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SEQUENCES FOR COMPLEXES

LARS WINTHER CHRISTENSEN

Introduction

Let R be a commutative Noetherian ring and let M �= 0 be a finite (that is,
finitely generated) R-module. The concept of M-sequences is central for the
study of R-modules by methods of homological algebra. Largely, the useful-
ness of these sequences is based on the following properties:

1◦ When � is an ideal in R and M/�M �= 0, the number

inf{� ∈ Z | Ext�R(R/�,M) �= 0},
the so-called �-depth of M , is the maximal length of an M-sequence in
�, and any maximal M-sequence in � is of this finite length.

2◦ If x1, . . . , xn is an M-sequence contained in � ∈ SuppR M , then the
sequence of fractions x1/1, . . . , xn/1, in the maximal ideal of R�, is an
M�-sequence.

In commutative algebra, a wave of work dealing with complexes of modules
was started by A. Grothendieck, see [9]. The underlying idea is the following:
Complexes (that is, complexes of modules) are tacitly involved whenever ho-
mological methods are applied, and since hyperhomological algebra, that is,
homological algebra for complexes, is a very powerful tool, it is better to
work consistently with complexes. Modules are also complexes, concentrated
in degree zero, so results for complexes yield results for modules as special
cases.

Like most concepts for modules that of M-sequences can be extended
to complexes in several non-equivalent ways; this short paper explores two
such possible extensions: (ordinary) sequences and strong sequences for com-
plexes. Ordinary sequences have a property corresponding to 1◦, at least over
local rings where they coincide with the regular sequences suggested by H.
-B. Foxby in [8, Sec. 12]. But ordinary sequences may fail to localize properly,
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whereas strong sequences not only enjoy the correspondent property of 2◦, but
also that of 1◦ in the special case where R is local and � the maximal ideal.

As a rule, the hyperhomological approach not only reproduces known results
for modules, but also strengthens some of them. In this case we show, among
other things, that also for a non-finite moduleM the �-depth is an upper bound
for the maximal length of an M-sequence in �, and the �-depth of such a
module may be finite even if M/�M = 0.

1. Conventions, Notation, and Background

Throughout this paper R is a non-trivial, commutative, Noetherian ring. We
work in the derived category of the category of R-modules; this first section
fixes the notation and sums up a few basic results.

Notation 1.1. As usual, the set of prime ideals containing an ideal � in R
is written V(�); when x = x1, . . . , xn is a sequence in R we write V(x) for
the set of prime ideals containing x. The set of zero-divisors for an R-module
M is denoted by zR M .

The ringR is said to be local if it has a unique maximal ideal �, the residue
field R/� is then denoted by k. In general, for � ∈ SpecR the residue field of
the local ring R� is denoted by k(�), that is, k(�) = R�/��.

Complexes 1.2. An R-complex X is a sequence of R-modules X� and R-
linear maps, so-called differentials, ∂X� : X� → X�−1, � ∈ Z. Composition
of two consecutive differentials always yields the zero map, i.e. ∂X� ∂

X
�+1 = 0.

If X� = 0 for � �= 0, we identify X with the module in degree 0, and an
R-module M is considered as a complex 0 → M → 0 with M in degree 0.

A morphism α : X → Y of R-complexes is a sequence of R-linear maps
α� : X� → Y� satisfying ∂Y� α�−α�−1∂

X
� = 0 for � ∈ Z. We say that a morphism

is a quasi-isomorphism if it induces an isomorphism in homology. The symbol
� is used to indicate quasi-isomorphisms while ∼= indicates isomorphisms
of complexes (and hence modules). For an element r ∈ R the morphism
rX : X → X is given by multiplication by r .

The numbers supremum, infimum, and amplitude: supX = sup{� ∈ Z |
H�(X) �= 0}, inf X = inf{� ∈ Z | H�(X) �= 0}, and ampX = supX − inf X,
capture the homological position and size of X. By convention, supX = −∞
and inf X = ∞ if X � 0.

Derived functors 1.3. The derived category of the category ofR-modules
is the category ofR-complexes localized at the class of all quasi-isomorphisms
(see [9] and [13]), we denote it by D(R). The symbol � is used for isomorph-
isms in D(R); a morphism of complexes is a quasi-isomorphism exactly if it
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represents an isomorphism in the derived category, so this is in agreement with
the notation introduced above.

The full subcategories D+(R), D−(R), Db(R), and D0(R) consist of com-
plexesX with H�(X) = 0 for, respectively, � � 0, � � 0, |�| � 0, and � �= 0.
By D f(R) we denote the full subcategory of D(R) consisting of complexes X
with H�(X) a finite R-module for all � ∈ Z. We also use combined notations:
D f−(R) = D−(R)∩D f(R), etc. The category ofR-modules, respectively, finite
R-modules, is naturally identified with D0(R), respectively, D f

0(R).
The right derived functor of the homomorphism functor for R-complexes

is denoted by RHomR(−,−), and − ⊗L
R − is the left derived functor of

the tensor product functor for R-complexes; by [2] and [12] no bounded-
ness conditions are needed on the arguments. That is, for X, Y ∈ D(R) the
complexes RHomR(X, Y ) and X ⊗L

R Y are uniquely determined up to iso-
morphism in D(R), and they have the expected functorial properties. Note
that TorR� (M,N) = H�(M ⊗L

R N) and Ext�R(M,N) = H−�(RHomR(M,N))

for M,N ∈ D0(R) and � ∈ Z.
Let � ∈ SpecR; by [2, 5.2] there are isomorphisms: (X⊗L

RY )� � X�⊗L
R�
Y�

and RHomR(Z, Y )� � RHomR�
(Z�, Y�) in D(R�). The first one always holds,

and the second holds when Y ∈ D−R and Z ∈ D f+(R).
The next results are standard, cf. [6, (2.1)]. LetX ∈ D+(R) andY ∈ D−(R),

then RHomR(X, Y ) ∈ D−(R) and there is an inequality:

(1.3.1) sup RHomR(X, Y ) ≤ supY − inf X.

Setting i = inf X and s = supY we have Hs−i (RHomR(X, Y )) =
HomR(Hi (X),Hs(Y )); in particular,
(1.3.2)

sup RHomR(X, Y ) = supY − inf X ⇐⇒ HomR(Hi (X),Hs(Y )) �= 0.

Let X, Y ∈ D+(R), then X ⊗L
R Y ∈ D+(R) and there is an inequality

(1.3.3) inf(X ⊗L
R Y ) ≥ inf X + inf Y ;

furthermore, with i = inf X and j = inf Y we have

(1.3.4) Hi+j (X ⊗L
R Y ) = Hi (X)⊗R Hj (Y ).

Depth over local rings 1.4. Let R be local; in [7, Sec. 3] the depth and
(Krull) dimension of an R-complex X are defined as follows:

depthR X = − sup RHomR(k,X), for X ∈ D−(R); and

dimR X = sup{dimR/� − inf X� | � ∈ SpecR}.



164 lars winther christensen

Note that for modules these notions agree with the usual ones.
It follows immediately by (1.3.1) that − supX ≤ depthR X forX ∈ D−(R),

and if s = supX > −∞ the next biconditional holds, cf. (1.3.2).

(1.4.1) depthR X = − supX ⇐⇒ � ∈ AssR Hs(X).

For X ∈ D−(R) and M ∈ D f
0(R) the next equality holds, cf. [7, 3.4].

(1.4.2) − sup RHomR(M,X) = inf{depthR�
X� | � ∈ SuppR M}.

Let X ∈ D f−(R) and � ∈ SpecR; a complex version of [3, (3.1)], cf. [5,
(13.13)], accounts for the inequality

(1.4.3) depthR X ≤ depthR�
X� + dimR/�.

Finally, let X �� 0 belong to D f−(R) and set s = supX; applying (1.4.3) to
� ∈ AssR Hs(X)with dimR/� = dimR Hs(X) and using (1.4.1) we obtain the
next inequalities.

(1.4.4) depthR X + supX ≤ dimR Hs(X) ≤ dimR.

2. Ann, Supp, and Ass for Complexes

As for modules, regular elements for complexes are linked to concepts of zero-
divisors and associated prime ideals. These are introduced below within the
relevant setting of support and annihilators.

Weak notions 2.1. Weak notions of support and annihilators for X ∈
D(R) are defined by uniting/intersecting the corresponding sets for the homo-
logy modules H�(X), cf. [7, Sec. 2] and [1, Sec. 2]:

SuppR X =
⋃

�∈Z

SuppR H�(X) = {� ∈ SpecR | X� �� 0}; and

AnnR X =
⋂

�∈Z

AnnR H�(X) = {r ∈ R | H(rX) = 0}.

These are complemented by the next definitions. For X �� 0 in D−(R) we set

assR X = AssR HsupX(X) and zR X = zR HsupX(X),

cf. [8, Sec. 12], and for X � 0 we set assR X = ∅ and zR X = ∅.

The small support 2.2. The small, or homological, support for X ∈
D+(R) was introduced in [7, Sec. 2]:

suppR X = {� ∈ SpecR | X� ⊗L
R�
k(�) �� 0}.
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Its principal properties developed ibid. are as follows:
Let X ∈ D+(R). Then

(2.2.1) X �� 0 ⇐⇒ suppR X �= ∅;
there is an inclusion

(2.2.2) suppR X ⊆ SuppR X,

and equality holds when X ∈ D f+(R). For X, Y ∈ D+(R) the next equality
holds.

(2.2.3) suppR(X ⊗L
R Y ) = suppR X ∩ suppR Y.

If R is local, the next biconditional holds for X ∈ Db(R).

(2.2.4) � ∈ suppR X ⇐⇒ depthR X < ∞.

Definitions 2.3. Let X ∈ D−(R); we say that � ∈ SpecR is an associated
prime ideal for X if and only if depthR�

X� = − supX� < ∞, that is,

AssR X = {� ∈ SuppR X | depthR�
X� + supX� = 0}

= {� ∈ SuppR X | �� ∈ assR�
X�},

cf. (1.4.1). The union of the associated prime ideals forms the set of zero-
divisors for X:

ZRX =
⋃

�∈AssR X

�.

Observations 2.4. Let X ∈ D−(R), � ∈ SuppR X, and set s = supX�

(∈ Z); then

� ∈ AssR X ⇐⇒ �� ∈ assR�
X� ⇐⇒ � ∈ AssR Hs(X).

That is, � ∈ AssR X if and only if there exists an m ∈ Z such that � ∈
AssR Hm(X) and � �∈ SuppR H�(X) for � > m. In particular there is an inclu-
sion

(2.4.1) assR X ⊆ AssR X;
and since zR X = ∪�∈assR X�, also the next inclusion holds.

(2.4.2) zR X ⊆ ZR X.
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We also note that AssR X is a finite set for X in D f
b(R).

Modules 2.5. For M ∈ D0(R) the weak notions in 2.1 agree with the
classical notions for modules; furthermore, assR M = AssR M and zR M =
ZR M , but suppR M and SuppR M may differ if M is not finite.

Proposition 2.6. Let X ∈ D−(R); every minimal prime ideal in SuppR X
belongs to AssR X, that is,

MinR X ⊆ AssR X;
and for X ∈ Db(R) also the next inclusion holds.

AssR X ⊆ suppR X.

Proof. Let X ∈ D−(R) and assume that � is minimal in SuppR X. As
SuppR�

X� = {��} it follows that �� ∈ assR�
X� and hence � ∈ AssR X.

Let X ∈ Db(R); the first biconditional in the next chain is (2.2.4).

� ∈ AssR X �⇒ depthR�
X� < ∞ ⇐⇒ �� ∈ suppR�

X�

⇐⇒ X� ⊗L
R�
k(�) �� 0 ⇐⇒ � ∈ suppR X.

Lemma 2.7. Let S be a multiplicative system in R; the following hold for
� ∈ SpecR with � ∩ S = ∅:

(a) � ∈ suppR X ⇐⇒ S−1� ∈ suppS−1R S
−1X, if X ∈ D+(R); and

(b) � ∈ AssR X ⇐⇒ S−1� ∈ AssS−1R S
−1X, if X ∈ D−(R).

Proof. S−1� is a prime ideal in S−1R and

k(S−1�) = (S−1R/S−1�)S−1�
∼= k(�),

so
(S−1X)S−1� ⊗L

(S−1R)S−1�
k(S−1�) � X� ⊗L

R�
k(�);

and

RHom(S−1R)S−1�
(k(S−1�), (S−1X)S−1�) � RHomR�

(k(�),X�).

(a) follows directly from the first isomorphism, and (b) follows from the second
by the definition of depth.
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3. Three Types of Sequences

We are now ready to define sequences – and strong and weak ones – for com-
plexesY ∈ D−(R). The main results of this section are that strongY -sequences
localize properly, and that for M ∈ D0(R) the notions of M-sequences and
strong M-sequences both agree with the classical notion for modules.

Koszul complexes 3.1. For x ∈ R the complex K(x) = 0 → R x−→
R → 0, concentrated in degrees 1 and 0, is called the Koszul complex of x. Let
x = x1, . . . , xn be a sequence inR, the Koszul complex K(x) = K(x1, . . . , xn)

of x is the tensor product K(x1)⊗R · · · ⊗R K(xn). The Koszul complex of the
empty sequence is R.

For Y ∈ D(R) we set K(x;Y ) = Y ⊗R K(x), and for m ∈ {1, . . . , n} we
write K(xm;Y ) for the complex K(x1, . . . , xm;Y ). We also set K(x0;Y ) = Y ,
corresponding to the empty sequence.

Observations 3.2. In the following x = x1, . . . , xn is a sequence in R and
Y ∈ D(R).

For m ∈ {0, . . . , n− 1} we have

(3.2.1) K(x;Y ) = K(xm+1, . . . , xn; K(xm, Y )),

by associativity of the tensor product. Let � ∈ SpecR and denote by
x1/1, . . . , xn/1 the sequence of fractions in R� corresponding to x. There is
an isomorphism:

(3.2.2) K(x1, . . . , xn;Y )�
∼= K(x1/1, . . . , xn/n;Y�).

For each j the Koszul complex K(xj ) is a complex of finite free, in particular
flat, modules, and hence so is K(x). Thus, we can identify K(x)with K(x1)⊗L

R· · · ⊗L
R K(xn) and K(x;Y ) with Y ⊗L

R K(x). It follows by (1.3.3) and (1.3.4)
that

(3.2.3) inf K(x) ≥ 0 and H0(K(x)) = R/(x).

It is well-known (see [1, Sec. 2] or [11, 16.4]) that

(3.2.4) (x1, . . . , xn) ⊆ AnnR K(x;Y ).
It is easy to see that SuppR K(xj ) = V(xj ), and it follows by (2.2.2) and

(2.2.3) that SuppR K(x) = suppR K(x) = V(x). If Y ∈ D+(R) it follows,
also by (2.2.3), that

(3.2.5) suppR K(x;Y ) = suppR Y ∩ V(x).
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Finally, it follows by the definition of tensor product complexes that

(3.2.6) if Y belongs D−(R), respectively, D f−(R) then also K(x;Y )∈ D−(R),
respectively, K(x;Y ) ∈ D f−(R); and

(3.2.7) if Y belongs Db(R), respectively, D f
b(R) then also K(x;Y ) ∈ Db(R),

respectively, K(x;Y ) ∈ D f
b(R).

In view of (3.2.6) the next definitions make sense.

Definitions 3.3. Let Y ∈ D−(R). An element x ∈ R is said to be regular
for Y if and only if x �∈ zR Y and strongly regular for Y if and only if x �∈ ZRY .

Let x = x1, . . . , xn be a sequence in R. We say that

• x is a weak Y-sequence if and only if xj is regular for K(xj−1;Y ) for
each j ∈ {1, . . . , n};

• x is a Y-sequence if and only if x is a weak Y -sequence, and K(x;Y ) �� 0
or Y � 0; and

• x is a strongY-sequence if and only ifxj is strongly regular for K(xj−1;Y )
for each j ∈ {1, . . . , n}, and K(x;Y ) �� 0 or Y � 0.

Remarks 3.4. For M ∈ D0(R) regular and strongly regular elements are
the same, cf. 2.5, and the definition agrees with the usual definition of M-
regular elements, cf. [11, Sec. 16]. In 3.8 we prove that also the definition of
M-sequences agrees with the classical one.

Let Y ∈ D−(R). By (2.4.2) a strongly regular element for Y is also regular
for Y ; hence any strong Y -sequence is a Y -sequence and, thereby, a weak one.

The empty sequence is a strong Y -sequence for any complex Y ∈ D−(R).
A unit u ∈ R is a strongly regular element for any complex Y ∈ D−(R) and
constitutes a weak Y -sequence, u can, however, not be part of a Y -sequence if
Y �� 0. On the other hand, if Y � 0 then any sequence is a strong Y -sequence.
Later we supply an example – 3.13 – to show that a Y -sequence need not be a
strong one.

Observation 3.5. Let Y ∈ D−(R), let x = x1, . . . , xn be a sequence in
R, and let m ∈ {1, . . . , n − 1}. It follows by (3.2.1) that x is a Y -sequence,
respectively, a weak or a strong one, if and only if x1, . . . , xm is a Y -sequence,
respectively, a weak or strong one, and xm+1, . . . , xn is a K(xm;Y )-sequence,
respectively, a weak or a strong one.

Lemma 3.6. The following hold for x ∈ R and Y �� 0 in D−(R):
(a) sup K(x;Y ) ≤ supY + 1;

(b) sup K(x;Y ) = supY + 1 if and only if x ∈ zR Y ; and
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(c) sup K(x;Y ) ≥ supY if xHsupY (Y ) �= HsupY (Y ).

Proof. It is easy to see that K(x;Y ) is the mapping cone for the morphism
xY , multiplication by x on Y . Thus, K(x;Y ) fits in the exact sequence of
complexes

0 → Y → K(x;Y ) → Y [1] → 0,

where Y [1] is a shift of Y : Y [1]� = Y�−1 and ∂
Y [1]
� = −∂Y�−1. Now, set

s = supY and examine the corresponding long exact sequence of homology
modules:

0 → Hs+1(K(x;Y )) → Hs(Y )
xHs (Y )−−−−→ Hs(Y ) → Hs(K(x;Y )) → · · · .

Parts (a) and (b) have the following immediate consequence:

Corollary 3.7. Let Y ∈ D−(R); a sequence x = x1, . . . , xn in R is
a weak Y -sequence if and only if sup K(xj ;Y ) ≤ sup K(xj−1;Y ) for each
j ∈ {1, . . . , n}.

Sequences for modules 3.8. Let M be an R-module; the following hold
for a sequence x = x1, . . . , xn in R:

(a) H0(K(xj ;M)) = M/(x1, . . . , xj )M for j ∈ {1, . . . , n}.
(b) The next three conditions are equivalent.

(i) x is a weak M-sequence.

(ii) K(xj ;M) � M/(x1, . . . , xj )M for each j ∈ {1, . . . , n}.
(iii) xj �∈ zR M/(x1, . . . , xj−1)M for each j ∈ {1, . . . , n}1.

(c) The next three conditions are equivalent.

(i) x is a weak M-sequence, and M/(x1, . . . , xn)M �= 0 or M = 0.

(ii) x is an M-sequence.

(iii) x is a strong M-sequence.

Proof. All three assertions are trivial if M = 0, so we assume that M is
non-zero and let x = x1, . . . , xn be a sequence in R.

(a): Considering, as always, M as a complex concentrated in degree 0, we
see that

(∗) inf K(xj ;M) ≥ 0 for j ∈ {1, . . . , n},
cf. (3.2.3) and (1.3.3), and H0(K(xj ;M)) = M⊗R R/(x1, . . . , xj ), cf. (1.3.4).

1 For j = 1 this means x1 �∈ zR M .
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(b): For each j ∈ {1, . . . , n} we have inf K(xj ;M) ≥ 0, cf. (∗), so by 3.7
it follows that x is a weak Y -sequence if and only if K(xj ;M) ∈ D0(R) for
each j , that is (by (a)), if and only if K(xj ;M) � M/(x1, . . . , xj )M for each
j . This proves the equivalence of (i) and (ii); that of (ii) and (iii) follows from
(a), (3.2.1), and 3.6 by induction on n.

(c): First note that (i) ⇒ (ii) by (a); it is then sufficient to prove that
(ii) implies (iii): Suppose x is an M-sequence; for j ∈ {1, . . . , n} we have
xj �∈ zR K(xj−1;M), and K(xj−1;M) ∈ D0(R) by (b), so zR K(xj−1;M) =
ZRK(xj−1;M), cf. 2.5, whence x is a strong M-sequence.

Remark 3.9. Let M be a non-zero R-module and let x = x1, . . . , xn
be a sequence in R. Classically, cf. [11, Sec. 16], x is said to be an M-
sequence if and only if (1) xj �∈ zR M/(x1, . . . , xj−1)M for j ∈ {1, . . . , n},
and (2) M/(x1, . . . , xn)M �= 0. A sequence satisfying only the first condition
is called a weak M-sequence, cf. [4, 1.1.1]. It follows by (b) and (c) in 3.8
that the notions of (weak) M-sequences defined in 3.3 agree with the classical
ones.

Observation 3.10. Let Y �� 0 belong to D−(R); it follows by 3.6 that a
sufficient condition for x ∈ R to be a Y -sequence is that x is a HsupY (Y )-
sequence. This condition is, of course, not necessary, see 5.3 for an example.

Theorem 3.11. Let Y ∈ Db(R) and � ∈ suppR Y ; if x = x1, . . . , xn is a
strong Y -sequence in �, then x1/1, . . . , xn/1 in the maximal ideal of R� is a
strong Y�-sequence.

Proof. Let x/1 = x1/1, . . . , xn/1 denote the sequence of fractions in
R� corresponding to x. Since � ∈ suppR K(x;Y ) by (3.2.5), it follows by
2.7 (a) and (3.2.2) that �� ∈ suppR�

K(x/1;Y�); in particular, K(x/1;Y�) �� 0.
We are now required to prove that xj/1 �∈ ZR�

K(x1/1, . . . , xj−1/1;Y�) for
j ∈ {1, . . . , n}. This follows by the lemma below as � ∈ SuppR K(xj−1;Y ),
xj �∈ ZRK(xj−1;Y ), and ZR�

K(xj−1;Y )� = ZR�
K(x1/1, . . . , xj−1/1;Y�).

Lemma 3.12. Let Y belong to D−(R) and � ∈ SuppR Y ; if x ∈ � and
x �∈ ZRY then x/1 �∈ ZR�

Y�.

Proof. We assume that x/1 ∈ ZR�
Y� and want to prove that x belongs to

ZRY . By assumption x/1 belongs to a prime ideal in AssR�
Y�, that is, x/1 ∈ ��

for some � ∈ SpecR contained in �. Then x ∈ �, and � ∈ AssR Y by 2.7 (b),
so x ∈ ZRY as wanted.

As the next example demonstrates, a Y -sequence does not necessarily loc-
alize properly, not even if R is local and Y ∈ D f

b(R).

Example 3.13. Let R be a local ring, assume that there exist �,� ∈ SpecR
such that � �⊆ � and � �⊆ �, and consider the complex Y = 0 → R/� 0−→
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R/� → 0. Let x be an element in � not in �; it follows by 3.6 that x is a
Y -sequence, but the localization of Y at � is the field k(�), and x/1 ∈ R� is
certainly not a k(�)-sequence.

Note that if � ∩ � = 0, then there is no non-empty strong Y -sequence in �.

4. Length of Sequences and Depth of Complexes

In this section we prove that any (strong) sequence can be extended to a max-
imal (strong) sequence, and we discuss various upper bounds for the length of
such sequences.

Maximal sequences 4.1. Let Y �� 0 belong to D−(R) and let � be an
ideal in R. A sequence x = x1, . . . , xn in � is said to be a maximal (strong)
Y -sequence in � if and only if it is a (strong) Y -sequence and not the first part
of a longer (strong) Y -sequence in �.

Lemma 4.2. Let Y �� 0 belong to D−(R); if x = x1, . . . , xn is a Y -sequence
then xn �∈ (x1, . . . , xn−1).

Proof. By (3.2.4) we have (x1, . . . , xn−1) ⊆ AnnR K(xn−1;Y ), hence
(x1, . . . , xn−1) ⊆ zR K(xn−1;Y ) as K(xn−1;Y ) �� 0, and it follows that
xn �∈ (x1, . . . , xn−1) as desired.

Corollary 4.3. Let Y �� 0 belong to D−(R) and let � be an ideal in R.
Any Y -sequence, respectively, strong Y -sequence in � can be extended to a
maximal Y -sequence, respectively, a maximal strong Y -sequence in �.

Proof. The assertions follow immediately by 4.2 as R is Noetherian.

Depth 4.4. Let � be an ideal in R and let a = a1, . . . , at be a finite set of
generators for �. By definition, cf. [10, Sec. 2], the �-depth of Y ∈ D(R) is
the number

depthR(�, Y ) = t − sup K(a;Y );
it is, of course, independent of the choice of generating set a.

We note that depthR(�, Y ) < ∞ if and only if K(a;Y ) �� 0 for some,
equivalently any, finite set of generators for �. Thus, by (2.2.1) and (3.2.5) we
have

(4.4.1) depthR(�, Y ) < ∞ ⇐⇒ suppR Y ∩ V(�) �= ∅,
for Y ∈ Db(R).

Proposition 4.5. Let Y ∈ D−(R), let � be a proper ideal in R, and let M
belong to D f

0(R) with SuppR M = V(�). The following equalities hold:

depthR(�, Y ) = − sup RHomR(R/�, Y ) = inf{depthR�
Y� | � ∈ V(�)}

= − sup RHomR(M, Y ).
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Proof. The first equality is [10, 6.1], the second and third both follow by
(1.4.2).

Remark 4.6. It follows from the first equality in 4.5 that the �-depth for
complexes extends the usual concept of �-depth for modules, cf. [11, 16.7];
furthermore, it generalizes the concept of depth over local rings, that is,
depthR Y = depthR(�, Y ) forY ∈ D−(R), whenR is local with maximal ideal
�. By the second equality in 4.5 the next inequality holds for all Y ∈ D−(R)
and all � ∈ SpecR.

depthR(�, Y ) ≤ depthR�
Y�.

Part (a) of the next theorem is often referred to as the ‘depth sensitivity of
the Koszul complex’.

Theorem 4.7. Let Y ∈ D(R) and let � be an ideal in R. The following
hold:

(a) For any sequence x = x1, . . . , xn in � there is an equality:

depthR(�,K(x;Y )) = depthR(�, Y )− n.

(b) For any ideal � ⊆ � there is an inequality:

depthR(�, Y ) ≤ depthR(�, Y ).

Proof. Let a = a1, . . . , at be a set of generators for � and let x =
x1, . . . , xn be a sequence in �. Also x, a = x1, . . . , xn, a1, . . . , at is a gen-
erating set for �, and by (3.2.1) we have K(x, a;Y ) = K(a; K(x;Y )). Hence,

depthR(�, Y ) = n+ t − sup K(x, a;Y )
= n+ t − sup K(a; K(x;Y ))
= n+ depthR(�,K(x;Y ));

and this proves (a).
To prove (b), let b = b1, . . . , bu be a generating set for �, then b, a =

b1, . . . , bu, a1, . . . , at is a generating set for �. If sup K(b;Y ) = ∞ the in-
equality is trivial, so we assume that K(b;Y ) ∈ D−(R). As above we have
K(b, a;Y ) = K(a; K(b;Y )), so it follows by 3.6 (a) that sup K(b, a;Y ) ≤
sup K(b;Y )+ t , whence

depthR(�, Y ) = u+ t − sup K(b, a;Y ) ≥ u+ t − (sup K(b;Y )+ t)

= depthR(�, Y ),

as desired.
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Corollary 4.8. Let Y ∈ D−(R) and let � be a proper ideal in R. If
depthR(�, Y ) < ∞ then the following hold for a sequence x = x1, . . . , xn in
�.

(a) If x is a weak Y -sequence then x is a Y -sequence.

(b) If x is a Y -sequence then x is maximal in � if and only if � ⊆ zR K(x;Y ).
(c) If x is a strong Y -sequence then x is maximal in � if and only if � ⊆

ZRK(x;Y ).
Proof. Denote by � the ideal generated by x. It follows by 4.7 (b) that

depthR(�, Y ) < ∞, in particular, K(x;Y ) �� 0, cf. 4.4. The three assertions
are now immediate by the definitions in 3.3.

Proposition 4.9. Let Y �� 0 belong to D−(R) and let x = x1, . . . , xn be a
weak Y -sequence. The next inequality holds for any ideal � containing x.

n ≤ depthR(�, Y )+ supY.

Proof. Let � be the ideal generated by the sequence x = x1, . . . , xn in �.
By 4.4, 4.7 (b), and 3.7 we have

n = depthR(�, Y )+ sup K(x;Y ) ≤ depthR(�, Y )+ supY.

Corollary 4.10. Let Y �� 0 belong to Db(R) and let x = x1, . . . , xn be a
strong Y -sequence. The following inequality holds:

(a) n ≤ inf{depthR�
Y� + supY� | � ∈ suppR Y ∩ V(x)};

and if Y ∈ D f
b(R), also the next inequality holds.

(b) n ≤ inf{dimR� | � ∈ SuppR Y ∩ V(x)}.

Proof. Let Y ∈ Db(R) and assume that x = x1, . . . , xn is a strong Y -
sequence in � ∈ suppR Y . By 3.11 the sequence x1/1, . . . , xn/1 in the maximal
ideal ofR� is a strong Y�-sequence, so by 4.9 we have n ≤ depthR�

Y� +supY�,
and this proves (a). If Y ∈ D f

b(R) then suppR Y = SuppR Y , cf. (2.2.2), and
Y� ∈ D f

b(R�), so (b) follows from (a) as depthR�
Y� + supY� ≤ dimR� by

(1.4.4).

Theorem 4.11. Let Y ∈ D f−(R) and let � be a proper ideal in R. If
depthR(�, Y ) < ∞ then the following conditions are equivalent for a Y -
sequence x = x1, . . . , xn in �:

(i) x is a maximal Y -sequence in �.
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(ii) � ⊆ zR K(x;Y ).
(iii) depthR(�,K(x;Y ))+ sup K(x;Y ) = 0.

(iv) depthR(�, Y )+ sup K(x;Y ) = n.

Proof. We assume that Y ∈ D f−(R) with depthR(�, Y ) < ∞; the equival-
ence of (i) and (ii) is 4.8 (b). From 4.7 (a) it follows that (iii) ⇔ (iv); this
leaves us with one equivalence to prove:

Set K = K(x;Y ) and s = supK (∈ Z); by 4.5 and (1.3.1) we have

− depthR(�,K) = sup RHomR(R/�,K) ≤ s,

and equality holds if and only if HomR(R/�,Hs(K)) �= 0, cf. (1.3.2). Since
Hs(K) is a finite module, cf. (3.2.6), it is well-known that HomR(R/�,Hs(K))

�= 0 if and only if � ⊆ zR K , and this proves the equivalence of (ii) and (iii).

Remarks 4.12. Let Y , �, and x be as in 4.11. Since K(x;Y ) ∈ D f−(R),
cf. (3.2.6), it follows that

� ⊆ zR K(x;Y ) ⇐⇒ � ⊆ � for some � ∈ assR K(x;Y ).
This should be compared to (ii) and (iii) in 4.15.

For a finiteR-moduleM and an ideal � inR it follows by (4.4.1) and (2.2.2)
that

depthR(�,M) < ∞ ⇐⇒ M/�M �= 0.

Spelling out 4.11 for modules – as done in 4.14 – we recover the property 1◦
advertised in the introduction. Thus, in a sense, 4.11 describes the correspond-
ing property for complexes Y ∈ D f−(R); but unless R is local (see 5.4) the
length of a maximal sequence need not be a well-determined integer:

Let Y and � be as in 4.11. If depthR(�, Y )+supY = 0 then � ⊆ zR Y , so the
empty sequence is the only Y -sequence in �. If depthR(�, Y )+ supY = 1 then
all maximal Y -sequences in � are of length 1, but if depthR(�, Y )+ supY > 1
there can be maximal Y -sequences in � of different length. This is illustrated
by the example below.

Example 4.13. Let k be a field, set R = k[U,V ], and consider the R-
complex Y = 0 → R/(U − 1) → 0 → k → 0 concentrated in degrees 2, 1,
and 0. Let � be the maximal ideal � = (U, V ), then depthR(�, Y ) = 2−2 = 0
and it is straightforward to check that U as well as V,U is a maximal Y -
sequence in �.

Corollary 4.14. Let M be a finite R-module and let � be a proper ideal
in R. If depthR(�,M) < ∞ then the next four conditions are equivalent for
an M-sequence x = x1, . . . , xn in �.
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(i) x is a maximal M-sequence in �.

(ii) � ⊆ zR M/(x1, . . . , xn)M .

(iii) depthR(�,M/(x1, . . . , xn)M) = 0.

(iv) depthR(�,M) = n.

In particular, the maximal length of anM-sequence in � is a well-determined
integer: depthR(�,M) = inf{� ∈ Z | Ext�R(R/�,M) �= 0}, and all maximal
M-sequences in � have this length.

Proof. By 3.8 we have K(x;M) � M/(x1, . . . , xn)M �= 0, in particular,
sup K(x;M) = 0. The equivalence of the four conditions now follows from
4.11, and the last assertions are immediate, cf. 4.5.

Other well-known characterizations of maximal sequences for finite mod-
ules are recovered by reading M/(x1, . . . , xn)M for K(x;M) in the next the-
orem.

Theorem 4.15. Let Y ∈ D f
b(R) and let � be a proper ideal in R. If

depthR(�, Y ) < ∞ then the next four conditions are equivalent for a strong
Y -sequence x = x1, . . . , xn in �.

(i) x is a maximal strong Y -sequence in �.

(ii) � ⊆ ZRK(x;Y ).
(iii) � ⊆ � for some � ∈ AssR K(x;Y ).
(iv) There is a prime ideal � ∈ SuppR Y containing � such that the strong

Y�-sequence x1/1, . . . , xn/1 in R� is a maximal Y�-sequence.

Proof. The equivalence (i) ⇔ (ii) is immediate as depthR(�, Y ) < ∞,
cf. 4.8 (c).
(ii) ⇔ (iii): Clearly, (iii) implies (ii). On the other hand, K(x;Y ) ∈ D f

b(R)

by (3.2.7), so ZRK(x;Y ) = ∪�∈AssR K(x;Y )� is a finite union, cf. 2.4. Thus,
if � ⊆ ZRK(x;Y ) then � must be contained in one of the prime ideals � ∈
AssR K(x;Y ).
(iii) ⇔ (iv): Let � be a prime ideal in SuppR Y containing �, then depthR�

Y�

< ∞, cf. (2.2.2) and (2.2.4), and by 3.11 the sequence of fractions x/1 =
x1/1, . . . , xn/1 in R� is a strong Y�-sequence. By (3.2.2) there is an equality:

depthR�
K(x;Y )� + sup K(x;Y )� = depthR�

K(x/1;Y�)+ sup K(x/1;Y�).

By 4.11 and the definition of associated prime ideals it now follows that x/1
is a maximal Y�-sequence if and only if � ∈ AssR K(x;Y ).



176 lars winther christensen

5. Local Rings

In this section R is local with maximal ideal � and residue field k = R/�.
We focus on (strong) sequences for complexes in D f−(R) and strengthen some
of the results from the previous section. The results established here are essen-
tially those lined out by H. -B. Foxby in [8, Sec. 12], exceptions are 5.7 and
5.9.

Proposition 5.1. Let Y �� 0 belong to D f−(R); the following hold for a
sequence x = x1, . . . , xn in �:

(a) There are inequalities

sup K(x;Y ) ≥ · · · ≥ sup K(xj ;Y ) ≥ sup K(xj−1;Y ) ≥ · · · ≥ supY ;
in particular, K(x;Y ) �� 0.

(b) The next three conditions are equivalent.
(i) x is a weak Y -sequence.

(ii) x is a Y -sequence.
(iii) sup K(x;Y ) = supY .

(c) If x is a Y -sequence then so is any permutation of x.

Proof. (a): The inequalities hold by Nakayama’s lemma and 3.6(c); in
particular we have sup K(x;Y ) ≥ supY > −∞, so K(x;Y ) �� 0.

(b): It follows by 3.7 that x is a weak Y -sequence if and only if equality
holds in each of the inequalities in (a). This proves the equivalence of (i) and
(iii); also (i) ⇔ (ii) is immediate by (a).

(c): By commutativity of the tensor product the number sup K(x;Y ) is
unaffected by permutations of x, so the last assertion follows by (b).

The next corollary is an immediate consequence of 5.1(a). The example
below shows that the equality sup K(x;Y ) = supY need not hold, not even
for strong Y -sequence, if Y does not have finite homology modules.

Corollary 5.2. Let � be a proper ideal in R. If Y ∈ D f−(R) then

depthR(�, Y ) < ∞ ⇐⇒ Y �� 0.

Example 5.3. Let R be a local integral domain, not a field, and let B =
R(0) �= R be the field of fractions. Consider the complex Y = 0 → B 0−→
R → 0. For any � ∈ SpecR we have supY� = supY , so AssR Y = assR Y =
AssR B = {0}. Let x �= 0 be an element in the maximal ideal of R, it follows
that x �∈ ZRY and K(x;Y ) � R/(x) �= 0, so x is a strong Y -sequence, but
sup K(x;Y ) < supY .
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Theorem 5.4. Let Y �� 0 belong to D f−(R) and let � be a proper ideal in
R. The next four conditions are equivalent for a Y -sequence x = x1, . . . , xn
in �.

(i) x is a maximal sequence in �.

(ii) � ⊆ zR K(x;Y ).
(iii) depthR(�,K(x;Y ))+ supY = 0.

(iv) depthR(�, Y )+ supY = n.

In particular, the maximal length of a Y -sequence in � is a well-determined
integer: depthR(�, Y ) + supY , and all maximal Y -sequences in � have this
length.

Proof. By 5.2 and 5.1 we have depthR(�, Y ) < ∞ and sup K(x;Y ) =
supY , so the equivalence is a special case of 4.11, and the last assertions
follow.

Corollary 5.5. Let Y �� 0 belong to D f−(R); the integer

depthR Y + supY

is the maximal length of a Y -sequence, and any maximal Y -sequence is of this
length. Furthermore, the following inequalities hold:

depthR Y + supY ≤ dimR HsupY (Y ) ≤ dimR.

Proof. A Y -sequence must be contained in �, and the first part is 5.4
applied to � = �. The inequalities are (1.4.4).

Corollary 5.6. LetY �� 0 belong to D f−(R) andM ∈ D f
0(R). The maximal

length of a Y -sequence in AnnR M is a well-determined integer n:

n = − sup RHomR(M, Y )+ supY

= inf{depthR�
Y� | � ∈ V(AnnR M)} + supY ;

and any maximal Y -sequence in AnnR M is of this length.

Proof. It follows by 5.4 that a Y -sequence x = x1, . . . , xn in AnnR M
is maximal if and only if n = depthR(AnnR M, Y ) + supY . As M is finite
SuppR M = V(AnnR M), and the desired equalities follow by 4.5.

It follows from the last remark in 3.13 that 5.6 has no counterpart for strong
sequences, but 5.5 does have one:
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Corollary 5.7 (to 4.15). Let Y �� 0 belong to D f
b(R). A maximal strong

Y -sequence is a maximal Y -sequence; in particular, the maximal length of a
strong Y -sequence is a well-determined integer n:

n = depthR Y + supY ≤ dimR HsupY (Y ) ≤ dimR;
and any maximal strong Y -sequence is of this length.

Proof. Let x = x1, . . . , xn be a maximal strong Y -sequence, that is, max-
imal in �. Since depthR Y < ∞ by 5.2 it follows by 4.15 that x is a maximal
Y -sequence, and the desired equality and inequalities follow from 5.5.

The number depthR Y + supY provides an upper bound for the length of a
Y -sequence, even if Y does not have finite homology modules, cf. 4.9. In view
of 5.5 it is natural to ask if also dimR is a bound. If dimR = 0 it obviously is,
cf. (1.4.1), and so it is if dimR = 1 and depthR HsupY (Y ) < ∞ (this follows
by [10, 2.3]); but the next example shows that the answer is negative. For
bounded complexes, however, a bound involving dimR is available, see 5.9.

Example 5.8. Let k be a field and consider the local ringR=k[[U,V ]]/(UV )
with dimR = 1. The residue classes u and v of, respectively,U andV generate
prime ideals in R; we set Y = 0 → R(v)

0−→ R/(u) → 0. Multiplication by u
on R(v) is an isomorphism, v is a R/(u)-sequence, and it follows that u, v is a
Y -sequence.

Corollary 5.9 (to 4.9). Let Y ∈ Db(R) and let x = x1, . . . , xn be a weak
Y -sequence in �. If � ∈ suppR Y then x is a sequence, and

n ≤ depthR Y + supY ≤ dimR Y + supY ≤ dimR + ampY.

Proof. It follows by (2.2.4) that depthR Y < ∞, so x is a Y -sequence by
4.8 (a). The first inequality is a special case of 4.9. The inequality depthR Y ≤
dimR Y holds by [7, 3.9]; this gives the second inequality, and the third one
follows as dimR Y ≤ dimR − inf Y by the definition of dimension.

We close with an example, illustrating an application of sequences for com-
plexes.

Example 5.10 (Parameter Sequences). In the following we assume that R
admits a dualizing complexD, cf. [9], and let x = x1, . . . , xn be a sequence in
R. For Y �� 0 in D f

b(R) it follows by (3.2.7), 3.6, and well-known properties
of dualizing complexes that

dimR K(x;Y ) = dimR Y − n ⇐⇒ x is a RHomR(Y,D)-sequence;
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and by [7, 3.12] there is an equality:

dimR K(x;Y ) = sup{dimR(Y ⊗L
R H�(K(x)))− � | � ∈ Z}.

Let M be a finite R-module; we say that x is an M-parameter sequence if
and only if dimR M/(x1, . . . , xn)M = dimR M − n, that is, if and only if x

is part of a system of parameters for M . It follows by the definition of Krull
dimension, Nakayama’s lemma, and (3.2.3) that

dimR K(x;M) = sup{dimR(M ⊗L
R H�(K(x)))− � | � ∈ Z}

= sup{dimR(M ⊗R H�(K(x)))− � | � ∈ Z}
= dimR M/(x1, . . . , xn)M.

Thus, x is an M-parameter sequence if and only if x is a RHomR(M,D)-
sequence. In particular, any M-sequence is a RHomR(M,D)-sequence. Only
if M is Cohen-Macaulay will RHomR(M,D) have homology concentrated in
one degree, that is, be equivalent to a module up to a shift.
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