UNIVERSAL SPECTRA, UNIVERSAL TILING SETS AND THE SPECTRAL SET CONJECTURE

STEEN PEDERSEN and YANG WANG

Abstract

A subset Ω of \mathbb{R}^d with finite positive Lebesgue measure is called a *spectral set* if there exists a subset $\Lambda \subset \mathbb{R}$ such that $\mathscr{E}_{\Lambda} := \{e^{i2\pi \langle \lambda, x \rangle} : \lambda \in \Lambda\}$ form an orthogonal basis of $L^2(\Omega)$. The set Λ is called a *spectrum* of the set Ω . The Spectral Set Conjecture states that Ω is a spectral set if and only if Ω tiles \mathbb{R}^d by translation. In this paper we prove the Spectral Set Conjecture for a class of sets $\Omega \subset \mathbb{R}$. Specifically we show that a spectral set possessing a spectrum that is a strongly periodic set must tile \mathbb{R} by translates of a strongly periodic set depending only on the spectrum, and vice versa.

1. Introduction

Let Ω be a (Lebesgue) measurable subset of R with finite positive measure. For $t \in R$ let $\Omega + t := \{x + t : x \in \Omega\}$ denote the translate of Ω by t. We say that Ω *tiles* R by translation if there exists a subset $\mathscr{T} \subset R$ so that $R \setminus \bigcup_{t \in \mathscr{T}} (\Omega + t)$ is a set of measure zero and $(\Omega + t) \cap (\Omega + t')$ is a set of measure zero whenever $t, t' \in \mathscr{T}$ are distinct. In the affirmative case \mathscr{T} is called a *tiling set* for Ω , and (Ω, \mathscr{T}) is called a *tiling pair*. Similarly, we say that Ω tiles the non-negative half line $R^+ = [0, \infty)$ if there exists a subset $\mathscr{T} \subset R$ such that $R^+ \setminus \bigcup_{t \in \mathscr{T}} (\Omega + t)$ is a set of measure zero and $(\Omega + t) \cap (\Omega + t')$ is a set of measure zero whenever $t, t' \in \mathscr{T}$ are distinct. Sets that tile the real line by translation have been studied recently, e.g., [9], [8], [7].

For $\lambda \in R$ we introduce the functions

$$e_{\lambda}(x) := e^{i2\pi\lambda x}, \qquad x \in \mathsf{R}.$$

We say that Ω is a *spectral set* if there exists a subset $\Lambda \subset \mathsf{R}$ so that the functions $\mathscr{E}_{\Lambda} := \{e_{\lambda} : \lambda \in \Lambda\}$ form an orthogonal basis for $L^2(\Omega)$, the Hilbert space of complex valued square integrable functions on Ω with the inner product

$$\langle f,g\rangle := \int_{\Omega} \overline{f(x)}g(x)\,dx.$$

Received August 25, 1998.

If the functions in \mathscr{E}_{Λ} form an orthogonal basis for $L^2(\Omega)$, then we call (Ω, Λ) a *spectral pair* and Λ a *spectrum* for Ω . Spectral sets have recently been studied in various contexts, e.g., [3], [4], [5], [10], [8], [6].

One of the main open questions concerning spectral sets is the following conjecture, first proposed by Fuglede [3]:

SPECTRAL SET CONJECTURE. Let Ω be a measurable subset of \mathbb{R}^d with finite positive Lebesgue measure. Then Ω is a spectral set if and only if Ω tiles \mathbb{R}^d by translation.

In this paper we study the one dimensional case of the Spectral Set Conjecture. A special class of sets we study consists of tiles that tile the non-negative half line R⁺ by translation. We prove:

THEOREM 1.1. Let Ω be a subset of R with finite positive Lebesgue measure. Suppose that Ω tiles R⁺ by translation. Then Ω tiles R by translation and is a spectral set.

Let $\mathbb{N} := \{1, 2, 3, ...\}$ be the set of natural numbers and $\mathbb{Z}^+ := \{0, 1, 2, ...\}$ be the set of non-negative integers. For any $n \in \mathbb{N}$ let $\mathbb{Z}_n^+ := \{0, 1, ..., n-1\}$. For any $A, B \subseteq \mathbb{Z}$ we write

$$A + B := \{a + b : a \in A, b \in B\}$$

for the Minkowski sum of A and B. We will write $A \oplus B$ if each element in A + B has a *unique* decomposition of the form a + b with $a \in A$ and $b \in B$.

DEFINITION 1.2. We call $A \subset Z^+$ a *direct summand of* Z_n^+ if there exists a $B \subset Z^+$ such that $A \oplus B = Z_n^+$. We call a subset \mathscr{T} of R a *strongly periodic set* if there exist an $n \in \mathbb{N}$ and a direct summand $A \subset Z^+$ of Z_n^+ such that $\mathscr{T} = \alpha(A \oplus nZ)$ for some non-zero $\alpha \in \mathbb{R}$.

In [8] it was shown that certain tiles that tile R by translation are spectral sets that possess the so-called *universal spectra*, in the sense that the spectra depend only on the tiling sets, not the tiles. Our main theorem below strengthens this notion by providing a large new class of tiles that possess universal spectra. It shows that a tile that tiles R by the translates of a strongly periodic set must have a universal spectrum that is also a strongly periodic set. More importantly, the theorem also gives rise to the notion of *universal tiling set*, which can be viewed as the dual of universal spectrum. We show that a spectral set that possesses a spectrum that is a strongly periodic set must have a universal tiling set depending only on the spectrum.

THEOREM 1.3. Let Ω be a subset of R with finite positive measure. Suppose that there exists a strongly periodic set $\Lambda \subset R$ such that (Ω, Λ) is a spectral

pair. Then there exists a strongly periodic set $\mathcal{T} \subset \mathsf{R}$ depending only on Λ such that Ω tiles R by translates of \mathcal{T} . Conversely, suppose that there exists a strongly periodic set $\mathcal{T} \subset \mathsf{R}$ such that Ω tiles R by translates of \mathcal{T} . Then there exists a strongly periodic set $\Lambda \subset \mathsf{R}$ depending only on \mathcal{T} such that (Ω, Λ) is a spectral pair.

The strongly periodic sets Λ and \mathscr{T} in Theorem 1.3 are *duals* of each other, and for each given one the other is constructed explicitly in §4. In fact we prove a stronger version of Theorem 1.3 there. For the rest of the paper, in §2 we state a result on the structure of strongly periodic sets, first shown in [2]. In §3 we classify tiles that tile R⁺ by translation. The classification is used to prove Theorem 1.1.

2. Structure of Strongly Periodic Sets

In this section we classify subsets A, B of Z^+ satisfying $A \oplus B = Z_n^+$ for some $n \in \mathbb{N}$. The classification is based on a theorem of de Bruijn [2] establishing the structure of subsets of Z^+ that tile Z^+ by translation. To formulate the result we first introduce some notation regarding divisibility. For $r, s \in Z$ we use $r \mid s$ to mean that r divides s; for $r \in Z$ and $A \subseteq Z$ we use $r \mid A$ to mean that r divides every $a \in A$.

PROPOSITION 2.1 (de Bruijn). Let $A, B \subseteq Z^+$ such that $A \oplus B = Z^+$ and $A \neq Z^+$, $B \neq Z^+$. Then there exists an integer r > 1 such that $r \mid A$ or $r \mid B$. Furthermore, if $r \mid B$ and $B = r\tilde{B}$ then there exists an $\tilde{A} \subseteq Z^+$ such that

$$A = \mathsf{Z}_r^+ \oplus r \widetilde{A}, \quad and \quad \widetilde{A} \oplus \widetilde{B} = \mathsf{Z}^+.$$

PROOF. A proof can be found in de Bruijn [2]. For the sake of self-containment we give a short proof here.

Without loss of generality we assume $1 \in A$. Let *r* be the smallest non-zero member of *B*. For each $m \in \mathbb{N}$ let $A_m \subseteq A$ and $B_m \subseteq B$ be the minimal subsets so that

$$Z_{mr}^+ \subseteq A_m + B_m$$

It follows immediately from the minimality and the uniqueness in $A \oplus B$ that

$$A_m = A \cap \mathsf{Z}_{mr}^+, \qquad B_m = B \cap \mathsf{Z}_{mr}^+$$

Observe that $Z^+_{(m+1)r} \setminus Z^+_{mr} = Z^+_r + mr$. So

$$A_{m+1} \setminus A_m \subseteq Z_r^+ + mr, \qquad B_{m+1} \setminus B_m \subseteq Z_r^+ + mr.$$

248

We show by induction on m that there are subsets C_m and D_m of Z⁺ such that

$$A_m = \mathsf{Z}_r^+ + rC_m, \qquad B_m = rD_m.$$

Let $C_1 := \{0\}$ and $D_1 := \{0\}$. Then $A_1 = Z_r^+ + rC_1$ and $B_1 = rD_1$ as required. Suppose that C_m , $D_m \subseteq Z^+$ have been constructed so that $A_m =$ $Z_r^+ + rC_m$ and $B_m = rD_m$. If $Z_{(m+1)r}^+ \subseteq A_m + B_m$, then $A_{m+1} = A_m$ and $B_{m+1} = B_m$, and so it suffices to set $C_{m+1} := C_m$ and $D_{m+1} := D_m$ to complete the proof.

Now suppose that $Z_{(m+1)r}^+ \not\subseteq A_m + B_m$. Let $j \in Z_r^+$. If $j + mr \in A_m + B_m = Z_r^+ + r(C_m + D_m)$ then $m \in C_m + D_m$ and therefore $Z_r^+ + mr \subseteq A_m + B_m$, contradicting $Z_{(m+1)r}^+ \not\subseteq A_m + B_m$. Hence,

$$(\mathsf{Z}_r^+ + mr) \cap (A_m + B_m) = \emptyset.$$

It follows that $mr \in A_{m+1}$ or $mr \in B_{m+1}$.

If $mr \in B_{m+1}$, then $A_{m+1} = A_m$ and $B_{m+1} = B_m \cup \{rm\}$. Hence we may set $C_{m+1} := C_m$ and $D_{m+1} := D_m \cup \{m\}$.

Assume that $mr \in A_{m+1}$. Let $j \in Z_r^+$. We have shown above that $j + mr \notin A_m + B_m$, so j + mr = a + b for $a \in A_{m+1} \setminus A_m$, $b \in B_{m+1}$ or $a \in A_m$, $b \in B_{m+1} \setminus B_m$. If $b \in B_{m+1} \setminus B_m$ then $(m+1)r - b \in Z_r^+$. Thus mr + r = ((m+1)r - b) + b constitute two different decompositions of the same element in $A \oplus B$, a contradiction. This yields $a \in A_{m+1} \setminus A_m$. If $b \neq 0$ then $B_m = rD_m$ and $B_{m+1} \setminus B_m \subseteq Z_r^+ + mr$ implies that $b \geq r$. So $j + mr = a + b \geq mr + r > j + mr$, again a contradiction. So b = 0 and therefore $j + mr = a \in A_{m+1}$. It follows that

$$A_{m+1} = A_m \cup (\mathsf{Z}_r^+ + mr).$$

The inductions steps are now complete by setting $C_{m+1} := C_m \cup \{m\}$ and $D_{m+1} := D_m$.

Finally, the proposition follows by letting $\widetilde{A} := \bigcup_{m=1}^{\infty} C_m$ and $\widetilde{B} = \bigcup_{m=1}^{\infty} D_m$.

Proposition 2.1 immediately leads to the following classification of strongly periodic sets.

COROLLARY 2.2. Let A, $B \subseteq Z^+$ such that $A \oplus B = Z_n^+$ and $A \neq Z_n^+$, $B \neq Z_n^+$. Then there exists an r > 1 such that $r \mid n$ and either $r \mid A$ or $r \mid B$. Furthermore, if $r \mid B$ and $B = r\tilde{B}$ then there exists an $\tilde{A} \subset Z^+$ so that

$$A = \mathsf{Z}_r^+ \oplus r A$$
, and $A \oplus B = \mathsf{Z}_{\frac{n}{r}}^+$.

PROOF. Suppose that $1 \in A$. Applying Proposition 2.1 to $A \oplus (B \oplus nZ^+) = Z^+$ yields an r > 1 and a set \widetilde{A} so that $A = Z_r^+ \oplus r\widetilde{A}$ and $r \mid (B \oplus nZ^+)$. Since

 $0 \in B$ and $0 \in Z^+$ it follows that $r \mid n$ and $r \mid B$. Finally, $Z_r^+ \oplus r(\widetilde{A} + \widetilde{B}) = A \oplus B = Z_n^+$ implies $\widetilde{A} \oplus \widetilde{B} = Z_n^+$.

COROLLARY 2.3. Let $A, B \subseteq Z^+$ such that $A \oplus B = Z_n^+$. Assume that $1 \in A$. Then there exists a unique finite sequence $d_0 = 1, d_1, \ldots, d_{k-1}, d_k = n$ in N with $r_j := d_j/d_{j-1} \in \mathbb{N}$ and $r_j > 1$ for $1 \leq j \leq k$ such that

$$(2.1) A = d_0 \mathsf{Z}_{r_1}^+ \oplus d_2 \mathsf{Z}_{r_3}^+ \oplus \cdots,$$

$$(2.2) B = d_1 Z_{r_2}^+ \oplus d_3 Z_{r_4}^+ \oplus \cdots.$$

PROOF. Since $1 \in A$, the proof of Proposition 2.1 yields $A = Z_{r_1}^+ \oplus r_1 \widetilde{A}$ and $B = r_1 \widetilde{B}$ where $r_1 = \min\{b : b \in B, b \neq 0\}$, and $\widetilde{A} \oplus \widetilde{B} = Z_{r_1}^+$. The proof is completed by applying Corollary 2.2 iteratively to $\widetilde{A} \oplus \widetilde{B} = Z_{r_1}^+$. Note that the uniqueness follows from the fact that $r_1 = d_1/d_0 = \min\{b : b \in B, b \neq 0\}$, $r_2 = d_2/d_1 = \{a : a \in \widetilde{A}, a \neq 0\}$, etc.

COROLLARY 2.4. Suppose that $A, B \subseteq Z^+$ such that $A \oplus B = Z^+$, and that B is finite. Then B is a direct summand of Z_n^+ for some $n \in \mathbb{N}$.

PROOF. By the same argument for Corollary 2.3 *B* must have the form (2.1) or (2.2), depending on whether $1 \in B$. So *B* must be a direct summand of Z_n^+ for some $n \in \mathbb{N}$.

Call a polynomial a 0 - 1 *polynomial* if each of its coefficients is either 0 or 1. We associate each finite $A \subseteq Z^+$ with the following 0 - 1 polynomial

$$A(x) := \sum_{a \in A} x^a,$$

called the *characteristic polynomial* of *A*. Clearly every 0 - 1 polynomial is the characteristic polynomial of the set of exponents corresponding to its non-zero coefficients. If *A*, *B*, $C \subseteq Z^+$ are finite, then $A \oplus B = C$ if and only if A(x)B(x) = C(x). We call a 0 - 1 polynomial *c-irreducible* if $A(x) \neq A_1(x)A_2(x)$ for any 0 - 1 polynomials $A_1(x) \neq 1$, $A_2(x) \neq 1$. The following result was first stated in [1] (simple examples, however, show that Lemma 1 in [1] is false).

THEOREM 2.5. Let n > 1. Then every factorization of $\frac{x^n-1}{x-1}$ into *c*-irreducible 0-1 polynomials has the form

$$\frac{x^n-1}{x-1}=F_{p_1}(x)F_{p_2}(x^{p_1})F_{p_3}(x^{p_1p_2})\dots F_{p_k}(x^{p_1p_2\dots p_{k-1}}),$$

250

where $F_m(x) := \frac{x^m-1}{x-1}$, all p_j are primes (not necessarily distinct) and $n = p_1 p_2 \dots p_k$.

PROOF. This is a direct consequence of Corollary 2.3, by observing that

$$\mathsf{Z}_{p_1p_2\cdots p_k}^+ = \mathsf{Z}_{p_1}^+ \oplus p_1\mathsf{Z}_{p_2}^+ \oplus p_1 \dots p_{k-1}\mathsf{Z}_{p_k}.$$

Note that each term in the factorization is c-irreducible, because it contains a prime number of terms.

3. Tiling the Non-Negative Real Line

Let $\Omega \subset \mathsf{R}$ be a tile with finite and positive Lebesgue measure that tiles R^+ by translates of \mathscr{T} . In this case we will write $\Omega \oplus \mathscr{T} = \mathsf{R}^+$. In this section we derive the structure of tiles $\Omega \subset \mathsf{R}$ that tile R^+ by translation.

THEOREM 3.1. Let $\Omega \subset \mathsf{R}$ with finite positive Lebesgue measure. Suppose that Ω tiles R^+ by translation. Then there exists an affine map $\varphi(x) = ax + b$ such that

$$\varphi(\Omega) = [0, 1] + B$$

for some finite subset $B \subset Z^+$ with $0 \in B$. Furthermore, B is a direct summand of Z_n^+ for some $n \in \mathbb{N}$. Hence Ω tiles R by translation.

PROOF. In this proof, all set relations involving the tile Ω will be interpreted as up to measure zero sets.

Let $\mathscr{T} \subset \mathsf{R}$ such that $\Omega \oplus \mathscr{T} = \mathsf{R}^+$. We first examine the special case $\mathscr{T} = \{0, 1, t_2, t_3, \ldots\}$ where $t_j > 1$ for all $j \ge 2$. In this special case we prove that $\Omega = [0, 1] + B$ for some $B \subset \mathsf{Z}^+$ and $0 \in B$. Let $\mathscr{T}_n = \mathscr{T} \cap [0, n-1]$ and $\Omega_n = \Omega \cap [0, n]$. We claim that $\mathscr{T}_n \subset \mathsf{Z}^+$ and $\Omega_n = [0, 1] + B_n$ for some $B_n \subset \mathsf{Z}^+$, by induction on n.

Since $t_j > 1$, we must have $[0, 1] \subseteq \Omega$. So the claim is clearly true for n = 1. Assume that the claim is true for all n < k. We show that the claim is also true for n = k. We divide the proof into two cases: $\Omega_{k-1} \subsetneq \Omega_k$ and $\Omega_{k-1} = \Omega_k$. Suppose that $\Omega_{k-1} \subsetneq \Omega_k$. Then $\Omega \cap (k-1, k] \neq \emptyset$. If $\Omega_k \neq [0, 1] + B_k$ for any $B_k \subset \mathbb{Z}^+$, then $\Omega \cap (k-1, k] \subsetneq (k-1, k]$. Hence there exists a $t \in \mathcal{T}$ such that $(\Omega + t) \cap (k - 1, k] \neq \emptyset$. Note that $t \in \mathcal{T}_{k-1}$, so $t \in \mathbb{Z}^+$. It follows that

$$\emptyset \subsetneq \Omega \cap (k-1-t, k-t] \subsetneq (k-1-t, k-t],$$

contradicting the inductive hypothesis. So $\Omega_k = [0, 1] + B_k$ for some $B_k \subset \mathbb{Z}^+$. The assumption that $\Omega_{k-1} \subsetneq \Omega_k$ now implies that $B_k = B_{k-1} \cup \{k-1\}$, so $\mathcal{T}_k = \mathcal{T}_{k-1}$. This proves the claim for n = k in the first case. Suppose that $\Omega_{k-1} = \Omega_k$. Then $\Omega_k = [0, 1] + B_k$ with $B_k = B_{k-1}$. Therefore $\mathcal{T}_k = \mathcal{T}_k$. $\mathscr{T}_{k-1} \cup \{k-1\}$. This completes the induction steps and proves the claim. So we have shown that $B, \mathscr{T} \subseteq Z^+$, and clearly $0 \in B$.

It remains to show that *B* is a direct summand of Z_n^+ for some $n \in \mathbb{N}$. Observe that $B \oplus \mathscr{T} = Z^+$. Therefore *B* is a direct summand of Z_n^+ for some $n \in \mathbb{N}$ by Corollary 2.4.

In general, suppose that Ω tiles R⁺ by translates of \mathscr{T} where the elements in \mathscr{T} are $t_0 < t_1 < t_2 < \cdots$. Let $\varphi(x) = \frac{1}{t_1 - t_0}(x - t_0)$ and $t'_j = \varphi(t_j)$. Then

$$\varphi(\Omega) \oplus \{0, 1, t'_2, t'_3, \ldots\} = \mathsf{R}^+.$$

Hence $\varphi(\Omega) = [0, 1] + B$ for some $B \subset Z^+$ with $0 \in B$.

4. Proofs of Main Theorems

To prove our main theorems we first introduce some notation. For any finite set $A \subset Z$ we denote $f_A(\xi) := A(e^{i2\pi\xi})$ where A(z) is the characteristic (Laurent) polynomial of A. We will use \mathscr{Z}_A to denote the set of zeros of f_A . For a subset $\Omega \subset \mathbb{R}$ with positive and finite measure we will use \mathscr{Z}_Ω to denote the set of zeros of $\widehat{\chi}_\Omega(\xi)$.

Observe that for any finite $A \subset Z$, $\xi \in \mathscr{Z}_A$ implies $\xi + m \in \mathscr{Z}_A$ for all $m \in Z$. So $\mathscr{Z}_A = Z \oplus X$ for some finite $X \subset R$. If in addition A is a direct summand of Z_n^+ for some $n \in \mathbb{N}$, then $n \mathscr{Z}_A \subseteq Z$.

LEMMA 4.1. Let $A \subset Z^+$ be a direct summand of Z_n^+ for some $n \in \mathbb{N}$. Then there exists a direct summand A^* of Z_n^+ with the same cardinality such that

$$(4.1) A - A \subseteq n \mathscr{Z}_{A^*} \cup \{0\}, A^* - A^* \subseteq n \mathscr{Z}_A \cup \{0\}.$$

PROOF. We proceed by induction on *n*. For n = 1, 2 it is easy to check that the lemma holds. Assume that the lemma holds for all n < k, where $k \ge 3$. We show that it holds for n = k.

Case I. $1 \notin A$. Then $A = rA_1$ for some $r > 1, r \mid k$ and direct summand A_1 of $Z_{\frac{k}{r}}^+$. By the hypothesis there exists a direct summand A_1^* of $Z_{\frac{k}{r}}^+$ such that (4.1) holds for A_1, A_1^* and n = k/r. Now $f_A(\xi) = f_{A_1}(r\xi)$ yields $\mathscr{Z}_A = \frac{1}{r}\mathscr{Z}_{A_1}$. Set $A^* = A_1^*$. Clearly A^* is a direct summand of Z_k^+ because it is a direct summand of $Z_{\frac{k}{r}}^+$, and we have

$$A - A = r(A_1 - A_1) \subseteq r \cdot \frac{k}{r} \mathscr{Z}_{A_1^*} \cup \{0\} = k \mathscr{Z}_{A^*} \cup \{0\},$$

and

$$A^*-A^*=A_1^*-A_1^*\subseteq rac{k}{r}\mathscr{Z}_{A_1}\cup\{0\}=k\mathscr{Z}_A\cup\{0\}.$$

252

Case 2. $1 \in A$. Then $A = Z_r^+ \oplus rA_1$ for some r > 1, $r \mid k$ and direct summand A_1 of $Z_{\frac{k}{r}}^+$. By the hypothesis there exists a direct summand A_1^* of $Z_{\frac{k}{r}}^+$ such that (4.1) holds for A_1 , A_1^* and n = k/r. Set $A^* = A_1^* \oplus \frac{k}{r}Z_r^+$. A^* is a direct summand of Z_k^+ because $A^* \oplus B_1^* = Z_k^+$ where $A_1^* \oplus B_1^* = Z_{\frac{k}{r}}^*$. We have

$$f_A(\xi) = f_{Z_r^+}(\xi) f_{A_1}(r\xi), \qquad f_{A^*}(\xi) = f_{A_1^*}(\xi) f_{Z_r^+}\left(\frac{k}{r}\xi\right).$$

It follows from $\mathscr{Z}_{Z_r^+} = \frac{1}{r} Z \setminus Z$ that

(4.2)
$$\mathscr{Z}_A = \frac{1}{r} (\mathsf{Z} \cup \mathscr{Z}_{A_1}) \setminus \mathsf{Z}, \qquad \mathscr{Z}_{A^*} = \mathscr{Z}_{A_1^*} \cup \frac{r}{k} \left(\frac{1}{r} \mathsf{Z} \setminus \mathsf{Z} \right).$$

Let $m = a + \frac{k}{r}j$ and $m = a' + \frac{k}{r}j'$ be two distinct elements in A^* , where $a, a' \in A_1^*$ and $j, j' \in Z_r^+$. If a = a' then

$$m-m'=rac{k}{r}(j-j')\in k\left(rac{1}{r}\mathbb{Z}\setminus\mathbb{Z}
ight)\subseteq k\mathscr{Z}_A.$$

If $a \neq a'$ then $a - a' \in \frac{k}{r} \mathscr{Z}_{A_1}$. Hence $a - a' + \frac{k}{r}l \in \frac{k}{r} \mathscr{Z}_{A_1}$ for all $l \in \mathbb{Z}$. Since $m - m' \notin k\mathbb{Z}$, we have

$$m-m'\in \frac{k}{r}\mathscr{Z}_{A_1}\setminus k\mathsf{Z}\subseteq k\mathscr{Z}_A.$$

Hence $A^* - A^* \subseteq k \mathscr{Z}_A \cup \{0\}$.

Now let m = j + ra, m' = j' + ra' be two distinct elements in A, where $a, a' \in A_1$ and $j, j' \in \mathbb{Z}_r^+$. If j = j' then $a \neq a'$, and by the hypothesis $a - a' \in \frac{k}{r} \mathscr{Z}_{A_1^*}$. So $m - m' = r(a - a') \in k \mathscr{Z}_{A_1^*}$. If $j \neq j'$ then $j - j' \notin r\mathbb{Z}$, so

$$m-m'=j-j'+r(a-a')\in Z\setminus rZ=rac{r}{k}\left(rac{1}{r}Z\setminus Z
ight)\subseteq \mathscr{Z}_{A^*}.$$

Hence $A - A \subseteq \mathscr{Z}_{A^*}$.

We have now completed the induction steps and proven the lemma.

We will call two direct summand *A* and *A*^{*} satisfying (4.1) a *conjugate* pair, and *A*^{*} a *conjugate* of *A*. The proof of Lemma 4.1 leads to an explicit construction of conjugate pairs. Let $A \subset Z^+$ be a direct summand of Z_n^+ . Then by Corollary 2.3 there exists a unique sequence $r_0, r_1, \ldots, r_{2k+1}$ in N with $\prod_{j=0}^{2k+1} r_j = n, r_j > 1$ for 0 < j < 2k + 1 and $r_0, r_{2k+1} \ge 1$, such that

(4.3)
$$A = \bigoplus_{j=0}^{k} d_{2j} Z_{r_{2j+1}}^{+}, \quad \text{where} \quad d_m := \prod_{j=0}^{m} r_j.$$

Define the map ϑ_n on the set of direct summand of Z_n^+ by

(4.4)
$$\vartheta_n(A) = \bigoplus_{j=0}^k \frac{n}{d_{2j+1}} \mathsf{Z}^+_{r_{2j+1}}.$$

Then $\vartheta_n(A)$ is exactly the conjugate set A^* constructed inductively in the proof of Lemma 4.1.

LEMMA 4.2. Suppose that $A \subset Z^+$ is a direct summand of Z_n^+ . Then A and $\vartheta_n(A)$ form a conjugate pair, and $\vartheta_n(\vartheta_n(A)) = A$. Furthermore, if $A, B \subset Z^+$ such that $A \oplus B = Z_n^+$, then $\vartheta_n(A) \oplus \vartheta_n(B) = Z_n^+$

PROOF. The proof of Lemma 4.1 already implies that A, $\vartheta_n(A)$ form an conjugate pair. It is easy to see that $\vartheta_n(\vartheta_n(A)) = A$ by directly applying (4.3) and (4.4). Now, suppose that A is given by (4.3) and $B \subset Z^+$ satisfies $A \oplus B = Z_n^+$. Then there are several cases: $r_0 = 1$ or $r_0 > 1$, and $r_{2k+1} = 1$ or $r_{2k+1} > 1$. If $r_0 = 1$, $r_{2k+1} > 1$ then

(4.5)
$$B = \bigoplus_{j=1}^{k+1} d_{2j-1} Z_{r_{2j}}^+, \quad \text{where} \quad r_{2k+2} := 1.$$

So

(4.6)
$$\vartheta_n(B) = \bigoplus_{j=1}^{k+1} \frac{n}{d_{2j}} \mathsf{Z}^+_{r_{2j}}.$$

It is now straightforward to check from (4.4) and (4.6) that $\vartheta_n(A) \oplus \vartheta_n(B) = Z_n^+$. Other cases can be checked similarly.

DEFINITION 4.3. Let Λ , $\mathscr{T} \subset \mathsf{R}$ be strongly periodic sets. We say that \mathscr{T} is a *dual* of Λ if there exist a non-zero $\alpha \in \mathsf{R}$ and $A, B \subset \mathsf{Z}^+$ with $A \oplus B = \mathsf{Z}_n^+$ for some $n \in \mathsf{N}$ such that

$$\Lambda = \alpha(A \oplus n\mathsf{Z}), \qquad \mathscr{T} = \frac{1}{n\alpha} \big(\vartheta_n(B) \oplus n\mathsf{Z} \big).$$

By Lemma 4.2 if \mathscr{T} is a dual of Λ then Λ is a dual of \mathscr{T} .

LEMMA 4.4. Let $\Omega \subset \mathsf{R}$ satisfy $\mu(\Omega) = n \in \mathsf{N}$. Suppose that $\Lambda = L \oplus \mathsf{Z}$ where *L* is a finite subset of R such that $\Lambda - \Lambda \subseteq \mathscr{Z}_{\Omega} \cup \{0\}$. Then (Ω, Λ) is a spectral pair if and only if |L| = n.

PROOF. See [10], Theorem 1, or [8], Theorem 2.1.

We shall establish the following result, which is a stronger version of our main theorem.

THEOREM 4.5. Suppose that $\Omega \subset \mathsf{R}$ has positive and finite Lebesgue measure. Let Λ , $\mathcal{T} \subset \mathsf{R}$ be strongly periodic sets such that \mathcal{T} is a dual of Λ . Then (Ω, Λ) is a spectral pair if and only if Ω tiles R by translates of \mathcal{T} .

PROOF. Without loss of generality we may assume that $\Lambda = \frac{1}{n}(A \oplus nZ)$ and $\mathscr{T} = \vartheta_n(B) \oplus nZ$ for some $n \in \mathbb{N}$ and $A, B \subset Z^+$ with $A \oplus B = Z_n^+$. (\Leftarrow) The set $\Omega' = \Omega \oplus \vartheta_n(B)$ tiles R by translates of nZ, so it is a fundamental domain of the lattice nZ. Hence

$$\mathscr{Z}_{\Omega'} = \mathscr{Z}_{\Omega} \cup \mathscr{Z}_{\vartheta_n(B)} \supseteq \frac{1}{n} \mathsf{Z} \setminus \{0\}.$$

Since $\vartheta_n(A) \oplus \vartheta_n(B) = \mathsf{Z}_n^+$ we have

$$\mathscr{Z}_{\vartheta_n(A)} \cup \mathscr{Z}_{\vartheta_n(B)} = \mathscr{Z}_{\mathbb{Z}_n^+} = \frac{1}{n} \mathsf{Z} \setminus \mathsf{Z}.$$

Furthermore, $\mathscr{Z}_{\vartheta_n(A)} \cap \mathscr{Z}_{\vartheta_n(B)} = \emptyset$ because $f_{\vartheta_n(A)}(\xi) f_{\vartheta_n(B)}(\xi)$ has no multiple roots. Hence

$$\mathscr{Z}_{\Omega} \supseteq \mathscr{Z}_{\vartheta_n(A)} \cup \mathsf{Z} \setminus \{0\}.$$

Now, for any distinct λ , $\lambda' \in \Lambda$ we have $\lambda - \lambda' = \frac{1}{n}k + j$ for some $k \in A - A$, $j \in \mathbb{Z}$. If $k \neq 0$ then $\frac{k}{n} \in \mathscr{Z}_{\vartheta_n(A)}$ by (4.1), which implies that $\lambda - \lambda' = \frac{k}{n} + j \in \mathscr{Z}_{\vartheta_n(A)} \subseteq \mathscr{Z}_{\Omega}$. Otherwise $\lambda - \lambda' = j \in \mathbb{Z} \setminus \{0\} \subseteq \mathscr{Z}_{\Omega}$. By Lemma 4.4 (Ω , Λ) is a spectral pair.

(⇒) Suppose that (Ω, Λ) is a spectral pair. For any $x \in [0, 1)$ let $D_x := \Omega \cap (Z + x)$. It follows from [10], Theorem 2, that

$$(4.7) |D_x| = |A|, D_x - D_x \subseteq n \mathscr{Z}_A \cup \{0\}$$

for almost all $x \in [0, 1)$. We show that $(D_x - x) + \vartheta_n(B)$ is a complete residue system (mod *n*) for every D_x satisfying (4.7). Note that $\vartheta_n(B) - \vartheta_n(B) \subseteq$ $n\mathscr{Z}_B \cup \{0\}$, and observe that $k \neq m \mod n$ for any $k \in n\mathscr{Z}_A$ and $m \in n\mathscr{Z}_B$. Thus for any $k_1, k_2 \in D_x - x$ and $m_1, m_2 \in \vartheta_n(B)$ we must have $k_1 - k_2 \neq$ $m_2 - m_1 \mod n$ unless $k_1 = k_2$ and $m_1 = m_2$. Hence $k_1 + m_1 \neq k_2 + m_2 \mod n$. Since $|D_x - x| \cdot |\vartheta_n(B)| = n$ it follows that $(D_x - x) + \vartheta_n(B) = (D_x - x) \oplus$ $\vartheta_n(B)$ contains *n* distinct residue classes mod *n*, and hence is a complete residue systemmod *n*. Therefore

$$D_x + \mathscr{T} = D_x \oplus \mathscr{T} = x + \mathsf{Z}$$

for almost all $x \in [0, 1)$. This implies that Ω tiles R by translates of \mathcal{T} .

Theorem 1.1 is a simple consequence of Theorem 3.1 and Theorem 4.5.

ACKNOWLEDGEMENT. The first author would like to thank Palle E. T. Jorgensen for many useful conversations about spectral pairs.

REFERENCES

- 1. Carlitz and Moser, On some special factorizations of $(1 x^n)/(1 x)$, Canad. Math. Bull. 9 (1966), 421–426.
- 2. de Bruijn, N. G., On number systems, Nieuw Arch. Wisk. (4) 4 (1956), 15-17.
- 3. Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121.
- Jorgensen, P. E. T., and Pedersen, S., Spectral theory for Borel sets in Rⁿ of finite measure, J. Funct. Anal. 107 (1992), 72–104.
- Jorgensen, P. E. T., and Pedersen, S., Harmonic analysis and fractal limit-measures induced by representations of a certain C*-algebra, J. Funct. Anal. 125 (1994), 90–110.
- 6. Jorgensen, P. E. T., and Pedersen, S., *Orthogonal harmonic analysis of fractal measures*, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 35–42.
- Lagarias, J. C. and Wang, Y., *Tiling the line with translates of one tile*, Invent. Math. 124 (1996), 341–365.
- Lagarias, J. C. and Wang, Y., Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), 73–98.
- Odlyzko, A. M., Non-negative digit sets in positional number systems, Proc. London Math. Soc. 37 (1978), 213–229.
- Pedersen, S., Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), 496–509.

STEEN PEDERSEN DEPARTMENT OF MATHEMATICS WRIGHT STATE UNIVERSITY DAYTON OH 45435 USA *E-mail:* steen@math.wright.edu YANG WANG DEPARTMENT OF MATHEMATICS GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA GA 30332 USA *E-mail:* wang@math.gatech.edu