1, . . . , fh) be an ideal generated by quadratic forms of the
polynomial ring A = K[x1, . . . , xn], say fk = ∑

a
(k)
ij xixj . We set R = A/I .

We will say that the forms f1, . . . , fh have generic coefficients if the coef-
ficients a(k)ij of the quadrics are algebraically independent over Q. Further we
may consider the sequence of forms (f1, . . . , fh) as a point in the affine space
P = Am

K where m = h
(
n+1

2

)
.

Hence for every T = (f1, . . . , fh) ∈ P there is a corresponding al-
gebra R = K[x1, . . . , xn]/I where I is the homogeneous ideal generated
by f1, . . . , fh.

As a corollary of the above theorem we have part 1) and 2) of the following:
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Proposition 3.4. 1) Let c ∈ N be an integer, c ≥ 2. Ifh ≥ (
n+1

2

)−n2/4 then
there exists a non-empty Zariski open subset Uc of P such that for every point in
Uc the corresponding algebraR has the following property: T orRi (K,K)j = 0
for all i ≤ c and all j �= i.

2) Let I = (f1, . . . , fh) be an ideal generated by quadrics in A = K[x1,

. . . , xn] and set R = A/I . If h ≥ (
n+1

2

) − n2/4 and the quadrics f1, . . . , fh
have generic coefficients then R is Koszul.

3) If h ≥ (
n

2

) + 1, then there exists a non-empty Zariski open subset U of
P such that for every point in U the corresponding algebra R has a Koszul
filtration.

Proof. 1) Set m = (
n+1

2

) − h. By assumption m ≤ n2/4. For a point
I = (f1, . . . , fh) ∈ P note that the Hilbert series ofR = A/I is 1+nz+mz2

if and only if dim(I2) = h and I3 = A3. These conditions can be expressed
by maximal rank conditions on matrices whose entries are (linear) forms in
the coefficients of the fi’s. Since 1 + nz + mz2 actually occurs as Hilbert
series for some point in P, namely the one corresponding to the h quadratic
forms (indeed monomials) which generate the ideal I of Theorem 3.1, we may
conclude that there is a non-empty Zariski open subset of P on which the
Hilbert series for the corresponding algebras is 1 + nz +mz2.

Assume now that we are given a point I = (f1, . . . , fh) ∈ P such that the
corresponding algebra R has Hilbert series 1+nz+mz2. It is clear that K has
linear 1-syzygies over R. We are going to prove that if K has linear (c − 1)-
syzygies over R, then the condition of having also linear c-syzygies can be
translated into a maximal rank condition. From this and from the knowledge
of an example (again the one of Theorem 3.1) of a Koszul algebra with Hilbert
series 1 + nz +mz2, one deduces 1) by induction on c.

Let )c(K) be the c-th syzygy module of K . Denote by M the maximal
ideal of R and by βi the i-th coefficient of the series 1/(1 − nz + mz2). In
other words, βi = nβi−1 −mβi−2 with β0 = 1 and β1 = n.

By assumption we have an exact sequence of R-modules

0 → )c(K) → R(−c + 1)βc−1 → R(−c + 2)βc−2

→ . . . → R(−1)β1 → R → K → 0

The Hilbert function of the syzygy module )c(K) can be read off from
the exact sequence. One has dim)c(K)c = nβc−1 − mβc−2 = βc while
dim)c(K)c+1 = mβc−1. Now K has linear c-syzygies if and only if )c(K) is
generated (as an R-module) by )c(K)c, that is R1)

c(K)c = )c(K)c+1. The
last condition can be expressed by saying that the rank of the mβc−1 × nβc
matrix describing R1)

c(K)c is mβc−1. Note that nβc > mβc−1 because by
virtue of Theorem 3.1 the number nβc − mβc−1 = βc+1 is strictly positive.
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One notes that the entries of the matrices in the resolution can be chosen to be
polynomials whose coefficients are polynomial functions of the coefficients
of the fi’s, and hence the above maximal rank condition can be expressed in
terms of the coefficients of the fi’s.

2) It follows immediately from 1).
3) Set m = (

n+1
2

) − h. By assumption m ≤ n− 1. As in 1) one proves that
there is a non-empty Zariski open subset of P on which the Hilbert series for
the corresponding algebra is 1 + nz + mz2. Further it is clear that on another
non-empty Zariski open subset of P the corresponding algebra R has the
property R2 ⊂ (x1).

So assume that R2 ⊂ (x1). Since n > m the multiplication by x1 from
R1 to R2 is not injective. Hence there exists a linear form say y1 ∈ R1 such
that x1y1 = 0. The form y1 = a1x1 + . . . + anxn can be chosen such that
its coefficients ai are rational functions in the coefficients of the fi’s. The
condition R2 ⊂ (y1) is also open and we will show later that it is not empty
(for one of the linear forms in 0 : (x1)). The ideal 0 : (x1) contains y1 and, since
R2 ⊂ (y1), it is generated by linear forms, say 0 : (x1) = (y1, y2, . . . , yn−m)
with yi ∈ R1. We may complete y1, . . . , yn−m to a basis of R1 by adding some
linear forms, say, yn−m+1, . . . , yn. By the same reason there exists a basis
x1, z2, . . . , zn of R1 such that 0 : y1 = (x1, z2, . . . , zn−m). Then one proves as
in Proposition 2.5 that the family

F =




0,

(y1), (y1, y2), . . . , . . . , (y1, y2 . . . , yn−1),

(x1), (x1, z2), . . . , (x1, z2, . . . , zn−1),M = (y1, y2 . . . , yn)




is a Koszul filtration of R.
It remains to prove that this open set is not empty. To this end it suffices to

exhibit a ring R with Hilbert series 1 + nz +mz2 and two linear forms x1, y1

in R with R2 ⊂ (x1), R2 ⊂ (y1) and x1y1 = 0.
One can consider the ring R = K[x1, . . . , xn]/I where I is an ideal min-

imally generated by h quadratic forms and containing the following
(
n

2

) + 1
quadrics:

x1xj − xj+1xn for 1 ≤ j ≤ n− 1

xixj for 2 ≤ i ≤ j ≤ n− 1

x1xn

It is easy to see that the Hilbert series of R is 1 + nz+mz2 and that in R one
has x1xn = 0, (x1) ⊃ R2, and (xn) ⊃ R2.

Remark 3.5. Löfwall [13] has shown that if I is the ideal generated by h

sufficiently “generic" quadrics of A = K[x1, . . . , xn], then A/I is Koszul if



koszul property for points in projective spaces 211

and only if either h ≤ n (the complete intersection case) or h ≥ (
n+1

2

) − n2/4.
The above Proposition gives the “if" part of this result. However our method

does not apply for proving the converse. For instance if one takes seven quad-
rics with generic coefficients in K[x1, . . . , x6] , then the socle degree of the
quotient algebra is greater than 2, so that one cannot use the criterion given in
Theorem 3.1.

Remark 3.6. With the notation of Proposition 3.4, we have proved that
for h ≥ (

n+1
2

) − n2/4 there is an intersection of countable many non-empty
Zariski open subsets of P on which the corresponding algebra is Koszul. One
can ask whether this intersection is a Zariski open subset of P . We do not
know the answer to this question but we note that the matter is quite subtle
because Roos [14, Thm. 1′] has shown that if R is a graded K-algebra and K
has linear c-syzygies thenK need not to have linear (c+1)-syzygies, no matter
what c is. Indeed, for every integer c ≥ 2 he presented an Artinian algebra Rc

with Hilbert series 1 + 6z+ 8z2 such that TorRc

i (K,K)j = 0 for all i �= j and
i ≤ c while TorRc

c+1(K,K)c+2 �= 0.

4. Koszul property for generic points

In this section we deal with the Koszul property of ideals of points in the
projective space Pn over the field K . As in the second section we denote by X
a set of distinct points in Pn, by s the cardinality of X and by R the coordinate
ring of X.

Let P1 = (a10, . . . , a1n), P2 = (a20, . . . , a2n), . . . , Ps = (as0, . . . , asn) be
the points of X. We say that the points of X have generic coordinates if the
numbers {aij } are algebraically independent over Q. Further we may consider
the sequence (P1, . . . , Ps) as a point in

Q = Pn× Pn× . . .× Pn︸ ︷︷ ︸
s times

.

Hence for every point T = (P1, . . . , Ps) ∈ Q there is a corresponding
algebra R = K[x0, . . . , xn]/I where I is the homogeneous ideal defining the
set of points {P1, . . . , Ps} in Pn.

We have:

Theorem 4.1. The following condition are equivalent:

1) There exists a set X of s points in Pn with maximal Hilbert function such
that R is Koszul,

2) s ≤ 1 + n+ n2/4
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Proof. 1) ⇒ 2): Let X be a set of s distinct points of Pn with maximal
Hilbert function such that R is Koszul. We may assume that s ≥ n+ 1. Since
the ideal of X must be generated by quadrics, the Hilbert function H(n) of R
is H(0) = 1, H(1) = n+ 1, and H(i) = s for i ≥ 2. Then take a linear form
x which is a non-zerodivisor on R and set B = R/(x). The Hilbert series of
B is 1 + nz+ (s − n− 1)z2 and, by [3, Thm. 4], B is Koszul. It follows from
Theorem 3.1 that (s − n− 1) ≤ n2/4 and hence s ≤ 1 + n+ n2/4.

2) ⇒ 1): Assume s ≤ 1 + n + n2/4. If s ≤ n + 1, then any set X of s
coordinate points has a Koszul coordinate ring. So assume that s ≥ n + 1.
Set m = s − n − 1. Since m ≤ n2/4 by Theorem 3.1 there exists an ideal
J in K[x1, . . . , xn] generated by monomials of degree 2 with Hilbert series
1 + nz + mz2. Any monomial ideal can be lifted to a radical ideal by means
of the Hartshorne deformation, see for instance [9, Sect. 2]. Hence, by lifting
J , we obtain an ideal of points I of R = K[x0, . . . , xn] such that x0 is a non-
zerodivisor modulo I and I + (x0) = J + (x0). It follows that R/I is Koszul
and has Hilbert series (1 + nz +mz2)/(1 − z) as desired.

The construction of the set of points with Koszul coordinate ring can be
carried out explicitly. For instance, suppose we want to construct 9 points in
P4 with maximal Hilbert function and with Koszul coordinate ring. The Hilbert
series of 9 points in P4 with maximal Hilbert function is 1 + 4z+ 4z2/(1 − z).
Hence we start with an ideal J in K[x1, x2, x3, x4] generated by monomials
of degree 2 and with Hilbert series 1 + 4z + 4z2. For instance one can take
J = (x1, x2)

2 + (x3, x4)
2. Indeed, up to permutation this is the only possibility

(and it corresponds to the graph K2,2 in Turán’s theorem). Then we lift J
following Hartshorne’s method, and we get I = (x1(x1 − x0), x1x2, x2(x2 −
x0), x3(x3 − x0), x3x4, x4(x4 − x0)). The corresponding points are

P1 = (1, 0, 0, 0, 0), P2 = (1, 1, 0, 0, 0), P3 = (1, 0, 1, 0, 0),

P4 = (1, 0, 0, 1, 0), P5 = (1, 0, 0, 0, 1), P6 = (1, 1, 0, 1, 0),

P7 = (1, 1, 0, 0, 1), P8 = (1, 0, 1, 1, 0), P9 = (1, 0, 1, 0, 1)

and this is a set of 9 points in P4 with maximal Hilbert function and with Koszul
coordinate ring.

Theorem 4.2. Let X be a set of s points in Pn with generic coordinates.
Then R is Koszul if and only if s ≤ 1 + n+ n2/4.

Proof. Assume that R is Koszul. Since points with generic coordinates
have maximal Hilbert function, by virtue of Theorem 4.1, we have that s ≤
1 + n+ n2/4.

Assume now that s ≤ 1+n+n2/4. Then by Theorem 4.1, there exists a set
of s points with maximal Hilbert function and with Koszul coordinate ring. It
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suffices now to show that the condition of having linear i-th syzygies forK can
be translated into the non-vanishing of certain polynomials in the coordinates
of the points. One first notes that the generators of the ideal ofX can be chosen
so that their coefficients are polynomial functions of the coordinates of the
points. Then one can argue as in the proof of Proposition 3.4.

The same argument can be used to show the following:

Theorem 4.3. Let s ≤ 1 + n + n2/4 and let c be a positive number. Then
there is a non-empty Zariski open subset Uc of Q such that for every point in
Uc the corresponding algebraR has the following property: TorRi (K,K)j = 0
for all i ≤ c and all j �= i.

Remark 4.4. We do not know whether a stronger version of the above
theorem holds. For example we do not know whether for s ≤ 1 + n + n2/4
points in Pn the Koszul locus is open.

The above results has a nice application on Hilbert series of non-commuta-
tive graded algebras. The Hilbert series of non-commutative graded algebras
is itself a fascinating topic, and few concrete examples are known where the
Hilbert series can be computed explicitly (see e.g. [1], [2], [7]).

Let R be a quadratic algebra, that is R = K〈X〉/I , where

K〈X〉 = K〈X0, . . . , Xn〉

denotes the free associative non-commutative algebra generated overK by the
variables X0, . . . , Xn and I is a two-sided ideal generated by a subspace W of
K〈X〉2. Then one can associate with R an algebra R∗, called the dual algebra
of R as follows. We consider in the vector space K〈X〉2 the scalar product
induced by the assignment

〈XiXj ,XrXs〉 =
{

1 if (i, j) = (r, s),
0 otherwise.

Then the algebra R∗ is the algebra R∗ = K〈X〉/J where J is the two-sided
ideal generated by the orthogonal space W⊥ of W .

It is known that R is a Koszul algebra if and only the Hilbert series of R∗
is equal to the Poincare series of R (see [8], Theorem 1).

If X = {P1, . . . , Ps} is a set of s < 1 + n + n2/4 points with generic co-
ordinates in Pn, its coordinate ringR is a quadratic algebra defined by the com-
mutatorsXiXj −XjXi and

(
n+2

2

)−s quadratic formsFt = ∑
0≤i,j≤n α

(t)
ij XiXj ,

t = 1, . . . ,
(
n+2

2

) − s. If Ph = (ah0, ah1, . . . , ahn), h = 1, . . . , s, the coeffi-
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cients α(t)ij must satisfy the equations

∑
0≤i,j≤n

α
(t)
ij ahiahj = 0, h = 1, . . . , s.

From this it follows that the dual algebra R∗ is defined by the relations

Gh =
∑

0≤i,j≤n
ahiahjXiXj = ( n∑

i=0

ahiXi

)2
, h = 1, . . . , s.

Thus, R∗ is the non-commutative algebra defined by the squares of s generic
linear relations. Now, applying Theorem 4.2 we obtain:

Corollary 4.5. Let n + 1 ≤ s ≤ 1 + n + n2/4 and let T be the non-
commutative graded algebra defined by the squares of s linear forms in K〈X〉
with generic coefficients. Put m = s − n− 1. Then

HT (z) = (1 + z)/(1 − nz +mz2).

Proof. Let L1, . . . , Ls be the given linear forms and P1, . . . , Ps the cor-
responding points in Pn. If R is the coordinate ring of this set of points, we
have

HR(z) = (1 + nz +mz2)/(1 − z).

Since R is a Koszul algebra, the Poincare series of R is determined by the
formula:

PR(z) = HR(−z)−1 = (1 + z)/(1 − nz +mz2).

Since HT (z) = HR∗(z) = PR(z), we obtain the conclusion.

It should be mentioned that the Hilbert series of the non-commutative graded
algebra defined by the squares of s linear forms with generic coefficients is
not the same as the one of the non-commutative graded algebras defined by
s quadratic forms with generic coefficients, whereas they may be the same in
the commutative case [6]. In fact, using the same technique we can prove the
following result:

Corollary 4.6. Let s ≤ (n+1)2/4 and T be the non-commutative graded
algebra defined by s quadratic forms in K〈X〉 with generic coefficients. Then

HT (z) = 1/
(
1 − (n+ 1)z + sz2

)
.

Proof. By [2, Theorem 2.6, Lemma 1.2], we have

HT (z) ≥ 1/
(
1 − (n+ 1)z + sz2

)
.
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Equality holds above if we can find a non-commutative graded algebra defined
by s quadratic forms in n + 1 variables with the right side as Hilbert series.
Such an algebra can be chosen to be the dual algebra of a commutative algebra
defined by r = (

n+2
2

) − s quadratic relations. Indeed, by Theorem 3.1 there is
a commutative Koszul algebra R defined by r quadratic monomials with

HR(z) = 1 + (n+ 1)z + sz2.

This implies

HR∗(z) = PR(z) = HR(−z)−1 = 1/
(
1 − (n+ 1)z + sz2

)
.

Corollary 4.6 follows also from Lemma 5.6 and Lemma 5.10 in Anick’s
paper [2].
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