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ON n-SUM GROUPS

J. H. E. COHN

An innocent example in [3, p. 82] asks the student to prove that no group can be
the set-theoretic union of two of its proper subgroups. Of course, as the example
of C, x C, shows, a group can indeed be the sum, i.e. the set-theoretic union, of
three of its proper subgroups, which leads naturally to the

DEFINITION. A group G is said to be an n-sum group if it can be written as the
sum of n of its proper subgroups and of no smaller number. We then write
o(G) = n.

It is the object of this note to consider the properties of (G). Some previous
work is to be found in [1] and [2].

It is obvious that a cyclic group can never be so written, since no subgroup
containing a generator can be proper. Equally obviously, any finite non-cyclic
group is the sum of the proper subgroups generated by single elements. We
assume without further mention that all our groups are of this type. For
convenience we shall write 6(G) = oo if G is cyclic.

n
We then write G = Z H,, where for each r, H, is a proper subgroup, which can
r=1
be assumed to be maximal where convenient. We suppress suffices where there is
no risk of confusion, and also usually assume the indices i(H,) =i, to be
non-decreasing, so that the subgroups are arranged in non-increasing order.

THEOREM 1. If G = i H, then |G| < i |H,|, with equality if and only if (a)
HH,=G,r+ 1and (b3=1},m H, < Hy,r :#:f?
PrOOF. The number of elements of H, not contained within H; equals
|H,| — |Hy 0 H,| = |H,|{l — |H\|/|H,H,|}

< [H, {1 — |H,|/|GI}
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and so

|Gl < |Hi| + {1 = [H{|/|GI} Y. |H,|
r=2
from which the inequality follows. Equality occurs if and only if there is both
equality at each stage above, i.e. H;H, = G,r = 2, and if no two subgroups have
any common element not also contained in Hy, i.e. H,n H; < Hy, r % s.

If the subgroups are ordered as above, we obtain immediately
LemMmA 1. If 6(G) = n,theni, <n — 1.

LemMA 2. If N <« G, then o(G) < a(G/N).

For,if G/N =) H,then G =) HN.

COROLLARY. d(H x K) < min{o(H), 6(K)}.

Thus for any given n-sum group, we can construct new n-sum groups, and so
are led to the

DEFINITION. A group G is said to be a primitive n-sum group if 6(G) = n and
G has no normal subgroup N for which ¢(G/N) = n.

Since every maximal subgroup of G contains the Frattini subgroup @ as
a subgroup and @ < G, it follows that any primitive n-sum group has |®| = 1.

The case n = 3 has been dealt with in [1], where in the present notation it is
proved that the only primitive 3-sum group is C, x C,.

LemMA 3. If pis prime, C, x C, is a primitive (p + 1)-sum group.

For every proper subgroup has index p,andsoo = (p + 1) by Lemma 1. If G is
generated by elements a and b then G is the sum of the p + 1 cyclic subgroups
generated by ab’, 0<r < p—1 and by b. That G is primitive follows on
observing that every factor group of G is cyclic.

THEOREM 2. If G is anon-cyclic p-group, then 6(G) = p + 1,and G is a primitive
(p + 1)-sum group only if it is C, x C,.

ProOOF. (1) Since every proper subgroup has index p atleast, 6(G) = p + 1 by
Lemma 1.

(2) If G is non-cyclic and abelian, then it is the direct product of two abelian
p-groups, and so G has a factor groupisomorphicto C, x C,. Thuse(G) < p + 1
by Lemma 2 and 3.

(3) If|G| = p* with k = 2, we prove 6(G) < p + 1 byinductiononk. Fork = 2,
Gis C, x C,and the result follows from Lemma 3. For k 2 3, if G is abelian the
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result is shown above, whereas otherwise G/Z(G) is a smaller non-cyclic p-group,
and so the result follows from the inductive hypothesis.
(4) It is evident from the above that the only primitive case is C, x C,,.

LEMMA 4. If (H|,|K]) = 1 then o(H x K) = min{c(H), o(K)}.

PrOOF. G = H x K is cyclic if and only if both H and K are cyclic, and then
there is nothing to prove. Otherwise suppose a(G) = n. Since (|H|, |K|) = 1, any
subgroup of G is of the form X x Y where X < H, Y < K, and for any maximal
subgroup of G, either X = H and Y is a maximal subgroup of K or vice-versa.
Thus

14 q
G=)Y Hx Y+ ) X,xK=G; +G,.
r=1 s=1
say,wherep+ q=mp=0,9=0.

We shall show that one of p and g must vanish. For if g % 0, then G, + G and
so there exists an element (h,,k,) ¢ G,. Then also (h, k,) ¢ G for any he H, whence
(h,k,)€ G, for every he H. But then (h, k)€ G, for every he H and ke K, so that
G, = G, whence p = 0.

Now if p=0, then G=Gz=(z Xs>xK, and so H= ) X, whence
s=1 s=1

o(H) £ n = a(G). Similarly if ¢ = 0 then ¢(K) < n = a(G). In either case, the
result follows from the corollary to Lemma 2.

THEOREM 3. If G is a non-cyclic nilpotent group then 6(G) = p + 1, where p is
the smallest prime for which the Sylow p-sum group is non-cyclic. The only nilpotent
primitive (p + 1)-subgroup is C, x C,.

Proor. Since G is the direct product of its Sylow subgroups, it follows from
Lemma 4 that ¢(G) = min {o(S)} for the Sylow subgroups S of G, and the result
then follows by Theorem 2.

LEMMA 5. If G= Y H, where o(G) =n, and L is a subgroup of all save
r=1

possibility one of the subgroups H,, then it is a subgroup of them all.

For, if L = H, for each r £k, let aeH,, but a¢H, for r + k. Then also
alL.n H, =@ for r % k, and so aL = H,. Thus L < H,.

THEOREM 4. If G is a primitive n-sum group, then either G ~ C, x C, for some
prime p, or else |Z(G)| = 1.

Proor. If Gis abelian the result follows by Theorem 3. Suppose if possible that
G is non-abelian, with non-trivial centre, and let p denote a prime factor of |Z(G)|.
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Let u be an element of Z(G) of order p, and U be the subgroup generated by u.
Then U < G and so if 6(G) = nand G = ), H, with each H, maximal, since G is

r=1
primitive there exists at least one H, of which U is not a subgroup. By the previous
lemma, there must exist at least two such, H and K, say.
Since U <« G, HU is a subgroup of G which contains H as a proper subgroup,
p—1
and so since H was assumed maximal, HU = G, i.e. G= ) Hu' Also since
i=0
u'e Z(G), w'H = Hu' and so H < G and i(H) = p. Similarly for K. Also since the
elements of H and of U commute and G = HU, G ~ H x U and so since G was
assumed to be a primitive n-sum group, 6(G) = n < g(H). Since both H and K are
maximal and are normal subgroups of index p, X = H n K is a normal subgroup

p—1
of index p?. Then X < H and since |[H/X| = p, H/X ~C,,and so H = Y Xv/
j=0
where ve H, v¢ X and v” € X. Since u € Z(G) we obtain

p-1 .
G= ) Hu
i=0
p-lp_l P
=Y Y Xuv
i=0 j=0
p—1 . p—1(p—-1
=Y X+ ¥ {2 X(uv")’}
j=0 p=0 =0
p—1
=H+ ) B, say
p=0

and it is easily seen that for 0 < p < p — 1, B, is a subgroup of G of index p. It
follows immediately that 6(G) < p + 1. Also for p > 0, U ¢ B, and so just as

before G ~ U x B, and then 6(B,) > n. Now since G = Z H,B,=GnB,=

r=1

Z H, n B, and so unless H, n B, = B, we should find that o(B,) < n, which is
r=1

impossible. Thus for each p = 1, there must exist a suitable r with B, c H,. But
since i(B,) = p and H, is a proper subgroup, it follows that B, = H,. Thus the

p — 1different values of p give p — 1 different values of r. Thus in the representa-

n
tion G = Z H, there are at least p different terms, viz., H and B,, B,,...,B,_,
r=1

and these between them do not contain U. Thus n = p + 1, and so finally
o(G) =n=p + 1. But then G/X ~ C, x C, and so ¢(G/X) = a(G), which is
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impossible, since G was assumed to be a primitive n-sum group. Thus if G is not
abelian, |Z(G)| = 1, which concludes the proof.

ReMARK. If G is a non-abelian group with non-trivial centre, we do not assert
that ¢(G) = 6(G/Z(G)), but merely that G must have some normal subgroup
N with o(G) = o(G/N). This is illustrated by the example S; x C,, which is
a 3-sum group as can be seen by factoring out its Sylow 3-subgroup; but factoring
out the centre would leave S; which is a 4-sum group. However, the search for
new primitive n-sum groups can be restricted to groups with trivial centre.

LeMMA 6. If H is a maximal subgroup of G then either H has precisely i(H)
conjugates in G or H <« G and i(H) is prime. '

For, N(H), the normaliser of H in G is a normal subgroup of G containing H.
Since H is assumed maximal, either N(H) = H or N(H) = G. In the former case,
H has precisely i(H) = i(N(H)) distinct conjugates; in the latter H < G.

If H < G, let x denote any element of G not contained in H. Since H is maximal,
H and x generate G and since xH = Hx, every element of G must be of the form
hx' for some he H and integer i. Let p be the least positive integer with x* e H.

p

Then G = Y Hx', and so p = i(H). But then i(H) cannot be composite for if
i=1

p = Au, then y = x* satisfies y¢ H, and so H and y would generate a proper

subgroup of G containing H as a proper subgroup, contradicting the supposition

of maximality.

THEOREM 5. (1) There are no 2-sum groups.

(2) Gisa 3-sumgroup if and only if it possesses at at least two subgroups of index
2. The only primitive 3-sum group is C, x C,.

(3) Gisad-sum group if and only if 6(G) + 3 and G has at least two subgroups of
index 3. The only primitive 4-sum groups are C3 x C3 and S3.

(4) Gisa5-sum group ifand only if 6(G) # 3 or 4 and G has a maximal subgroup
of index 4. The only primitive 5-sum group is the alternating group A,.

Proor. (1) Follows from Lemma 1.

(2) If 6(G) = 3, then, by Lemma 1, i; =i, =2, and so G must have two
subgroups of index 2. Conversely, if G has two subgroups H; and H, of index 2,
they are both normal subgroups of G and hencesois N = H; n H,. Buti(N) = 4
and so G/N ~ C, x C,, which is itself a 3-sum group.

(3) If 6(G) = 4, then by Lemma 1, i, < 3, and so by the above i, = 3. Then by
Theorem 1, it follows that i3 = i, = 3. Conversely, suppose that ¢(G) + 3 and
that G has two subgroups 4 and B each of index 3. Then either both 4 and B are
normal subgroups of G, or at least one is not normal. If 4 < G, B < G, then with
X=AnBwefind X <«Gand G/X ~ C; x Cj.
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If A 4 G, let X denote the maximal subgroup of A which is normal in G. Then
G/X is isomorphic to a subgroup of the symmetric group on the right cosets of A4,
i.e. to asubgroup of S3. But X is also a subgroup of the other two conjugates of 4,
and so G/X cannot be cyclic, since it contains three subgroups of the same order.
Thus G/X ~ S, which concludes the discussion of this case.

4) If 6(G) = 5, then by Lemma 1, i, £ 4, and by the above i, + 2. Ifi, = 3,
then by Theorem 1, i3 < 4, and i; = 3 is impossible by the above. Conversely,
suppose that 6(G) £ 3 or 4 and that G possesses a maximal subgroup B of index 4.
Then by Lemma 6, B has precisely 4 conjugates. Let X denote the maximal
subgroup of B which is normal in G. Then G/X is isomorphic to a subgroup of S4,
the symmetric group on the right cosets of B. Also B/X hasindex 4in G/X,and so
|G/X| = 8 or 12 or 24 with G/X non-cyclic since it contains four subgroups of the
same order as B/X. Now |G/X| = 8 is impossible, since then ¢(G/X) =3 by
Theorem 2, and |G/X| = 24 would give G/X ~ S, and this too is impossible, for
S, has a factor group S; and so d(S4) = 0(S3) =4, by Lemma 2. The only
remaining case is |G/X| = 12, and since the only subgroup of order 12 of S, is A4,
and as is easily verified o(A44) = 5, the result follows.

After the above theorem it is natural to suppose that 6-sum groups could
similarly be characterised by the existence of two subgroups of index 5, but this
cannot be so, for both 45 and S5 contain five such, yet we find

LEMMA 7. O'(A5) = 10, O'(Ss) = 16.

ProoF. The alternating group on the five symbols 1, 2, 3, 4 and 5, contains:
1 element of order 1
15 elements of order 2, (12) (34) etc.,
20 elements of order 3, (123) etc., forming 10 inverse pairs
24 elements of order 5, (12345) etc., forming six sets of four generators of cyclic
subgroups.

Now no proper subgroup X containing an element of order 5 can also contain
one of order 3, since otherwise | X| = 15, impossible since A5 is simple. Similarly,
X cannot two elements of order 5 which are not powers of each other. Thus six
proper subgroups are required to contain all the elements of order 5, none of
which can contain a single element of order 3. They can however be chosen so
that they contain between them all the elements of order 2, for example by
chosing X, to be the subgroup generated by (12345) and (13) (45) with order 10.

Now let Y be a proper subgroup containing an element of order 3. Then
|Y| = 3,6 0r 12, and so Y contains 2 or 8 elements of order 3. But the elements of
order 3 in Y can involve at most four of the five symbols, since otherwise if say
Y contained (123) and (145) it would also contain (12345), of order 5. Thus to
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contain the 10 elements (123), (124), (125), (134), (135), (145), (234), (235),(245) and
(345) at least four subgroups Y are required. But four clearly suffice, since we may
take the four alternating groups on the symbols (1, 2, 3, 4), {1, 2, 3, 5}, {1, 2,4, 5}
and {1, 3, 4, 5}. Thus o(4s) = 10, and of course As, being simple is then
a primitive 10-sum group.

The proof for S5 is similar; the details are omitted.

LEMMA 8. If 6(G)=nand if G= Y, H,+ Y K,, where each subgroup is

r=1 r=m+1
maximal, where H, < G and where all the subgroups H, have distinct orders, then
n
Gl Y IK,l
r=m+1

Proor. By Lemma 6, i(H,) = p,, say where p, is prime, and by hypothesis, the
primes p, are distinct. It then follows without difficulty that the index of the

intersection of any subset of the subgroups H, is simply the product of their
m

indices, and so if D = ) H,, then D contains precisely

r=1

SIHI =YY HnH|+YYY|HAHnH|—..
=Gl {X1/p, = XY 1/p.ps) + LY. (PP — ...}

- 161{1 - n (- l/p,)}

distinct elements.

Now let k, denote the number of elements of K, which lie outside D. Since
H, <« G and K, is maximal, |H; " K,| = |K,|/ps. Next since H;n H, n K, is a sub-
group of each of H; " K, and H, N K, it follows that |H; n H, n K,| divides |K,|/ps
and |K,|/p, and hence |K,|/psp;. On the other hand

IK,|-|Hyn Hi|
\K.(H; n Hy)|

_ |K,||G]|
psp: |K,(Hy N H,)|

2 |K,|/psp:s

|[HinH,NK,| =

and so |[H;n H,n K,| = |K,|/psp:-
The argument can be extended, and we obtain
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ke =1KJ{1 =Y 1/p, + XY 1/(psp) — ...}
~ K| fll“ ~ 1/p).

Thus we have

n
|G| < number of elementsin D + ).k,
r=m+1

1616 [T~ o)+ > IKI T = 1,

s=1 r=m+1

which yields the required result.

COROLLARY. If k is the least integer such that G has more than one maximal
subgroup of index k, then 6(G) = k + 1

LEMMA 9. If6(G) = 6theni, =2o0r Sandi, =5 for2<r<6.

ProOF. By Theorem 5, G has no maximal subgroup of index 4, and at most one
ofindex 2 and one of index 3. Thus iy = 5. Then by the previous lemma we cannot
have i; =2 and i, = 3, and so i, = 5 for 2 < r £ 6. To conclude the proof we
must merely show that i; = 3 is impossible.

Suppose if possible thati; = 3. Then H; < G and by Theorem 1, H, n Hy < H,
and so 3 =i, divides i(H,nH;) as does 5=i,. But we also have
|Hy » H3| = |H,|* |H;|/|HyH3| = |G|/25 and so i(H, n H;) = 15. Since Hy < G,
i(H, n Hy) = iyi, = 15, and so H n H, = H, n Hy = H, N H, similarly. Thus
X = H, n H, is the intersection of any pair of the six subgroups. Since H; < G it
then follows that X < H, and similarly X < H; whence X < G since H, and H;
generate G. But then G/X is the sum of six proper subgroups which is impossible
as G/X must be cyclic since it has order 15. This concludes the proof.

Lemma 10. If G is a primitive 6-sum group and i, = 2, then either G ~ D,, the
dihedral group of order 10, or G ~ W, a group of order 20 defined by a® = b* = e,
ba = a?b.

PROOF. Since now i; =2, i, =5, 2<r £6, we find just as before that
i(HinH)=10,r + 1 and i(H, " H) = 10or 20 foreachr + 1,s 4+ land r £ s.
There are now two cases:

Case 1. Suppose that there exist r, s with r4 1 and r % s for which
i(H,~ H)) = 10. Then X = H, " H, = H,n H; = H, n H, and since |X| = 4|H,|,
X < H, and similarly X < H;, whence X < G. Then |G/X| = 10 and G/X cannot
be cyclic since it contains two distinct subgroups H,/X and H;/X of order 2. Thus
G/X ~ Do, and since (Do) = 6 and G was assumed primitive, |X| = 1, i.e.
G~ Dy,.
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Case 2. Suppose that i(H, n Hy) = 20foreveryr % 1,s & 1,r & s. By Theorem
I,H,nH;y < Hy.Let B, = H  n H,and X = B, n B3. Then B, hasindex 5in H,
and so is a maximal subgroup of H,; and X < B, as X hasindex 2 in B,. Similarly
X < B, another maximal subgroup of H, and so X < H,. Hence the normaliser
N(X) o H; and so N(X) = H, or G. Suppose if possible that N(X) = H,. Then
X would have precisely two conjugates in G, X and Y, say. Now X < H; and so
X 4 H, otherwise X < G since both H, and H, are maximal in G, and so 3be H,
with bXb~! 4 X and so bXb~ ! = Y. Since X — H, this implies Y < H, and
similarly Y < Hy; whence Y < H,n H; = X, which is impossible. Thus
N(X) = G,i.e. X < G,and s0|G/X| = 20. Here K = G/X cannot be cyclic since it
contains at least two subgroups H,/X and H;/X each of order 4. We shall show
that 6(K) = 6 and that K ~ W. Certainly (K) = 6 by Lemma 2, and K contains
the subgroup K; = H,;/X of index 2. By Theorem 5, this is the only subgroup of
index 2. It contains all elements of K whose order is a multiple of 5, since the
Sylow 5-subgroup F is unique in any group of order 20. Thus all the 10 remaining
elements of K have order dividing 4, and so there must be five Sylow 2-subgroups
which between them contain them all. Thus ¢(K) < 6, and so in fact ¢(K) = 6.

Now K/F ~ C, otherwise o(K) = 3. Let a be a generator of F and K/F be
generated by Fb, with a® = b* = e. Since F < K, bae Fb. Clearly ba + b, and
ba % ab, otherwise K would be cyclic. Also if ba = a*b then it is easily verified
that L = {e,b*} <« K with K/L ~ Dy, a case we have considered already. If
ba = a*b then K = W. Finally if ba = a®b, then if ¢ = b® we find ca = a*c and
again K = W. This concludes the proof.

LeMMA 11. If G is a non-cyclic group of order dividing 24, then o(G) < 5.

Proor. After Theorem 2, we need only consider groups of orders 6, 12 or 24.
The only non-cyclic group of order 6 is S; which is a 4-sum group. Consider
a group G of order 12. If its Sylow 2-subgroup of index 3 is not unique, then
d(G) < 4by Theorem 5. Suppose then that the Sylow 2-subgroup is unique. If the
Sylow 3-subgroup is also unique, the result follows by Theorem 3. Otherwise,
there exist precisely four Sylow 3-subgroups, which together with the Sylow
2-subgroup cover G.

Finally, consider a group G of order 24. As above, it suffices to assume that its
Sylow 2-subgroup, T, is unique, and that there are just four Sylow 3-subgroups,
which cannot be maximal subgroups by Lemma 6. Let K denote a maximal
subgroup of G containing one of the Sylow 3-subgroups. If i(K) =4 then
o(G) £ 5by Theorem 5. Ifi(K) = 2, and G had another subgroup of index 2, then
o(G) = 3.1f K is the only such, then T and K between them contain all elements of
G with orders 1, 2, 3, 4, and 8, but do not contain all elements of G. Thus there are
elements of G outside both K and T, one of which has order 6, and generates
a subgroup, L, of index 4. If L is maximal then ¢(G) < 5 as before, and otherwise
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L would lie in a maximal subgroup of index 2, distinct from K, contrary to
supposition.

LEMMA 12. The only primitive 6-sum group with i; = 5is C5 x Cs.

PrROOF. Let G =) H, be a representation of such a group as the sum of six
subgroups each with index 5. Then by Theorem 1, X = H, n H, has index 25 and
is independent of r and s. Since G is assumed primitive, X contains no subgroup
normal in G apart from {e}. ‘

Let Y, be the largest subgroup of H, which is normal in G. Since i; = 5, |G/Y|
divides 120 = 5!, and so k = |H,|/|Y;| divides 24. Let Z, = XnY,. For any
h,eH,, h,Zh; ' is contained within H, and within Y; and so within their
intersection, Z,. Thus Z, < H, and similarly Z, < H; and since H, and H, are
maximal in G, Z;<G. But Z, <X and so |Z,|=1. Thus |X|:|Y;| =
XY |X nY;] =|XY;]. But XY, is a subgroup of H; properly containing the
subgroup X of index 5in H,. Thus XY; = H; and so |Y;| = 5.

Now since k|24, 5|| |H,| and so Y; is a Sylow S-subgroup of H;. Since Y; < G,
Y, < H; and so Y, is the only Sylow S-subgroup of H; which therefore has
precisely four elements of order 5. The same then holds similarly for the other
subgroups H, and so G has precisely 24 elements of order 5 and none of order 25.
Thus F, the Sylow 5-subgroup of G, is of the form Cs x Cs, is unique and
therefore a normal subgroup of G and has index k, dividing 24.

It then follows that G/F ~ C,, otherwise by the previous lemma, ¢(G) < 6. If
k = 1 then G = F as required. Suppose if possible that k > 1. Then if Y; and Y,
are generated by a and b respectively, the other Ys are generated by ab, ab?, ab®
and ab* in some order, where ba = ab and a® = b® = e. Let Fc generate G/F.
Then without loss of generality ¢* = e, since if this not be the case, we can generate
G/F by Fd where d = ¢° and then d* = e. Nowsince Y; «G,ca =dc,1 Sr <4,
and similarity cb = b°c and c(ab) = (ab)'c. Then (ab)'c = a"b’c which implies that
r=s=t.Nowifr = 1then G ~ F x C,impossible since G was assumed a primi-
tive 6-sum group. If r = 4, then c?a = ac? and ¢*b = bc? and so c?e Z(G),
impossible by Theorem 4 unless k = 2 in which case the subgroup 4 generated by
a satisfies A < G and G/4 ~ D;, and so again G would not be a primitive 6-sum
group. Finally if r = 2 or 3, we find similarly that c¢* € Z(G), impossible unless
k = 2 or 4 by Theorem 4. Now k # 2 since it is found that c?a = a*c?, and for
k = 4 we find that 4 < G with G/4 ~ W. This concludes the proof.

Summarising the results above we obtain.
THEOREM 6. The only primitive 6-sum groups are Cs x Cs, Do and W.

Theorem 3 above states that for a non-cyclic nilpotent group, G,o(G) =p + 1,
where p is the least prime for which G possesses at least two maximal subgroups
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of index p. As Lemma 7 shows, this is certainly not true of groups in general, but
we shall show that the condition nilpotent can be relaxed to supersoluble. We
proceed as follows:

LemMa 13. If G is not cyclic, p a prime, X < G, X ~ C, and G/X is cyclic, then
a(G)=p+ 1

Proor. Let G/X ~ C,. If G is abelian, then G ~ C, x C,,, and since G is not
cyclic p|m and so a(G) = p + 1 by Theorem 3.

If G is not abelian, let a generate X and Xb generate G/X. Then b™e X and m s
the least positive integer with this property. If b™ ¥ e, then b would have order
mp, impossible since G was assumed not to be cyclic. Also bab~'ebXb ™! = X,
and so bab~! = a’ for some integer r satisfying 1 < r < p, i.e.

G ={db|a®*=b"=e¢ bab '=ad}.

It follows that r # 1, since G was supposed non-abelian. Also a = b™ab™™ = a"™
and so ™ = 1(mod p). Now it is easily seen that (a'b)* = a"* T+ *™" bk and so
a’b cannot have order less than m. On the other hand

rm—1
r—1

l+r+r2+...+rm 1= = 0 (mod p),

and so a’b has order m precisely. Thus for i = 0,1,...,p — 1 a'b generates

a subgroup X; of order m, i.e. index p in G. Thus each X; is maximal and must
p—1

occur in the representation of G as a sum of proper subgroups. But Y X; still
i=0

does not contain the element ae G, and so a(G) = p + 1.

To show that ¢(G) < p + 1, suppose that r belongs to exponent k modulo p.
Thenk|m,and k + 1sincer + 1. Suppose first of all that k = m. Thenfor M < m,
1+ r+...+™ 1 £0 (mod p) and so every element of the form a"b™ with
M > 0 occurs as (a'b) for some i, i.e. lies in one of the X;, and since all the powers
of a lie in the subgroup generated by @, 6(G) < p + 1.

Finally, if k < m, then b*ab™* = a’™ = a, and so the subgroup B generated by b*
being a subgroup of Z(G) is normal in G. Then we find that G/B ~ H, where

H= {aiﬂjla" =f=¢ pap = a3,

where now r belongs to exponent k, and so 6(G) S o(H) S p + 1.

LEMMA 14. Let G be a non-cyclic supersoluble group of order [] pr® with
i=1
pP1 < p3 <...< p, prime and each a(i) > 0. Then o(G) < p, + 1.

ProoF. Consider a chief series G = By > B; ... > B = {e} where
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R = Y a(i)and in which B;/B; ., has prime order for each i. Then G/B, is cyclic,
i=1

but G/Bgisnot. Let k denote the least integer for which G/B, , ; is not cyclic. Then

1=k <R —1and G/B; ~(G/By+1)/(Byx/Bi+1) Where G/B, is cyclic, G/By +, is

not, and By/By . ; ~ C,for some prime factor p of |G|. Then by Lemmas 2 and 13,

0(G) = 0(G/By+y)=p+1=p + L

LemMMA 15. With G as in Lemma 14, if G has at least two subgroups of index
p,o(G)Sp+ 1

Proor. (1) If G has two subgroups A, B of index p both of which are normal,
then they are maximal and so X = A N B is normal with index p?. Moreover
G/X cannot be cyclic since it possesses two subgroups 4/X and B/X of order p.
Thus G/X ~ C, x C,and s0 0(G) £ o(G/X)=p + 1.

(2) If at least one of the two subgroups, A4 say, of index p = p,, is not normal,
then it must have precisely p conjugates. If m = r, the result follows from the
previous lemma. If m < r, then 4 is a supersoluble group of order |G|/p having
a subgroup H of order p*”. But by Philip Hall’s Theorem, G has precisely one
subgroup of this order, whence H < G and H < A° for every conjugate A° of A.
Thus G/H is a supersoluble group which is not cyclic since it has at least
p subgroups A°/H all of index p. We proceed in like fashion until finally we arrive

at a non-cyclic supersoluble group K of order [] p?®. Then ¢(G) < o(G/H) <
i=1
... £ 06(K) £ p,, + 1 by Lemma 14, which concludes the proof.

LEMMA 16. With G as in Lemma 14, if G has at most one subgroup of each of the
indices py, ps,...,psthen s <rand 6(G) = ps+1 + 1.

PROOF. Let ¢(G)=n, and suppose that G= Y H;+ Y K, where
i=1 i=m+1
0<m<s, and where H; are subgroups with indices chosen from the set

{plap29“ '9ps}' Then by Lemma 8’ s<r and IG’ é Z |K1' é (n - m)IGI/ps+l
i=m+1

and so n = m + p,, ;. The result follows if m + 0; if m = 0 it follows by using

Lemma 1 instead of Lemma 8.

THEOREM 7. LetG denote a supersoluble group. If for every prime factor p of |G|,
G possesses at most one subgroup of index p, then G is cyclic. Otherwise if p is the
least prime for which G possesses more than one subgroup of index p, then
a(G)=p+ 1,and theni, = p forr = 2.

ProoF. Except for the last statement, the result follows from Lemmas 15 and
16. For the last part, with m defined as in the proof of Lemma 16, we find that
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0(G)=p+1=m+ p,and so m = 0 or 1. Thus, at most one of the summands
can be normal in G, whence i, = p with at most one exception. But by Lemma 1,

i < p, and the result easily follows.
We can now find all primitive (p + 1)-sum supersoluble groups.

THEOREM 8. Let G be a primitive (p + 1)-sum supersoluble group. Then either
G ~ C, x C, or G is a metacyclic group

{a'b/|a? = bN = e; bab™ ! = a'}
of order pN, where N |(p — 1) and r belongs to exponent N modulo p.

Proor. With |G| as in the statement of Lemma 14, since G is a primitive
(p + 1)-sum group, as in the proof of Lemma 15, p < p,, and so p =p,. If
G =By, > By o... > By = {e} is a chief series with p; = |By/B;| < |B,/B,| <
... £ |Bgr-1/Bgr| = p, = p, let k be defined as in the proof of Lemma 14. Then

p+1=p+1=0(G)=0(G/Bxs+)=p+1,

and so o(G) = 0(G/B,+,). Since G is supposed primitive, B, ., = {e}, ie.
k=R —1,and so G/Bg_, is cyclic. Let X = Bg_;. Then X <« G, X ~ C, and
G/X is cyclic, of order N say.

The conclusion then follows as in Lemma 13, for as G is supposed a primitive
(p + 1)-sum group, r must belong to exponent N modulo p.

The next logical step would be to consider soluble groups, and here it seems
entirely plausible to conjecture that for such a group G, 6(G) = 1 + ¢ where cis
a suitable chief factor, and so a prime power. Unfortunately, we have not been
able to complete a proof of this, but some partial results follow.

LEMMA 17. If Gisnot cyclic, pa prime, X < G, X ~ (C,)" no proper subgroup of
X is normal in G and G/X is cyclic, then o(G) = p¥ + 1.

ProOF. Let G/X ~ C,, be generated by Xc. Then mis the least positive integer
withc™e X. If ¢™ + e, let d = ¢™ Then d has order p and generates a subgroup D,
with D < G since D = Z(G). Since D = X and X has no proper subgroup normal
in G, it follows that D = X, i.e. N = 1, and now Lemma 13 yields the result.

If N % 1, then ¢” = e. Thus for any xe X, ¢"xc™™ = x. Consider any fixed
xe X, x + eand let 4 denote the least positive integer with c¢*xc™* = x. Obvious-
ly u|m. Now since X < G, x; = c'’xc '€ X for each i. The elements x; with
0 < i < p are distinct and they generate a subgroup Y contained in X which is
normalin G, since X isabelian, G = ) X¢'and ¢’x;c ™/ = x;, ;. But by hypothesis,
no non-trivial subgroup of X can be normal in G, and so since Y # {e} it follows
that Y = X. Thus d = ¢* commutes with every element of X and also of course
with every power of ¢, and so de Z(G). If u < m, then d # e, and so again D, the
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subgroup generated by d, is a normal subgroup of G contained within X, whence
D = X and N = 1, which is impossible. Thus u = m. It follows that no element
except e of X can commute with any element of the cyclic group C generated by c,
except e.

ForxeX,x$elet T=Cn(xCx 1).Ifte Tthent =c" = xc*x~ ! and then
¢~ = ¢ *xc*x~ ' eG'. But since G/X is abelian, G’ = X. Thus ¢"~* lies in both
C and X and so r = s. Thus x and ¢" commute, whence ¢ = e, i.e. C and xCx ™}
have no element other than e in common. Since this applies for any x € X, x # e, it
follows that no two of the p¥ conjugates of C have any element other than e in
common, and so they contain between them precisely 1 + (m — 1)p" distinct
elements of G. The remaining pV — 1 elements all lie in X and so ¢(G) < p" + 1.

On the other hand, C is a maximal subgroup of G, forif C = C,, C + C, then
C, would have to contain at least one xe X, x #+ e, since G = Y, Xc". Thus, since
no proper subgroup of X is normal in G, C; would have to contain all of X, and
then C,; = G. Thus each of the p" conjugate subgroups xCx~! is maximal.
Moreover each one is cyclic, and therefore no one of them can be omitted in
a representation G = Y H otherwise its generator would not lic in any H. As
before these p" subgroups do not suffice, since no element of X other than eis yet
included. Thus ¢(G) = p" + 1, and combining the two inequalities yields the
result.

COROLLARY. There exists a group G with 6(G) = p" + 1 for every prime power
N

.

Proor. All that remains is to construct G satisfying the conditions of the
lemma. We observe first of all that there exists an automorphism ¢: X — X which
leaves invariant no proper subgroup of X. For let X be represented as the
additive group of the field GF(p") and let ¢ denote a generator of the multiplic-
itive group. Define ¢(x) = xt. Then ¢ is an automorphism on X and if Y is any
subgroup of X other than {0} then ¢(Y) = Y implies that for any ye Y, yt € ¥, and
then yt?, yt3, ... all belong to Y. Since ¢ has multiplicitive order p¥ — 1 this implies
Y=X.

Now define the group G of order p™(p" — 1) by adjoining to X the element ¢ of
order pV — 1, with ¢x¢ ! = ¢(x) for any xe X. Then this group satisfies the
conditions.

THEOREM 9. Let G be a non-cyclic soluble group. Then 6(G) < ¢ + 1, where c is

a suitable chief factor of G. In particular if |G| = [] pi® then o(G) <1 +
i=1
max {pi®}.

1gisr
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PROOF. Let G = By > B; o ... © By = {e} be a chief series. Then each of the
factor groups B,/B, ., is elementary abelian.

If G/B, is not cyclic, then G/B; ~(C,)" for some N =2 and then
6(G)<a(G/B)=p+1<p"+1=c+1.

If G/B, is cyclic, since G/Byg is not cyclic, let r with R > r = 1 be the largest
r with G/B, cyclic. Then G/B,,, is not cyclic, and so C,, ~ G/B, ~ (G/B, )/
(B,/B,+;) = H/X, say. Now X = B,/B,,; ~(C,)" with N 2 1, and no proper
subgroup of X is normal in H, otherwise there would exist a proper subgroup of
B, normal in G, which properly contained B, , ;. By Lemma 17, o(H) = p" + 1,
and so 0(G) £ 6(G/B,+1) =0(H) by Lemma 2 yields the result, since
pY = |B,/B, | is a chief factor.

Some open questions remain. In the first place, it remains to prove or disprove
the conjecture that for a soluble group G, a(G) = 1 + ¢, for a chief factor c. If true,
itis to be expected that ¢ be the smallest chief factor for which G has two maximal
subgroups of index c.

Another conjecture is that no 7-sum groups exist. Certainly such a group could
not be supersoluble, and although it may be shown in a rather laborious way that
it could not even be soluble, a great deal of detail would be required to complete
the discussion. Details are omitted, as there seems no obvious way to extend this
to soluble groups in general.
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