OUTER CONJUGACY CLASSES OF TRACE SCALING AUTOMORPHISMS OF STABLE UHF ALGEBRAS

GEORGE A. ELLIOTT, DAVID E. EVANS and AKITAKA KISHIMOTO

Introduction.

Connes [C] classified automorphisms of the II_{∞} approximately finite-dimensional (AFD) factor $R_{0,1}$ up to outer conjugacy. An automorphism θ of $R_{0,1}$ determines a modulus or scaling factor λ on a trace $\tau, \tau \theta = \lambda \tau$. It follows from this classification and [CT] that automorphisms which do not leave a trace invariant are classified up to conjugacy by their modulus; for each $\lambda \in (0, 1)$ there is up to conjugacy a unique automorphism θ_{λ} of $R_{0,1}$ which scales the trace by λ . Consequently, for such λ , there is a unique factor of type III_{λ}, the Powers factor R_{λ} , whose associated type II_{∞} factor is $R_{0,1}$; necessarily, $R_{\lambda} = R_{0,1} \rtimes \theta_{\lambda} Z$.

A key idea for model building in Connes's work on the classification of automorphisms of AFD factors [C] and in subsequent work of Jones [J], Ocneanu [O], and Kawahigashi, Sutherland and Takesaki [KST] on amenable group actions is a non-commutative Rohlin lemma for an aperiodic automorphism of a finite von Neumann algebra. Recall that an automorphism θ of a von Neumann algebra M is said to be properly outer if the restriction to M_e is outer for each non-zero invariant projection e, and aperiodic if every non-zero power is properly outer. Connes showed that an automorphism θ of M is properly outer if and only if for each non-zero projection e in M, and $\varepsilon > 0$, there exists a non-zero projection f in M such that $||f\theta(f)|| < \varepsilon$ and $f \le e$. With an abundance of such projections, whose translates are almost orthogonal, Connes could deduce a non-commutative Rohlin lemma. If θ is an aperiodic automorphism of a finite (not necessarily separable) von Neumann algebra leaving invariant a normalised faithful normal trace τ , then for each positive integer *n* and each $\varepsilon > 0$, there exist projections F_1, \dots, F_n in M such that $\sum_{j=1}^n F_j = 1$ and $\|\theta(F_j) - F_{j+1}\|_2 \le \varepsilon$, j = 1, ..., n, where $F_{n+1} = F_1$ and $||x||_2 = \tau(x^*x)^{\frac{1}{2}}$.

Received February 2, 1996; in revised form February 28, 1996.

The Rohlin lemma can be applied to study an automorphism θ of a von Neumann algebra M which is not necessarily finite through the algebra of central sequences which may be of type II₁. If ω is an ultrafilter on N, let M_{ω} denote the asymptotic centraliser (see [C]), the von Neumann algebra of centralising sequences (bounded sequences (x_n) such that $\lim_{n\to\omega} \|[x_n, \psi]\| = 0$ for all $\psi \in M_*$), modulo ω -null sequences (bounded sequences converging*strongly to zero). Then $M \cong M \otimes R_0$ if and only if M_{ω} is of type II₁ (in this case M is said to be strongly stable), where R_0 is the hyperfinite II₁ factor, and the Rohlin lemma may be applied to the induced automorphism θ_{ω} of M_{ω} . From the Rohlin lemma, one can deduce a stability or 1-cohomology property. In the algebra of sequences, this takes the form that if θ is an automorphism of a strongly stable factor and $\theta_{\omega}^n \neq 1$ for all $n \neq 0$, then θ_{ω} is stable in the sense that any unitary of M_{ω} is of the form $v\theta_{\omega}(v^*)$ for some unitary v in M_{ω} .

These ideas concerning the Rohlin lemma and stability were taken over to a C^* -algebraic setting in [HJ1], [HJ2], and [HO] to classify product cyclic actions on UHF C^* -algebras A up to outer conjugacy and conjugacy. In this case the appropriate sequence algebra A^{∞} is $l^{\infty}(N, A)$ modulo sequences which converge to zero in norm, and the algebra of central sequences is $A_{\infty} = A^{\infty} \cap A'$. These ideas concerning the Rohlin property and stability were taken further in [R1], [R2], in the programme to classify separable amenable C^* -algebras by K-theoretic invariants.

The Rohlin property on which these and later articles were based was that established in [BKRS] for the shift on the Pauli algebra $M_{2^{\infty}} = \bigotimes_{Z} M_2$. This was obtained via quasi-free techniques, applied to the quasi-free shift on the (even) Fermion algebra. The Rohlin property for the shift on $M_{2^{\infty}}$ immediately implies the Rohlin property for the shift on the UHF algebra $M_{(2n)^{\infty}} = M_{2^{\infty}} \otimes M_{n^{\infty}}$. A weak Rohlin property was established in [BEK1] for the shift on an odd UHF algebra $M_{m^{\infty}}$ (where *m* is odd) via the embedding [CE] of the gauge-invariant Fermion algebra in the UHF algebra $M_{m^{\infty}}$, which is compatible with the shift. In [K1], it was shown that this weaker form of the Rohlin property actually guaranteed the Rohlin property itself for the shift on $M_{m^{\infty}}$ for an arbitrary *m*.

Furthermore, it was shown in [K2] that an automorphism of an arbitrary UHF algebra has the Rohlin property if and only if every non-zero power is uniformly outer (i.e., the weak extension is outer in the tracial representation), or, equivalently, the crossed product $A \rtimes Z$ has a unique tracial state, or the crossed product is of real rank zero. It was also shown that all such automorphisms are outer conjugate (e.g. to an infinite tensor product automorphism $(\bigotimes_{n=1}^{\infty} M_{m_n}, \bigotimes_{n=1}^{\infty} \operatorname{Ad} U_n)$ with the eigenvalues of $\bigotimes_{n=l}^{\infty} U_n$ being uniformly distributed for any l). Hence the crossed products are all iso-

morphic and AT – inductive limits of direct sums of matrix algebras over the continuous functions on the circle.

Here we shall show that trace scaling automorphisms of a stable UHF algebra, with the same non-trivial scaling factor, are outer conjugate. An automorphism of a stable UHF algebra $B \otimes K$, with B a unital UHF algebra, which scales the trace by $p/q \neq 1$ with p and q relatively prime, induces a partial endomorphism γ , an isomorphism of $B \cap C'_1$ onto $B \cap C'_2$ where C_1 and C_2 are subalgebras of B isomorphic to M_p and M_q . This partial endomorphism γ extends to a partial endomorphism of R, the hyperfinite factor generated by B in its tracial representation, taking $R \cap C'_1$ to $R \cap C'_2$. This determines an automorphism γ_{ω} of R_{ω} . Lemma 1 shows that γ is outer in the sense that for each full matrix algebra N of R containing C_1 , every non-zero projection f in $R \cap N'$, and any unitary U in R the following holds:

$$\infig\{\|eU\gamma(e)\|; 0
eq e\leq f\,, e=e^2=e^*\in R\cap N'ig\}=0$$
 .

It then follows (Lemma 2) that any non-zero power of the automorphism γ_{ω} is properly outer, that the partial endomorphism γ of the von Neumann algebra R has the Rohlin property (Lemma 3), and, hence, that the partial endomorphism γ on the C^* -algebra B has the Rohlin property (Lemma 4). From this, stability of the partial endomorphism γ on B can be deduced (Lemma 5), from which γ is seen to be outer conjugate with $\gamma \otimes \sigma$ for any automorphism σ of the UHF algebra $M_{(pq)^{\infty}} = B_0$ (note $B \cong B \otimes B_0$). Arguments parallel to those in the von Neumann algebra setting then yield that all trace scaling automorphisms of the stable UHF algebra A, with the same non-trivial scaling factor $p/q \neq 1$, are outer conjugate. The classification of simple purely infinite amenable C^* -algebras which satisfy the UCT ([R2], [Kir], [Phi]) shows that if $A = M_{(pq)^{\infty}} \otimes \mathcal{K}$ the crossed product $A \rtimes Z$ is isomorphic to the stable Cuntz algebra $O_{|p-q|+1} \otimes \mathcal{K}$, if p and q are relatively prime.

The arguments here in fact establish the stronger assertion (Corollary 8) that unital endomorphisms of a UHF algebra with image the commutant of a non-trivial matrix algebra are classified up to outer conjugacy by the order of that algebra, and similarly for unital endomorphisms of the hyperfinite factor of type II_1 .

This work was initiated at the Fields Institute for Research in Mathematical Sciences, in July and August of 1995. AK is grateful to M. Takesaki for explaining the solution of the present problem in the factor case. DEE was supported by the NSERC – Royal Society Anglo-Canadian Exchange Scheme and AK by the NSERC – JSPS Canadian-Japanese Exchange Scheme. The work was completed in September and October of 1995 when AK was visiting the University of Wales, Swansea, supported by JSPS and the Royal Society under the Bilateral Programme between the Isaac Newton Research Institute for Mathematical Sciences, Cambridge, and the Research Institute for Mathematical Sciences, Kyoto University.

The Main Results.

Let *A* be a stable UHF algebra; that is, let *A* be a *C**-algebra isomorphic to $B \otimes \mathcal{K}$ where *B* is a unital UHF algebra and \mathcal{K} is the algebra of compact operators on an infinite-dimensional separable Hilbert space. There is a densely defined lower semi-continuous trace τ on *A*; τ is unique up to constant multiple. Let α be an automorphism of *A*. We define $s(\alpha) \in \mathbb{R}$ by $\tau \alpha = s(\alpha)\tau$. It follows that $s(\alpha)$ is a positive rational number and the map α_* on $K_0(A)$ is multiplication by $s(\alpha)$, identifying $K_0(A)$ with a dense subgroup of R containing Z. We shall say that automorphisms α and β of *A* are outer conjugate if there is an automorphism σ of *A* and a unitary *U* in the multiplier algebra M(A) of *A* such that $\alpha = (\operatorname{Ad} U)\sigma\beta\sigma^{-1}$. If α and β are outer conjugate then $s(\alpha) = s(\beta)$.

Let α be an automorphism of A such that $s(\alpha) \neq 1$. Let $s(\alpha) = p/q$ where p and q are relatively prime positive integers. Since $K_0(A) = (p/q)K_0(A)$, it follows that

$$K_0(A) = K_0(A) \otimes \mathsf{Z}[1/pq].$$

That is, A is isomorphic to $A \otimes M_{(pq)^{\infty}}$ where $M_{n^{\infty}}$ is the (unital) UHF algebra of type n^{∞} .

Let *e* be a projection in *A* whose equivalence class is 1 in $K_0(A)$, and set B = eAe. Then $A \cong B \otimes \mathcal{K}$ and $B \cong M_{(pq)^{\infty}} \otimes D$, where *D* is a UHF algebra (or a matrix algebra) such that $K_0(D)$ is not divisible by *p* or *q*. Let us identify *B* with $M_{(pq)^{\infty}} \otimes D$ and choose a subalgebra C_1 of $M_{(pq)^{\infty}} \otimes 1$ isomorphic to M_p and a subalgebra C_2 of $M_{(pq)^{\infty}} \otimes 1$ isomorphic to M_q . Set $B_i = B \cap C'_i$. Then B_1 and B_2 are isomorphic to *B*. Let us identify *B* with $B_1 \otimes C_1$ and with $B_2 \otimes C_2$.

Since the minimal projections in $C_1 \otimes \mathcal{K}$ ($\subset B \otimes \mathcal{K}$) correspond to 1/p in $K_0(A)$, the minimal projections in $\alpha(C_1 \otimes \mathcal{K})$ ($\subset B \otimes \mathcal{K}$) correspond to 1/q. Hence there is a unitary U in $M(B \otimes \mathcal{K})$ such that

$$(\operatorname{Ad} U)\alpha(C_1\otimes \mathcal{K})=C_2\otimes \mathcal{K}.$$

Let us denote by $\overline{\alpha}$ the extension of α to an automorphism of M(A). Then it follows that $(\operatorname{Ad} U) \overline{\alpha}$ maps $B_1 (\cong B_1 \otimes 1 \subset M(B \otimes \mathcal{K}))$ onto B_2 . Set

$$\theta = (\operatorname{Ad} U)\alpha | C_1 \otimes \mathcal{K}$$

$$\gamma = (\operatorname{Ad} U)\overline{\alpha} | B_1 .$$

Then θ is an isomorphism of $C_1 \otimes \mathcal{K}$ onto $C_2 \otimes \mathcal{K}$ – note that such an isomorphism is unique up to inner automorphisms (arising from unitaries in $M(C_2 \otimes \mathcal{K}))$ – and γ is an isomorphism of B_1 onto B_2 . Note that $(\operatorname{Ad} U)\alpha$ is obtained as follows :

$$B \otimes \mathcal{K} = B_1 \otimes (C_1 \otimes \mathcal{K}) \xrightarrow{\gamma \otimes \theta} B_2 \otimes (C_2 \otimes \mathcal{K}) = B \otimes \mathcal{K}.$$

LEMMA 1. Let R denote the AFD factor of type II_1 and let C_1 and C_2 be unital finite-dimensional subalgebras of R such that $C_1 \cong M_p$ and $C_2 \cong M_q$ with $p \neq q$. Let γ be an isomorphism of $R \cap C'_1$ onto $R \cap C'_2$. Then for any full matrix subalgebra N of R with $N \supset C_1$, for any non-zero projection f in $R \cap N'$ and for any unitary U in R it follows that

$$\inf\{\|eU\gamma(e)\|; e \le f, 0 \ne e = e^2 = e^* \in R \cap N'\} = 0$$

PROOF. Let θ be an isomorphism of $C_1 \otimes I_{\infty}$ onto $C_2 \otimes I_{\infty}$ where I_{∞} is a factor of type I_{∞} . Then one can define an automorphism α of the von Neumann algebra tensor product $R \otimes I_{\infty}$ by

$$R\otimes I_\infty=R\cap C_1'\otimes C_1\otimes I_\infty \xrightarrow{\gamma\otimes heta} R\cap C_2'\otimes C_2\otimes I_\infty=R\otimes I_\infty$$
 .

Since $\tau \alpha = (p/q)\tau$ where τ is a trace on $R \otimes I_{\infty}$, α is (properly) outer.

Let N, f and U be given. Replacing γ by $(\operatorname{Ad} U)\gamma$ and C_2 by $(\operatorname{Ad} U)C_2$ we may suppose that U = 1. Let p_i (resp. p) be a minimal projection in C_i (resp I_{∞}). We may assume that $\theta(p_1 \otimes p) = p_2 \otimes p$. Let q_1 be a minimal projection in $N \cap C'_1$ and set F equal to $fp_1q_1 \otimes p$, which is a projection in $R \otimes I_{\infty}$. Let a projection $E \in R \otimes I_{\infty}$ with $E \leq F$ be given. Necessarily, E is of the form $ep_1q_1 \otimes p$ where e is a projection in $R \cap N'$. If $N \cong M_{rp}$, then there is a family $(V_{1k}; k = 1, \ldots, rp)$ of unitaries in N such that

$$\sum_{k} V_{1k} p_1 q_1 V_{1k}^* = 1 \, .$$

There is also a family $(V_{2k}; k = 1, ..., rq)$ of unitaries in $\gamma(N \cap C'_1) \lor C_2$ such that

$$\sum_{k} V_{2k} p_2 q_2 V_{2k}^* = 1 \,,$$

where $q_2 = \gamma(q_1)$. It follows that

$$\sum_{k,l} V_{1k} E V_{1k}^* V_{2l} \alpha(E) V_{2l}^* = e \gamma(e) \otimes p \,.$$

Hence,

$$||e\gamma(e)|| \le pqr^2 \max\{||EV_{1k}^*V_{2l}\alpha(E)||; k = 1, \dots, rp, l = 1, \dots, rq\}.$$

By [C, 1.2.2], the infimum of the right hand side over non-zero projections $E \in R \otimes I_{\infty}$ with $E \leq F$ is zero – as α is outer. The infimum of the left hand side over non-zero projections $e \in R \cap N$ with $e \leq f$ is therefore also zero, as desired.

REMARK. In the situation of Lemma 1 there is a unitary $U_1 \in R$ such that Ad $U_1(C_2) \subset C'_1$. Then $\gamma(\operatorname{Ad} U_1)\gamma$ is defined as an isomorphism of $R \cap C'_{11}$ onto $R \cap C'_{21}$ where $C_{11} = C_1 \vee ((\operatorname{Ad} U_1)\gamma)^{-1}(C_1) \cong M_p \otimes M_p$ and $C_{21} = C_2 \vee \gamma(\operatorname{Ad} U_1)(C_2) \cong M_q \otimes M_q$. Thus, $\gamma(\operatorname{Ad} U_1)\gamma$ also satisfies the conclusion of Lemma 1. Similarly one can find unitaries U_i such that $\gamma(\operatorname{Ad} U_{n-1})\gamma(\operatorname{Ad} U_{n-2})\cdots(\operatorname{Ad} U_1)\gamma$ is well defined as an isomorphism of $R \cap C'_{1n}$ onto $R \cap C'_{2n}$ where $C_{1n} \cong M_{p^n}$ and $C_{2n} \cong M_{q^n}$. As in [C] and in the introduction, define, for a free ultrafilter ω on N, the asymptotic centraliser R_{ω} , which is a finite von Neumann algebra. Then the partial endomorphism γ of R defines an automorphism γ_{ω} of R_{ω} , and it follows that

$$(\gamma(\operatorname{Ad} U_{n-1})\gamma\cdots(\operatorname{Ad} U_1)\gamma)_{\omega}=\gamma_{\omega}^n,$$

independently of the choice of $U_1, U_2, \ldots, U_{n-1}$.

LEMMA 2. Let γ be as in Lemma 1 and let γ_{ω} , R_{ω} be as above. Then γ_{ω}^{n} is properly outer for any $n \neq 0$.

PROOF. Let N be a full matrix subalgebra of R such that $N \supset C_1$. As in the proof of [C, 1.2.5], for a fixed $\delta > 0$ denote by Q the set of couples (e, V) such that

- (a) e is a projection in $R \cap N'$,
- (b) V is a unitary in R with $||V 1||_1 \le \delta \tau(e)$,
- (c) $V\gamma(e)V^*$ is a projection in $R \cap N'$ and $V\gamma(e)V^*e = 0$.

We define an order on Q as follows : $(e, V) \leq (e', V')$ if

- (1) $e \le e'$,
- (2) $||V' V||_1 \le \delta \tau (e' e).$

One can show that (Q, \leq) is inductive, and, by using Lemma1, that a maximal element (e, V) satisfies $e + V\gamma(e)V^* = 1$. Since

80 GEORGE A. ELLIOTT, DAVID E. EVANS AND AKITAKA KISHIMOTO

$$\tau((e - \gamma(e))^2) = \tau(e + \gamma(e) - e\gamma(e) - \gamma(e)e)$$
$$= 1 - 2\tau(e\gamma(e)e)$$
$$= 1 - 2\tau(e(1 - V)\gamma(e)e),$$

and

$$\begin{aligned} |\tau(e(1-V)\gamma(e)e)| &\leq \tau((1-V)(1-V)^*)^{\frac{1}{2}}\tau(e\gamma(e)e)^{\frac{1}{2}} \\ &\leq \sqrt{2}\tau(|1-V|)^{\frac{1}{2}}\tau(e)^{\frac{1}{2}} \\ &= \tau(|1-V|)^{\frac{1}{2}} \\ &\leq \left(\frac{\delta}{2}\right)^{\frac{1}{2}}, \end{aligned}$$

we obtain

$$\|e - \gamma(e)\|_2 \ge \left(1 - \sqrt{2\delta}\right)^{\frac{1}{2}}.$$

Hence if $\delta = 1/8$, $||e - \gamma(e)||_2 \ge 1/\sqrt{2}$. For an increasing sequence (N_n) of full matrix subalgebras of R such that $C_1 \subset N_1$ and $\bigcup_{n=1}^{\infty} N_n$ is dense in R, we choose $e_n \in R \cap N'_n$ as above, and set $e = (e_n) \in R_{\omega}$. Then it follows that $||e - \gamma_{\omega}(e)||_2 \ge 1/\sqrt{2}$. Thus we have that γ_{ω} is properly outer as in the proof of [C, 2.1.2]. By the Remark above, this argument also applies to any non-zero power of γ_{ω} .

LEMMA 3. In the situation of the previous lemma, γ has the Rohlin property, i.e., for any $n \in \mathbb{N}$, $\varepsilon > 0$, and finite subset S of $R \cap C'_1$ there exists a partition (F_0, \ldots, F_{n-1}) of unity by projections in $R \cap C'_1$ such that

$$\begin{aligned} \|\gamma(F_i) - F_{i+1}\|_2 < \varepsilon \,, \\ \|[x, F_i]\|_2 < \varepsilon \end{aligned}$$

for i = 0, ..., n-1 with $F_n = F_0$ and for $x \in S$, where $||y||_2 = \tau (y^* y)^{\frac{1}{2}}$ for $y \in R$.

PROOF. This follows from [C, 1.2.5] in view of [C, 1.1.3].

LEMMA 4. Let B be a UHF algebra and let C_1 and C_2 be unital finite-dimensional subalgebras of B such that $C_1 \cong M_p$ and $C_2 \cong M_q$ with $p \neq q$. Let γ be an isomorphism of $B \cap C'_1$ onto $B \cap C'_2$. Then γ has the Rohlin property, i.e., for any $n, \varepsilon > 0$, and finite subset S of $B \cap C'_1$ there is a partition $(F_i; i = 0, 1, \dots, (pq)^n - 1)$ of unity of projections in $B \cap C'_1$ such that

$$\|\gamma(F_i) - F_{i+1}\| < \varepsilon$$
,
 $\|[x, F_i]\| < \varepsilon$

for $i = 0, 1, ..., (pq)^n - 1$ with $F_{(pq)^n} = F_0$ and for $x \in S$.

PROOF. Let N be a full matrix subalgebra of B with $N \supset C_1$. For any n and $\varepsilon > 0$ we have to construct a partition $(F_i; i = 0, 1, \dots, (pq)^n - 1)$ of unity in $B \cap N'$ such that

$$\|\gamma(F_i) - F_{i+1}\| < \varepsilon$$

for $i = 0, 1, ..., (pq)^n - 1$. By having Lemma 3 at hand this can be done exactly as in [K2].

LEMMA 5. In the situation of the previous lemma, let (U_n) be a central sequence of unitaries in B. Then there exists a central sequence (V_n) of unitaries in $B \cap C'_1$ such that

$$\left\|\gamma(V_n^*)V_n-U_n\right\|\to 0$$
.

PROOF. Set $A^{\infty} = l^{\infty}(\mathsf{N}, A)/c_0(\mathsf{N}, A)$ and imbed A into A^{∞} as the constant sequences. Set $A_{\infty} = A^{\infty} \cap A'$. Then γ defines an automorphism γ_{∞} of A_{∞} and by Lemma 4, γ_{∞} has the Rohlin property. Hence by [HO] we have a unitary $v \in A_{\infty}$ for $u = (U_n) \in A_{\infty}$ such that

$$\gamma_{\infty}(v^*)v = u$$
.

We may represent v as a sequence (V_n) of unitaries in $B \cap C'_1$. This completes the proof.

LEMMA 6. In the situation of Lemma 4, consider in addition the UHF algebra $B_0 = M_{(pq)^{\infty}}$ and let σ be an automorphism of B_0 . Then γ and $\gamma \otimes \sigma$ are outer conjugate; that is, there is an isomorphism φ of $B \otimes B_0$ onto B such that $\varphi(C_1 \otimes 1) = C_1$ and

$$(\operatorname{Ad} U)\gamma = \varphi(\gamma \otimes \sigma)\varphi^{-1} \text{ on } B \cap C_1'$$

for some unitary $U \in B$.

PROOF. First note that $B \cong B \otimes B_0$. Therefore, we may choose a central sequence $(e_{ij}^n; i, j = 1, ..., pq)$ of $pq \times pq$ matrix units in $B \cap C'_1$. Choose an element λ of T of infinite order. Since γ takes $B \cap C'_1$ onto $B \cap C'_2$, there exists a central sequence (v_n) of unitaries in B such that

$$\gamma(e_{ij}^n) = \lambda^{i-j} v_n e_{ij}^n v_n^* \,.$$

By Lemma 5, there exists a central sequence (w_n) of unitaries in $B \cap C'_1$ such

that $\|\gamma(w_n^*)w_n - v_n\| \to 0$. Set $f_{ij}^n = w_n e_{ij}^n w_n^*$. Then $(f_{ij}^n : i, j = 1, ..., pq)$ is a central sequence of systems of $pq \times pq$ matrix units in $B \cap C'_1$, and

$$\gamma(f_{ij}^n) - \lambda^{i-j} f_{ij}^n \to 0$$

We may choose a subsequence of (f_{ij}^n) and modify it slightly so that the resulting sequence (f_{ij}^n) consists of mutually commuting systems of matrix units and there is a unitary $U \in B$ with

$$(\operatorname{Ad} U)\gamma(f_{ii}^n) = \lambda^{i-j}f_{ii}^n$$

This implies that B has a factorization $B_1 \otimes B_0$ with respect to which $(\operatorname{Ad} U)\gamma$ factorizes as $\gamma_1 \otimes \sigma_0$, where γ_1 is a partially defined endomorphism of B_1 of the same type as γ and σ_0 is the automorphism of B_0 consisting of the infinite tensor product of copies of

$$\mathrm{Ad} egin{pmatrix} 1 & & 0 \ 0 & \lambda & & 0 \ & & \ddots & \ & & \ddots & \ & 0 & & \lambda^{pq-1} \end{pmatrix}.$$

Since σ_0 has the Rohlin property ([BEK2], [K1]), for any automorphism σ of B_0 there is (by [K2]) a unitary V in $B_0 \otimes B_0$ such that

$$\sigma_0 \cong \operatorname{Ad} V(\sigma_0 \otimes \sigma) \,,$$

where \cong denotes conjugacy. This implies that

$$(\operatorname{Ad} U)\gamma \cong \operatorname{Ad}(1 \otimes V)(\gamma_1 \otimes \sigma_0 \otimes \sigma) \cong \operatorname{Ad}(V(U \otimes 1))\gamma \otimes \sigma$$

where \widetilde{V} denotes the image of $1 \otimes V$ under the second isomorphism. This completes the proof.

THEOREM 7. Let A be a stable UHF algebra and let α, β be automorphisms of A. If $s(\alpha) = s(\beta) \neq 1$, then α and β are outer conjugate.

PROOF. Let $A \cong B \otimes \mathcal{K}$ with *B* a unital UHF algebra and write $s(\alpha) = p/q$ with *p* and *q* relatively prime positive integers. As shown above we may assume that α has the decomposition

$$A = B \otimes \mathcal{K} = B \cap C_1' \otimes (C_1 \otimes \mathcal{K}) \gamma \otimes \theta \longrightarrow B \cap C_2' \otimes (C_2 \otimes \mathcal{K}) = A_2$$

where γ is an isomorphism of $B \cap C'_1$ onto $B \cap C'_2$, $C_1 \cong M_p$, $C_2 \cong M_q$, and θ is an isomorphism of $C_1 \otimes \mathcal{K}$ onto $C_2 \otimes \mathcal{K}$. We may identify \mathcal{K} with $\mathcal{K} \otimes \mathcal{K}$. Since θ is outer conjugate to $\theta \otimes id_{\mathcal{K}}$, this implies that α is outer conjugate to $\alpha \otimes id_{\mathcal{K}}$.

By Lemma 6 applied to γ , α is outer conjugate to $\alpha \otimes \sigma$ for any automorphism σ of $B_0 = M_{(pq)^{\infty}}$. Let ν be an automorphism of $B_0 \otimes \mathcal{K}$ such that $s(\nu) = s(\alpha)$. Then $s(\alpha \otimes \nu^{-1}) = 1$, and so $\alpha \otimes \nu^{-1}$ is outer conjugate to $\sigma \otimes id_{\mathcal{K}}$ on $B \otimes \mathcal{K}$ for some automorphism σ of B. By Lemma 4 applied to γ , it follows that σ has the Rohlin property and so $\alpha \otimes \nu^{-1}$ is outer conjugate to $\sigma_0 \otimes id_B \otimes id_{\mathcal{K}}$ on $B_0 \otimes B \otimes \mathcal{K}$ with σ_0 an automorphism of B_0 with the Rohlin property. Similarly, $\nu \otimes \nu^{-1}$ is outer conjugate to $\sigma_0 \otimes id_{\mathcal{K}}$. Thus we have that

$$\begin{aligned} \alpha &\sim \alpha \otimes \mathrm{id}_{\mathcal{K}} \sim \alpha \otimes \sigma_0 \otimes \mathrm{id}_{\mathcal{K}} \sim \alpha \otimes \nu \otimes \nu^{-1} \otimes \mathrm{id}_{\mathcal{K}} \\ &\sim \nu \otimes \sigma_0 \otimes \mathrm{id}_B \otimes \mathrm{id}_{\mathcal{K}} \sim \nu \otimes \sigma_0 \otimes \mathrm{id}_B \sim \nu \otimes \mathrm{id}_B, \end{aligned}$$

where outer conjugacy is denoted by \sim . Since the right hand side does not depend on α , we have the assertion.

REMARK. Let A be a stable UHF algebra and let α be an automorphism of A with $s(\alpha) \neq 1$. Then by Theorem 7 the isomorphism class of the crossed product $A \rtimes_{\alpha} Z$ depends only on $s(\alpha)$. Since $A \rtimes_{\alpha} Z$ is purely infinite [R2], this fact also follows from [R2], [Kir] and [Phi], by using the Pimsner-Voiculescu exact sequence. When $A = M_{(pq)^{\infty}} \otimes \mathcal{K}$ and $s(\alpha) = p/q$, where p, q are relatively prime, calculation yields that

$$K_0(A \rtimes_{lpha} \mathsf{Z}) = \mathsf{Z}/(p-q)\mathsf{Z}, \qquad K_1(A \rtimes_{lpha} \mathsf{Z}) = 0.$$

Hence by [Kir] and [Phi], $A \rtimes_{\alpha} Z$ is isomorphic to the stable Cuntz algebra $O_{|p-q|+1} \otimes \mathcal{K}$.

COROLLARY 8. Let α and β be unital endomorphisms of a UHF algebra B such that Im $\alpha = B \cap B'_{\alpha}$ and Im $\beta = B \cap B'_{\beta}$ where B_{α} and B_{β} are unital subalgebras of B with $B_{\alpha} \cong M_p \cong B_{\beta}$ with $p \ge 2$. Then α and β are outer conjugate.

PROOF. Denote by σ the unilateral shift on $M_{p^{\infty}}$ and by B_{σ} the first copy of M_p in $M_{p^{\infty}}$. Then $\text{Im } \sigma = M_{p^{\infty}} \cap B'_{\sigma}$ and σ is an endomorphism of $M_{p^{\infty}}$ of the type considered in the corollary.

We define an automorphism (α^{-1}, σ) of $B \otimes M_{p^{\infty}}$ by

$$B\otimes M_{p^{\infty}}=lpha(B)\otimes B_{lpha}\otimes M_{p^{\infty}}\xrightarrow{lpha^{-1}\otimes heta_{lpha\sigma}\otimes \sigma}B\otimes B_{\sigma}\otimes \sigma(M_{p^{\infty}})=B\otimes M_{p^{\infty}}$$

where $\theta_{\alpha\sigma}$ is an isomorphism of B_{α} onto B_{σ} . Thus, (α^{-1}, σ) is defined uniquely up to inner automorphisms. Similarly we define an automorphism (α, σ^{-1}) of $B \otimes M_{p^{\infty}}$, which is the inverse of (α^{-1}, σ) up to inner automorphisms, and also an automorphism (σ^{-1}, σ) of $M_{p^{\infty}} \otimes M_{p^{\infty}}$.

Since, by Lemma 4, σ has the Rohlin property, (σ^{-1}, σ) also has the Rohlin property and so by [K2] is outer conjugate to any other automorphism of $M_{p^{\infty}}$ with the Rohlin property. Hence by Lemma 6,

$$\alpha \sim \alpha \otimes (\sigma^{-1}, \sigma) \sim (\alpha, \sigma^{-1}) \otimes \sigma \sim \sigma \otimes \mathrm{id}_B,$$

where the second outer conjugacy consists of exchanging B_{σ} in the last factor and B_{α} in the first factor of the factorisation $B \otimes M_{p^{\infty}} \otimes M_{p^{\infty}}$, which is an inner automorphism. Since the right hand side does not depend on α , this completes the proof.

COROLLARY 9. If α and β are unital endomorphisms of the hyperfinite type II₁ factor R such that Im $\alpha = R \cap R'_{\alpha}$ and Im $\beta = R \cap R'_{\beta}$ for some unital finitedimensional subfactors R_{α} and R_{β} of R, then α and β are outer conjugate if and only if $R_{\alpha} \cong R_{\beta}$.

PROOF. This is proved in exactly the same way as the previous corollary.

REMARK. If M is a type I_{∞} factor and α is a unital normal endomorphism of M, then $M_{\alpha} = M \cap \alpha(M)'$ is of type I_n for some n and $\alpha(M) = M \cap M'_{\alpha}$. The outer conjugacy class of α is uniquely determined by n.

REMARK. Let M be a properly infinite factor and let α be a unital normal endomorphism of M such that $\alpha(M) = M \cap M'_{\alpha}$ for some type I subfactor M_{α} of M. Suppose that M_{α} is of type $I_{n_{\alpha}}$ (with n_{α} countable). Then there exist n_{α} isometries (s_i) in M such that $(s_i s_j^*)$ is a system of matrix units for M_{α} , and α is given by

$$\alpha(x) = \sum s_i \gamma(x) s_i^*$$

for some automorphism γ of M. For a different choice of (s_i) , γ differs only by an inner automorphism determined by a unitary in M_{α} . Denote the class containing γ in Aut M/Int M by $\hat{\alpha}$. Then we can assert: Two such endomorphisms α, β of M are outer conjugate if and only if $n_{\alpha} = n_{\beta}$ and $\hat{\alpha}$ is conjugate to $\hat{\beta}$. (If M is of type III or type II_{∞}, it is known [C] that there is an abundance of outer conjugacy classes in Aut M; so the situation is different from the one in Corollary 9.) For example if α and γ are as above and σ is another automorphism of M, then

$$\sum s_i \sigma \gamma \sigma^{-1}(x) s_i^* = (\text{Ad } V) \sigma \alpha \sigma^{-1}(x)$$

where V is the unitary defined by

$$V=\sum s_i\sigma(s_i)^*\,.$$

The other computations are as easy as this.

REMARK. With σ the unilateral shift endomorphism of the UHF algebra $M_{2^{\infty}}$, define an endomorphism α of $M_{2^{\infty}}$ by

$$\alpha(x) = e_1 \sigma(x) + e_2 \sigma^2(x) \,,$$

where e_1, e_2 is a partition of unity by projections in the first copy of M_2 in $M_{2^{\infty}}$. Note that the relative commutant of Im α is isomorphic to $\mathbb{C} \oplus M_2$, and that α does not have the Rohlin property. For if it did, then there would be a unitary $u \in M_{2^{\infty}}$ such that u commutes with M_2 and $\alpha(u) \approx -u$, which implies that $\sigma(u) \approx -u$ and $\sigma^2(u) \approx -u$, a contradiction. When γ is an automorphism of $M_{2^{\infty}}$ such that $\sigma\gamma = \gamma\sigma$ and the action of $\mathbb{N} \times \mathbb{Z}$ defined by $(m, n) \to \sigma^m \gamma^n$ satisfies the Rohlin property (cf. Remark 4 of [KK]), define an endomorphism β of $M_{2^{\infty}}$ by

$$\beta(x) = e_1 \sigma(x) + e_2 \gamma \sigma^2(x).$$

Then it follows that $M_{2^{\infty}} \cap (\operatorname{Im} \beta)' = M_{2^{\infty}} \cap (\operatorname{Im} \alpha)'$ and that β has the Rohlin property. Compare with Lemma 4 and Corollary 8.

REFERENCES

- [BEK1] O. Bratteli, D. E. Evans and A. Kishimoto, Almost shift invariant projections in infinite tensor products. Quantum and Non-Commutative Analysis (eds. H. Araki et al.), 427–434, 1994.
- [BEK2] O. Bratteli, D. E. Evans and A. Kishimoto (1995), The Rohlin property for quasi-free automorphisms of the Fermion algebra. Proc. London Math. Soc. 71 (1995), 675– 694.
- [BKRS] O. Bratteli, A. Kishimoto, M. Rørdam and E. Størmer (1993), *The crossed product of a UHF algebra by a shift.* Ergodic Theory Dynamical Systems 13, (1993), 615–626.
- [C] A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. 8 (1975), 383–420.
- [CE] A. Connes and D. E. Evans, Embeddings of U(1)-current algebras in non-commutative algebras of classical statistical mechanics. Comm. Math. Phys. 121 (1989), 507–525.
- [CT] A. Connes and M. Takesaki, *The flow of weights on factors of type III*. Tôhoku Math. J. 29 (1977), 473–575.
- [HJ1] R. H. Herman and V. F. R. Jones, Period two automorphisms of UHF algebras. J. Funct. Anal. 45 (1982), 169–176.
- [HJ2] R. H. Herman and V. F. R. Jones, Models of finite group actions. Math. Scand. 52 (1983), 312–320.
- [HO] R. H. Herman and A. Ocneanu, Stability for integer actions on UHF C*-algebras, J. Funct. Anal. 59 (1984), 132–144.
- [J] V. F. R. Jones, Actions of finite groups on the hyperfinite type II₁ factor. Mem. Amer. Math. Soc. 237 (1980).
- [KST] Y. Kawahigashi, C. E. Sutherland and M. Takesaki, The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions. Acta Math. 169 (1992), 105–130.
- [Kir] E. Kirchberg (in preparation), The classification of purely infinite C*-algebras using Kasparov's theory.
- [K1] A. Kishimoto, The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras, J. Funct. Anal. 140 (1995), 100–123.
- [K2] A. Kishimoto, The Rohlin property for automorphisms of UHF algebras. J. Reine Angew. Math. 465 (1995), 183–196.
- [KK] A. Kishimoto and A. Kumjian, Crossed products of Cuntz algebras by quasi-free automorphisms. Operator algebras and their applications, Fields Institute Commun. 13 (1997), 173–192.

86 GEORGE A. ELLIOTT, DAVID E. EVANS AND AKITAKA KISHIMOTO

- [O] A. Ocneanu, Actions of discrete amenable groups on factors. Lecture Notes in Math. 1138, 1985.
- [Phi] N. C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras (1995).
- [R1] M. Rørdam, Classification of inductive limits of Cuntz algebras. J. Reine Angew. Math. 440 (1993), 175-200.
- M. Rørdam, Classification of certain infinite simple C*-algebras. J. Funct. Anal. 131 [R2] (1995), 415–458.

DEPARTMENT OF MATHEMATICS SCHOOL OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO CANADA M5S 3G3

UNIVERSITY OF WALES, CARDIFF HOKKAIDO UNIVERSITY PO BOX 926 SENGHENYDD ROAD CARDIFF CF2 4YH WALES UK

DEPARTMENT OF MATHEMATICS SAPPORO 060 JAPAN

MATHEMATICS INSTITUTE UNIVERSITY OF COPENHAGEN DK --2100 COPENHAGEN DENMARK