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UNIVERSAL SPECTRA, UNIVERSAL TILING SETS
AND THE SPECTRAL SET CONJECTURE

STEEN PEDERSEN and YANG WANG

Abstract

A subset � of Rd with finite positive Lebesgue measure is called a spectral set if there exists a
subset � ⊂ R such that E� := {

ei2π〈λ,x〉 : λ ∈ �
}

form an orthogonal basis of L2(�). The set �
is called a spectrum of the set �. The Spectral Set Conjecture states that � is a spectral set if and
only if � tiles Rd by translation. In this paper we prove the Spectral Set Conjecture for a class
of sets � ⊂ R. Specifically we show that a spectral set possessing a spectrum that is a strongly
periodic set must tile R by translates of a strongly periodic set depending only on the spectrum,
and vice versa.

1. Introduction

Let � be a (Lebesgue) measurable subset of R with finite positive measure.
For t ∈ R let � + t := {x + t : x ∈ �} denote the translate of � by t .
We say that � tiles R by translation if there exists a subset T ⊂ R so that
R \ ⋃

t∈T (�+ t) is a set of measure zero and (�+ t) ∩ (
�+ t ′

)
is a set

of measure zero whenever t, t ′ ∈ T are distinct. In the affirmative case T is
called a tiling set for�, and (�,T ) is called a tiling pair. Similarly, we say that
� tiles the non-negative half line R+ = [0,∞) if there exists a subset T ⊂ R
such that R+ \ ⋃

t∈T (�+ t) is a set of measure zero and (�+ t) ∩ (
�+ t ′

)
is a set of measure zero whenever t, t ′ ∈ T are distinct. Sets that tile the real
line by translation have been studied recently, e.g., [9], [8], [7].

For λ ∈ R we introduce the functions

eλ(x) := ei2πλx, x ∈ R.

We say that� is a spectral set if there exists a subset� ⊂ R so that the functions
E� := {eλ : λ ∈ �} form an orthogonal basis for L2 (�), the Hilbert space of
complex valued square integrable functions on � with the inner product

〈f, g〉 :=
∫
�

f (x)g(x) dx.
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If the functions in E� form an orthogonal basis forL2 (�), then we call (�,�)
a spectral pair and� a spectrum for�. Spectral sets have recently been studied
in various contexts, e.g., [3], [4], [5], [10], [8], [6].

One of the main open questions concerning spectral sets is the following
conjecture, first proposed by Fuglede [3]:

Spectral Set Conjecture. Let � be a measurable subset of Rd with
finite positive Lebesgue measure. Then � is a spectral set if and only if � tiles
Rd by translation.

In this paper we study the one dimensional case of the Spectral Set Conjec-
ture. A special class of sets we study consists of tiles that tile the non-negative
half line R+ by translation. We prove:

Theorem 1.1. Let� be a subset of R with finite positive Lebesgue measure.
Suppose that � tiles R+ by translation. Then � tiles R by translation and is a
spectral set.

Let N := {1, 2, 3, . . .} be the set of natural numbers and Z+ := {0, 1, 2, . . .}
be the set of non-negative integers. For any n ∈ N let Z+

n := {0, 1, . . . , n− 1}.
For any A, B ⊆ Z we write

A+ B := {a + b : a ∈ A, b ∈ B}
for the Minkowski sum of A and B. We will write A ⊕ B if each element in
A+ B has a unique decomposition of the form a + b with a ∈ A and b ∈ B.

Definition 1.2. We call A ⊂ Z+ a direct summand of Z+
n if there exists a

B ⊂ Z+ such that A ⊕ B = Z+
n . We call a subset T of R a strongly periodic

set if there exist an n ∈ N and a direct summand A ⊂ Z+ of Z+
n such that

T = α(A⊕ nZ) for some non-zero α ∈ R.

In [8] it was shown that certain tiles that tile R by translation are spectral sets
that possess the so-called universal spectra, in the sense that the spectra depend
only on the tiling sets, not the tiles. Our main theorem below strengthens this
notion by providing a large new class of tiles that possess universal spectra. It
shows that a tile that tiles R by the translates of a strongly periodic set must
have a universal spectrum that is also a strongly periodic set. More importantly,
the theorem also gives rise to the notion of universal tiling set, which can be
viewed as the dual of universal spectrum. We show that a spectral set that
possesses a spectrum that is a strongly periodic set must have a universal tiling
set depending only on the spectrum.

Theorem 1.3. Let� be a subset of R with finite positive measure. Suppose
that there exists a strongly periodic set � ⊂ R such that (�,�) is a spectral
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pair. Then there exists a strongly periodic set T ⊂ R depending only on �
such that � tiles R by translates of T . Conversely, suppose that there exists a
strongly periodic set T ⊂ R such that� tiles R by translates of T . Then there
exists a strongly periodic set � ⊂ R depending only on T such that (�,�) is
a spectral pair.

The strongly periodic sets� and T in Theorem 1.3 are duals of each other,
and for each given one the other is constructed explicitly in §4. In fact we
prove a stronger version of Theorem 1.3 there. For the rest of the paper, in §2
we state a result on the structure of strongly periodic sets, first shown in [2].
In §3 we classify tiles that tile R+ by translation. The classification is used to
prove Theorem 1.1.

2. Structure of Strongly Periodic Sets

In this section we classify subsetsA, B of Z+ satisfyingA⊕B = Z+
n for some

n ∈ N. The classification is based on a theorem of de Bruijn [2] establishing
the structure of subsets of Z+ that tile Z+ by translation. To formulate the result
we first introduce some notation regarding divisibility. For r, s ∈ Z we use r | s
to mean that r divides s; for r ∈ Z and A ⊆ Z we use r | A to mean that r
divides every a ∈ A.

Proposition 2.1 (de Bruijn). Let A,B ⊆ Z+ such that A⊕ B = Z+ and
A �= Z+, B �= Z+. Then there exists an integer r > 1 such that r | A or r | B.
Furthermore, if r | B and B = rB̃ then there exists an Ã ⊆ Z+ such that

A = Z+
r ⊕ rÃ, and Ã⊕ B̃ = Z+.

Proof. A proof can be found in de Bruijn [2]. For the sake of self-contain-
ment we give a short proof here.

Without loss of generality we assume 1 ∈ A. Let r be the smallest non-zero
member ofB. For eachm ∈ N letAm ⊆ A andBm ⊆ B be the minimal subsets
so that

Z+
mr ⊆ Am + Bm.

It follows immediately from the minimality and the uniqueness in A⊕B that

Am = A ∩ Z+
mr, Bm = B ∩ Z+

mr .

Observe that Z+
(m+1)r \ Z+

mr = Z+
r +mr . So

Am+1 \ Am ⊆ Z+
r +mr, Bm+1 \ Bm ⊆ Z+

r +mr.
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We show by induction on m that there are subsets Cm and Dm of Z+ such that

Am = Z+
r + rCm, Bm = rDm.

Let C1 := {0} and D1 := {0}. Then A1 = Z+
r + rC1 and B1 = rD1 as

required. Suppose that Cm, Dm ⊆ Z+ have been constructed so that Am =
Z+
r + rCm and Bm = rDm. If Z+

(m+1)r ⊆ Am + Bm, then Am+1 = Am and
Bm+1 = Bm, and so it suffices to set Cm+1 := Cm and Dm+1 := Dm to
complete the proof.

Now suppose that Z+
(m+1)r �⊆ Am+Bm. Let j ∈ Z+

r . If j+mr ∈ Am+Bm =
Z+
r + r(Cm + Dm) then m ∈ Cm + Dm and therefore Z+

r + mr ⊆ Am + Bm,
contradicting Z+

(m+1)r �⊆ Am + Bm. Hence,

(Z+
r +mr) ∩ (Am + Bm) = ∅.

It follows that mr ∈ Am+1 or mr ∈ Bm+1.
If mr ∈ Bm+1, then Am+1 = Am and Bm+1 = Bm ∪ {rm}. Hence we may

set Cm+1 := Cm and Dm+1 := Dm ∪ {m}.
Assume that mr ∈ Am+1. Let j ∈ Z+

r . We have shown above that j +
mr /∈ Am + Bm, so j + mr = a + b for a ∈ Am+1 \ Am, b ∈ Bm+1 or
a ∈ Am, b ∈ Bm+1 \ Bm. If b ∈ Bm+1 \ Bm then (m + 1)r − b ∈ Z+

r . Thus
mr + r = ((m + 1)r − b) + b constitute two different decompositions of
the same element in A ⊕ B, a contradiction. This yields a ∈ Am+1 \ Am. If
b �= 0 then Bm = rDm and Bm+1 \ Bm ⊆ Z+

r + mr implies that b ≥ r . So
j + mr = a + b ≥ mr + r > j + mr , again a contradiction. So b = 0 and
therefore j +mr = a ∈ Am+1. It follows that

Am+1 = Am ∪ (Z+
r +mr).

The inductions steps are now complete by setting Cm+1 := Cm ∪ {m} and
Dm+1 := Dm.

Finally, the proposition follows by letting Ã :=⋃∞
m=1Cm and B̃=⋃∞

m=1Dm.

Proposition 2.1 immediately leads to the following classification of strongly
periodic sets.

Corollary 2.2. Let A, B ⊆ Z+ such that A ⊕ B = Z+
n and A �= Z+

n ,
B �= Z+

n . Then there exists an r > 1 such that r | n and either r | A or r | B.
Furthermore, if r | B and B = rB̃ then there exists an Ã ⊂ Z+ so that

A = Z+
r ⊕ rÃ, and Ã⊕ B̃ = Z+

n
r

.

Proof. Suppose that 1 ∈ A. Applying Proposition 2.1 toA⊕ (B⊕nZ+) =
Z+ yields an r > 1 and a set Ã so that A = Z+

r ⊕ rÃ and r | (B ⊕ nZ+). Since
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0 ∈ B and 0 ∈ Z+ it follows that r | n and r | B. Finally, Z+
r ⊕ r(Ã + B̃) =

A⊕ B = Z+
n implies Ã⊕ B̃ = Z+

n
r

.

Corollary 2.3. LetA,B ⊆ Z+ such thatA⊕B = Z+
n . Assume that 1 ∈ A.

Then there exists a unique finite sequence d0 = 1, d1, . . . , dk−1, dk = n in N
with rj := dj/dj−1 ∈ N and rj > 1 for 1 ≤ j ≤ k such that

A = d0Z+
r1

⊕ d2Z+
r3

⊕ · · · ,(2.1)

B = d1Z+
r2

⊕ d3Z+
r4

⊕ · · · .(2.2)

Proof. Since 1 ∈ A, the proof of Proposition 2.1 yieldsA = Z+
r1

⊕ r1Ã and
B = r1B̃ where r1 = min{b : b ∈ B, b �= 0}, and Ã⊕ B̃ = Z+

n
r1

. The proof is

completed by applying Corollary 2.2 iteratively to Ã⊕ B̃ = Z+
n
r1

. Note that the

uniqueness follows from the fact that r1 = d1/d0 = min{b : b ∈ B, b �= 0},
r2 = d2/d1 = {a : a ∈ Ã, a �= 0}, etc.

Corollary 2.4. Suppose thatA,B ⊆ Z+ such thatA⊕B = Z+, and that
B is finite. Then B is a direct summand of Z+

n for some n ∈ N.

Proof. By the same argument for Corollary 2.3B must have the form (2.1)
or (2.2), depending on whether 1 ∈ B. So B must be a direct summand of Z+

n

for some n ∈ N.

Call a polynomial a 0 − 1 polynomial if each of its coefficients is either 0
or 1. We associate each finite A ⊆ Z+ with the following 0 − 1 polynomial

A(x) :=
∑
a∈A

xa,

called the characteristic polynomial of A. Clearly every 0 − 1 polynomial
is the characteristic polynomial of the set of exponents corresponding to its
non-zero coefficients. If A, B, C ⊆ Z+ are finite, then A⊕B = C if and only
if A(x)B(x) = C(x). We call a 0 − 1 polynomial c-irreducible if A(x) �=
A1(x)A2(x) for any 0 − 1 polynomials A1(x) �≡ 1, A2(x) �≡ 1. The following
result was first stated in [1] (simple examples, however, show that Lemma 1
in [1] is false).

Theorem 2.5. Let n > 1. Then every factorization of x
n−1
x−1 into c-irreducible

0 − 1 polynomials has the form

xn − 1

x − 1
= Fp1(x)Fp2(x

p1)Fp3(x
p1p2) . . . Fpk (x

p1p2...pk−1),
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where Fm(x) := xm−1
x−1 , all pj are primes (not necessarily distinct) and n =

p1p2 . . . pk .

Proof. This is a direct consequence of Corollary 2.3, by observing that

Z+
p1p2···pk = Z+

p1
⊕ p1Z+

p2
⊕ p1 . . . pk−1Zpk .

Note that each term in the factorization is c-irreducible, because it contains a
prime number of terms.

3. Tiling the Non-Negative Real Line

Let � ⊂ R be a tile with finite and positive Lebesgue measure that tiles R+ by
translates of T . In this case we will write � ⊕ T = R+. In this section we
derive the structure of tiles � ⊂ R that tile R+ by translation.

Theorem 3.1. Let � ⊂ R with finite positive Lebesgue measure. Suppose
that � tiles R+ by translation. Then there exists an affine map ϕ(x) = ax + b

such that
ϕ(�) = [0, 1] + B

for some finite subsetB ⊂ Z+ with 0 ∈ B. Furthermore,B is a direct summand
of Z+

n for some n ∈ N. Hence � tiles R by translation.

Proof. In this proof, all set relations involving the tile�will be interpreted
as up to measure zero sets.

Let T ⊂ R such that � ⊕ T = R+. We first examine the special case
T = {0, 1, t2, t3, . . .} where tj > 1 for all j ≥ 2. In this special case we prove
that � = [0, 1] + B for some B ⊂ Z+ and 0 ∈ B. Let Tn = T ∩ [0, n − 1]
and �n = � ∩ [0, n]. We claim that Tn ⊂ Z+ and �n = [0, 1] + Bn for some
Bn ⊂ Z+, by induction on n.

Since tj > 1, we must have [0, 1] ⊆ �. So the claim is clearly true forn = 1.
Assume that the claim is true for all n < k. We show that the claim is also true
for n = k. We divide the proof into two cases: �k−1 � �k and �k−1 = �k .
Suppose that �k−1 � �k . Then � ∩ (k − 1, k] �= ∅. If �k �= [0, 1] + Bk for
any Bk ⊂ Z+, then � ∩ (k − 1, k] � (k − 1, k]. Hence there exists a t ∈ T
such that (�+ t) ∩ (k − 1, k] �= ∅. Note that t ∈ Tk−1, so t ∈ Z+. It follows
that

∅ �� ∩ (k − 1 − t, k − t] � (k − 1 − t, k − t],

contradicting the inductive hypothesis. So�k = [0, 1]+Bk for someBk ⊂ Z+.
The assumption that �k−1 � �k now implies that Bk = Bk−1 ∪ {k − 1}, so
Tk = Tk−1. This proves the claim for n = k in the first case. Suppose that
�k−1 = �k . Then �k = [0, 1] + Bk with Bk = Bk−1. Therefore Tk =
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Tk−1 ∪ {k − 1}. This completes the induction steps and proves the claim. So
we have shown that B,T ⊆ Z+, and clearly 0 ∈ B.

It remains to show thatB is a direct summand of Z+
n for somen ∈ N. Observe

that B ⊕ T = Z+. Therefore B is a direct summand of Z+
n for some n ∈ N by

Corollary 2.4.
In general, suppose that � tiles R+ by translates of T where the elements

in T are t0 < t1 < t2 < · · ·. Let ϕ(x) = 1
t1−t0 (x − t0) and t ′j = ϕ(tj ). Then

ϕ(�)⊕ {0, 1, t ′2, t
′
3, . . .} = R+.

Hence ϕ(�) = [0, 1] + B for some B ⊂ Z+ with 0 ∈ B.

4. Proofs of Main Theorems

To prove our main theorems we first introduce some notation. For any finite
set A ⊂ Z we denote fA(ξ) := A

(
ei2πξ

)
where A(z) is the characteristic

(Laurent) polynomial of A. We will use ZA to denote the set of zeros of fA.
For a subset � ⊂ R with positive and finite measure we will use Z� to denote
the set of zeros of χ̂�(ξ).

Observe that for any finite A ⊂ Z, ξ ∈ ZA implies ξ + m ∈ ZA for all
m ∈ Z. So ZA = Z ⊕ X for some finite X ⊂ R. If in addition A is a direct
summand of Z+

n for some n ∈ N, then nZA ⊆ Z.

Lemma 4.1. Let A ⊂ Z+ be a direct summand of Z+
n for some n ∈ N. Then

there exists a direct summand A∗ of Z+
n with the same cardinality such that

(4.1) A− A ⊆ nZA∗ ∪ {0}, A∗ − A∗ ⊆ nZA ∪ {0}.

Proof. We procced by induction on n. For n = 1, 2 it is easy to check that
the lemma holds. Assume that the lemma holds for all n < k, where k ≥ 3.
We show that it holds for n = k.

Case 1. 1 �∈ A. Then A = rA1 for some r > 1, r | k and direct summand
A1 of Z+

k
r

. By the hypothesis there exists a direct summand A∗
1 of Z+

k
r

such that

(4.1) holds forA1,A∗
1 andn = k/r . Now fA(ξ) = fA1(rξ) yields ZA = 1

r
ZA1 .

Set A∗ = A∗
1. Clearly A∗ is a direct summand of Z+

k because it is a direct
summand of Z+

k
r

, and we have

A− A = r(A1 − A1) ⊆ r · k
r
ZA∗

1
∪ {0} = kZA∗ ∪ {0},

and
A∗ − A∗ = A∗

1 − A∗
1 ⊆ k

r
ZA1 ∪ {0} = kZA ∪ {0}.
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Case 2. 1 ∈ A. Then A = Z+
r ⊕ rA1 for some r > 1, r | k and direct

summand A1 of Z+
k
r

. By the hypothesis there exists a direct summand A∗
1 of Z+

k
r

such that (4.1) holds for A1, A∗
1 and n = k/r . Set A∗ = A∗

1 ⊕ k
r

Z+
r . A∗ is a

direct summand of Z+
k because A∗ ⊕B∗

1 = Z+
k where A∗

1 ⊕B∗
1 = Z k

r
. We have

fA(ξ) = fZ+
r
(ξ )fA1(rξ), fA∗(ξ) = fA∗

1
(ξ)fZ+

r

(
k
r
ξ
)
.

It follows from ZZ+
r

= 1
r
Z \ Z that

(4.2) ZA = 1

r
(Z ∪ ZA1) \ Z, ZA∗ = ZA∗

1
∪ r

k

(
1
r
Z \ Z

)
.

Let m = a + k
r
j and m = a′ + k

r
j ′ be two distinct elements in A∗, where

a, a′ ∈ A∗
1 and j, j ′ ∈ Z+

r . If a = a′ then

m−m′ = k

r
(j − j ′) ∈ k

(
1
r
Z \ Z

) ⊆ kZA.

If a �= a′ then a − a′ ∈ k
r
ZA1 . Hence a − a′ + k

r
l ∈ k

r
ZA1 for all l ∈ Z. Since

m−m′ �∈ kZ, we have

m−m′ ∈ k
r
ZA1 \ kZ ⊆ kZA.

Hence A∗ − A∗ ⊆ kZA ∪ {0}.
Now let m = j + ra, m′ = j ′ + ra′ be two distinct elements in A, where

a, a′ ∈ A1 and j, j ′ ∈ Z+
r . If j = j ′ then a �= a′, and by the hypothesis

a−a′ ∈ k
r
ZA∗

1
. Som−m′ = r(a−a′) ∈ kZA∗

1
. If j �= j ′ then j − j ′ �∈ rZ, so

m−m′ = j − j ′ + r(a − a′) ∈ Z \ rZ = r

k

(
1
r
Z \ Z

) ⊆ ZA∗ .

Hence A− A ⊆ ZA∗ .
We have now completed the induction steps and proven the lemma.

We will call two direct summand A and A∗ satisfying (4.1) a conjugate
pair, and A∗ a conjugate of A. The proof of Lemma 4.1 leads to an explicit
construction of conjugate pairs. Let A ⊂ Z+ be a direct summand of Z+

n . Then
by Corollary 2.3 there exists a unique sequence r0, r1, . . . , r2k+1 in N with∏2k+1
j=0 rj = n, rj > 1 for 0 < j < 2k + 1 and r0, r2k+1 ≥ 1, such that

(4.3) A =
k⊕

j=0

d2jZ+
r2j+1

, where dm :=
m∏
j=0

rj .
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Define the map ϑn on the set of direct summand of Z+
n by

(4.4) ϑn(A) =
k⊕

j=0

n

d2j+1
Z+
r2j+1

.

Then ϑn(A) is exactly the conjugate setA∗ constructed inductively in the proof
of Lemma 4.1.

Lemma 4.2. Suppose that A ⊂ Z+ is a direct summand of Z+
n . Then A and

ϑn(A) form a conjugate pair, and ϑn(ϑn(A)) = A. Furthermore, ifA,B ⊂ Z+
such that A⊕ B = Z+

n , then ϑn(A)⊕ ϑn(B) = Z+
n

Proof. The proof of Lemma 4.1 already implies that A, ϑn(A) form an
conjugate pair. It is easy to see that ϑn(ϑn(A)) = A by directly applying
(4.3) and (4.4). Now, suppose that A is given by (4.3) and B ⊂ Z+ satisfies
A⊕B = Z+

n . Then there are several cases: r0 = 1 or r0 > 1, and r2k+1 = 1 or
r2k+1 > 1. If r0 = 1, r2k+1 > 1 then

(4.5) B =
k+1⊕
j=1

d2j−1Z+
r2j
, where r2k+2 := 1.

So

(4.6) ϑn(B) =
k+1⊕
j=1

n

d2j
Z+
r2j
.

It is now straightforward to check from (4.4) and (4.6) that ϑn(A)⊕ ϑn(B) =
Z+
n . Other cases can be checked similarly.

Definition 4.3. Let �,T ⊂ R be strongly periodic sets. We say that T
is a dual of� if there exist a non-zero α ∈ R andA,B ⊂ Z+ withA⊕B = Z+

n

for some n ∈ N such that

� = α(A⊕ nZ), T = 1

nα

(
ϑn(B)⊕ nZ

)
.

By Lemma 4.2 if T is a dual of � then � is a dual of T .

Lemma 4.4. Let � ⊂ R satisfy µ(�) = n ∈ N. Suppose that � = L ⊕ Z
where L is a finite subset of R such that �−� ⊆ Z� ∪ {0}. Then (�,�) is a
spectral pair if and only if |L| = n.

Proof. See [10], Theorem 1, or [8], Theorem 2.1.
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We shall establish the following result, which is a stronger version of our
main theorem.

Theorem 4.5. Suppose that � ⊂ R has positive and finite Lebesgue meas-
ure. Let �,T ⊂ R be strongly periodic sets such that T is a dual of �. Then
(�,�) is a spectral pair if and only if � tiles R by translates of T .

Proof. Without loss of generality we may assume that � = 1
n
(A ⊕ nZ)

and T = ϑn(B)⊕ nZ for some n ∈ N and A,B ⊂ Z+ with A⊕ B = Z+
n .

(⇐) The set�′ = �⊕ϑn(B) tiles R by translates of nZ, so it is a fundamental
domain of the lattice nZ. Hence

Z�′ = Z� ∪ Zϑn(B) ⊇ 1

n
Z \ {0}.

Since ϑn(A)⊕ ϑn(B) = Z+
n we have

Zϑn(A) ∪ Zϑn(B) = ZZ+
n

= 1

n
Z \ Z.

Furthermore, Zϑn(A) ∩ Zϑn(B) = ∅ because fϑn(A)(ξ)fϑn(B)(ξ) has no multiple
roots. Hence

Z� ⊇ Zϑn(A) ∪ Z \ {0}.
Now, for any distinct λ, λ′ ∈ �we have λ−λ′ = 1

n
k+ j for some k ∈ A−A,

j ∈ Z. If k �= 0 then k
n

∈ Zϑn(A) by (4.1), which implies that λ−λ′ = k
n
+ j ∈

Zϑn(A) ⊆ Z�. Otherwise λ− λ′ = j ∈ Z \ {0} ⊆ Z�. By Lemma 4.4 (�,�)
is a spectral pair.

(⇒) Suppose that (�,�) is a spectral pair. For any x ∈ [0, 1) let Dx :=
� ∩ (Z + x). It follows from [10], Theorem 2, that

(4.7) |Dx | = |A|, Dx −Dx ⊆ nZA ∪ {0}
for almost all x ∈ [0, 1). We show that (Dx −x)+ϑn(B) is a complete residue
system (mod n) for every Dx satisfying (4.7). Note that ϑn(B) − ϑn(B) ⊆
nZB ∪ {0}, and observe that k �≡ mmod n for any k ∈ nZA and m ∈ nZB .
Thus for any k1, k2 ∈ Dx − x and m1,m2 ∈ ϑn(B) we must have k1 − k2 �≡
m2 −m1 mod n unless k1 = k2 andm1 = m2. Hence k1+m1 �≡ k2 +m2 mod n.
Since |Dx − x| · |ϑn(B)| = n it follows that (Dx − x)+ ϑn(B) = (Dx − x)⊕
ϑn(B) containsndistinct residue classesmod n, and hence is a complete residue
systemmod n. Therefore

Dx + T = Dx ⊕ T = x + Z

for almost all x ∈ [0, 1). This implies that � tiles R by translates of T .
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Theorem 1.1 is a simple consequence of Theorem 3.1 and Theorem 4.5.
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