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SOPHIE GERMAIN’S PRINCIPLE AND LUCAS NUMBERS

ANASTASIOS SIMALARIDES

Abstract.

A criterion for the first case of Fermat’s Last Theorem is given, which involves the Lucas numbers

1-./5 145
2 2

results of Krasner and Dénes.

v, = 0} + o}, where v, = and w, = . This criterion improves some previous

Introduction.
The first case of Fermat’s Last Theorem is said to be true for the odd prime p, if
1) xP +yP + 27 =0, (p,xyz) =1,

has no solution in integers. Sophie Germain [10] proved that (1) is impossible in
integers if 2p + 1 is a prime. Her theorem was subsequently improved by
Legendre [10] Dickson [3], [4] and Dénes [2]. Dénes’s result reads:

(1) is impossible in integers provided that cp + 1 is a prime, for some c with
(3,c) =1and c £ 100 or c = 110.

In 1940 Krasner [9] proved:

(1) is impossible in integers provided that there exists a prime q, q = 1 + cp,
(3,¢) = 1,2° £ 1 (mod g), g > 3. This result is “asymptotically” sharper than
the above ones. However Krasner’s theorem supersedes that of Dénes only when
. p > 3%5/100.

Combining Germain’s principle with sophisticated analytic techniques
Adleman, Fouvry and Heath-Brown [1], [S] proved that the first case of
Fermat’s Last Theorem is true for infinitely many prime exponents. Moreover
Powell [12] and Ribenboim [13] extended Germain’s method to a wide class of
diophantine equations.

Recently Granville [7] established the impossibility of (1), in case 6p +1is
a prime, under certain additional hypotheses.

The author in this thesis [15] obtained an improvement of Krasner’s theorem for
the case of sufficiently large exponents, by invoking an inequality due to Siegel [14].
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Here a new criterion is given by the use of a different method:

THEOREM 1. (1) has no solution in integers provided that there exists a prime q with
the following properties:

@) g=1+cp; (i) 3,c)=1; (i) c =0(mod4)or2° £ 1(modgq);,
(iv) e %1+ (=112 and —ve £ 1 4 (—1)"?(mod g);

(V) g > 6%, where 6 = 3¢~ 881/1458 =2 45917269... .

1-./5 1 5
Here v, = w} + o, (cul = 2\/‘, w; = —iil/_—>, is the n-th Lucas number.

Before giving the proof of Theorem 1 we derive some of its corollaries. The

inequalities
c/2
O<|tove+1+ (=1 <3+ (1—%@) > 614,
2

yield the following improvement of Krasner’s theorem, namely

COROLLARY 1. (1) has no solution in integers provided that there exists a prime g,
1 c/2
g=1+c¢p;, B,c)=1;, c=0(mod4d) or 2°F 1(modq); ¢ >3 + <-L2é) =
3 +(2618...)4.

We will use Theorem 1 to improve Denes’s theorem. For this let L be the greatest
known number N with the following property: The first case of Fermat’s Last
Theorem is true for every prime < N. At present L = 714591416091389 by Gran-
ville’s result [8]. We need the following technical lemma, which goes back to Krasner
91

LEMMA 1. Let a be areal number,1 < o < 3 and let n = 3 be an integer. We denote
by c,(a,n), ca(e 1), c3(a, 1) the greatest positive roots of the equations 1 + xn = a™/*,
14 xn=1+o** 1+ xn =3+ o™ respectively. Then

o ife<cy(an)
14+cen>3 14+ a™, ifc<cy(on)
3+ o ifc <ci(an)

The numbers c,(a, n), c,a, n), c3(x, n) are the limits of the sequences xy, i, z defined by
the recursive formulae 1+ nx,=oa™*"*, 14+ny, =1+ 14 nz=
4

loga

3 4 o™+14  respectively, with Xxo=yo=2zo= logn. Evidently c,(a,n),

4
log

cz(on), c3(am) > logn.
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We can always assume that p > L; this implies that
ci(a7 p) g C,’(a, L)’ for i = 1, 2, 3.
Also Lemma 1 implies

o if c <c1(0,p)
L+cp>31+27 ifc<cy4,p)
3+ 0P ifc <c3(@3p)
In view of these inequalities Theorem 1 leads to:
THEOREM 2. (1) has no solution in integers provided that:
() g =cp+ lisa prime for some c, with (3,c) = 1 and ¢ < ¢,(6, L).
(I) 2°#% 1(mod q)ifc £ 0(mod4),c,4,L)<c<cy6 Lyand p> L.

(I + v * 1+ (—1"*modq) if cy(w3,L)Sc<cy(6,L)andp > L.

Applying Theorem 2 for L = 714591416091389 we obtain the following improve-
ment of Denes’s result:

COROLLARY 2. (1) has no solution in integers provided that cp + 1 is a prime for
some ¢, with (3,c) = 1 and ¢ £ 174.

ProOOF. Since c,(f, 714591416091389) = 175.0007..., c,(4,714591416091389) =
112.31...,c5(w3,714591416091389) = 163.44. .., hypothesis (I) of Theorem 2 is
satisfied. Hyphotesis (II) is also satisfied, since the number 2* — 1 does not have
any prime divisor of the form 1 + ul with [ prime and [ > 714591416091389 for
u =116, 118, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 154, 158, 160,
164, 166, 170, 172, ([11] gives references for factorisation tables of these numb-
ers). Now since
vgy — 2 = 137083915467899401 = 3702484512,
vy + 2 = 137083915467899405 = 5-2789- 9830327391029,
vge — 2 = 939587134549734841 = 9693230292,
vge + 2 = 939587134549734845 = 54334944372,
it follows that the prime divisors of + vu + 1+ (—1)*2 for u = 164 or 172 are

S 1+ u-714591416091389. By the well known factorisation tables of Lucas
numbers ([11]) it follows that the numbers vg; and vgs do not have any prime
factor of the form 1 + ul, where [ is a prime > 714501416091389, for u = 166 or
170 respectively. Consequently hypothesis (IIT) of Theorem 2 is satisfied. This
ends the proof of Corollary 2.

Proof of Theorem 1.

Assume that (1) holds true for some integers x, y, z. We will show that this leads
to a coniradiction.
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LEMMA 1. (g,xyz) = 1.

Proor. From (1) it follows that p = 31. So, assuming ¢ 2 p, it follows by the
hypothesis (v) of the theorem that ¢? > 694 and ¢ = 31, which is absurd. There-
fore

2) c<p.

Now assuming (g,xyz) > 1 it follows by Furtwingler’s theorem [6] that
q°~! = 1(mod p?), which contradicts (2). This proves the lemma.

We turn back to the proof of the theorem. By Lemma 1 it follows that
x?71 =171 = 297! = | (mod g) and so

xP =%, yP = (%, 27 = {**(mod q), ({ = ™),

where a,, a,, a; are integers and q is a prime ideal divisor of ¢ in @({). Consequently

3) 1 4+ ¢ + ¢* = 0(mod q),
where 0 < a < b < ¢. By Legendre’s criterion [10] it follows that
@ c = 16.

We distinguish two cases 1) and 2):
1) a=0o0rb=0ora=b; then

o6 2° = 1(mod g),

which contradicts hyphothesis (iii) in case the incongruence 2° £ 1(mod g) holds
by hyphothesis. In case ¢ = 0 (mod 4) we distinguish the subcases ¢ £ 0 (mod 8)
and ¢ = 0 (mod 8). In the first subcase, congruence (5) leads to

@ -DRE+ DEE- 2T 4+ DRI+ 2T+ 1)=0  (modyg)

(Aurifeuillian factorisation), which implies g < 24 4 2¢*4/8 4 1, The last in-
equality contradicts, (in view of (4)), hyphothesis (v) because

Gel* > 2614 4 2€*+4I8 4 1, for ¢ 2 16.
In the second subcase we have ¢ = 2*n, with k 2 3, n odd. By (5) it follows that
- 1RE+1)RE+1)=0 (mod g).

Hence 22 + 1 = 0(mod q) because 4 > 24 + 1.
Since ¢ = 1(mod 8), 2 is a quadratic residue mod g, say 2 = t> (mod g). Then

2+ 1=6+1=(")"+1=Fy:(t") = 0(mod g);
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where F,(x) denotes the mth cyclotomic polynomial. Since (g,t) = 1 it follews
that ¢ = 1 (mod 2**!), which contradicts the fact that n is odd.
2)0<a<b<ec

Since (> + 1 = 0 the resultant R(a, b) of the polynomials 1 + ¢* + %, t/2 + 1
satisfies the congruence

(6) R(a,b) = 0(mod g).

In explicit form

c/2
R(a,b) = l‘[ [1+ (@i-va 4 c(Zi—l)b]
i=1

cy 2
= H[3 + 2cos—’cf“~(2i — 1)+ 2cos2icb(2i ~1)
i=1
+ 2cos£@c—_ﬂ(2i - 1)]d
where
% if ¢ = 0(mod 4) 1 if ¢ = 0(mod4)
¢y = { and d =
%—5 if ¢ % 0(mod 4) 14 (=17 + (=1p if ¢ % 0(mod4).
By (ii) if follows that R(a, b) + 0. Introducing the abbreviation
2nb 2n@@—b
A= cosz%a(Zi —)+ cos-—:—(Zi — 1) + cos %(m -1,

we obtain

log|R(a,b)| = Y log(3 + 24;) + log|d|

i=1
=cylogy+ Y log(l +3(—1+34,) + log|d|,
i=1

where evidently —1 < §(—1 + $ 4;) < 1. Since
Xz Xx3
log(1 +X)§X—-T+—3—, for —1<X <1,
it follows that
log(1 +5(—1+3A) S — %5 + A — 25 A7 + ofer 4]

Consequently
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(7) logIR(@,b) S c;log3 = fyes + 3 3, Ai— 28 Y. 4} + 5% 3. A7
+ log|d| = = =
Given two real variables X and Ywe have
[cos X +cosY +cos(X — Y)]> =3+ cosX +cos Y + cos(X — Y)
+34cos2X + 4cos2Y + 3cos2(X — Y) + cos(X + Y) + cos(X — 2Y)
+cos(2X - Y),
[cos X +cosY +cos(X — Y)]* =3 + L2cos X + L¥cos Y
+13cos(X — Y) + 3¢c0s2X + 3cos2Y+ 3cos2(X — Y)
+ 3cos(X + Y) + 3cos(2X — Y) + 3cos(X — 2Y) + 3cos 3X + fcos3Y
+4cos3(X — Y)+ 3cos(X +2Y) + 3cos(2X + Y) + 3cos(3X — Y)
+ 3cos(3X — 2Y) + 3cos X — 3Y) + 2cos(X — 3Y);
and trivially
[cos X + cos Y + cos(X — Y)]' = cos X + cos Y + cos(X — Y).

Writing the above formulas as

(8 [cosX +cosY +cos(X —Y)]" =) c"cos(rX +sY),n=1,23

rs

we obtain

s—zﬂf—‘tr—s")(zi- n=123

) S A=Y ¥ co
i=1 r,s

i=1
Since for an integer m = 1,

m m(—1)* if k is an integer
Y cos(2i — 1)xkn = { sin2mxn
i=1 e o

- if k is not an integer
2sinkn

it follows that

¢y (—1)Hra*tsdhe if pq 4 sb = 0<mod§>

Oifra + sb % 0(mod—§—> and ¢ = 0(mod 4)

—3cos(ra + sbyrif ra + sb % 0<mod—§—>
and ¢ £ 0(mod 4).

& 2n(ra + sb)
c

(10) ¥ cos Qi-1)=
i=1
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LEMMA 2. Let (a, b) be a solution of
(11) 14+ +{®=0(modq), 0<A<B<ec.
Then the following hold true:
@ (a,b) = (by — ay,¢ — ay) and (a,b) = (¢ — by, c — b, + a,), where (a,, b,) and
(a3, by) are solutions of (11).
(II) ra + sb 0<mod %) for all indices r,s (r,s)  (0,0), which appear in (8) for
n=17273.

ProoF The pairs (b — a,c — a), (c — b,c — b + a) are together with (a,b)
solutions of (11). Therefore putting (a,,b,) =(c — b,c — b + a), (az,b;) =
(b — a,c — a) we obtain (a,b) = (b, — a,,c — a,) and (a,b) = (c — by,c — b, + a,).
This proves part (I) of the lemma.

We now come to part (II). At first we prove that

2040 26%0 2a—b)=0 a+b£0
(12) 3a%£0 3b£0 3a—b)£0 3a—b£0 (mod§_->.
a—3b%x0

3
Assuming 2a = 0 <mod %), we obtaina = -2 or % or :—f— In the second case we

have 1 + {® + (® =1 + (% + {® = {®, which contradicts (3) since {® is a unit. In
casesa = c/4 or 3c/d wehave {® = i*(k = 1 or3,i = ./ —1). Then by (3) it follows
that (1 + ) = 1(mod q) and so [(1 + i¥)7*]* = 1(mod q). This implies

(1 + i*)* = i™(mod q), where me {1,2,3,4}.
Denoting by N, the norm in Q(e**) we obtain
N,(1 + #)/* — ") = O(mod g),
which contradicts (v) because

0 < Ny((1 + #F"* — i) = [(1 + iF* — "2 < [(/2F"* + 11% < 64, for ¢ 2 16.
Cc

2
2Aa—b)% 0<mod —;—) The relations 3a % 0,3b % 0,3(a — b) * 0<m°d %) are

Consequently 2a % 0<mod ) In the same way follow the relations 2b % 0,

. . . c .
immediate in view of hyphothesis (ii). Assuming @ + b = 0| mod —- } we obtain

2
{* = +{° We distinguish two cases (A) and (B):
(A ’=(""Then1+{*+ =14+ {%hencel +{°+ (** =0(mod g),
which is absurd, since the left member is a unit.
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B) ¢’ =—{""Thenl +{*+ =1+ — ("% Therefore —1 +{* 4+ (> =0
(mod q). Hence the polynomials t2 + t — 1 and

(13) t2 + (—1)", where m = 1 or 2,

have a common root mod q. Thus

(14) R=R(* +t—1,t" + (—1)™) = 0(mod g).

The roots of t> + t — 1 are —w, and —w,, and
R = [(—o)7 + ()" [(—02) + (= 1)"]
=1+ v%-(—l)"'*% +0.
Thus our congruence (14) contradicts the hyphothesis (iv) of the theorem.

Consequently a + b * 0<mod ;—) Assuming 3a — b = 0<mod %) we obtain

{3 = + (b, We distinguish again two cases (C) and (D).
(C) 3* = {b. Then the polynomials t* + t + land (13) have a common root
mod g; hence

(15) R=R(+t+ 1,72 + (—1)™ = 0(mod q).

The roots of the polynomial t> + t + 1 are

p1 = —0.68232776..., p, = 0.34116388... + (1.161541365...)i, p,. Hence
0 < [R| < (Ip4|% + 1)(lpal? + 1)* < (0.68233% + 1)(1.2107% + 1) < 64.

Congruence (15) contradicts the hyphothesis (v) of the theorem.

(D) ¢3* = —{*. Then the polynomial t> — t — 1 with roots p; = 1.3247179.. .,
p, = —0.66235898... + (0.562279515...)i, p, and the polynomial (13) have
a common root mod g. Thus

(16) R=R(@*—t—1,t2 + (—1)") = 0(mod q)

and since

0 < [R| < (p4lZ + 1)(Ipal2 + 1)? < (1.33% + 1)(0.87% + 1)2 < 64
relation (16) contradicts hyphothesis (v) of the theorem. Consequently

3a—b* 0<mod —;—) In exactly the same way we obtain b — 3a % O(mod %)

We now establish the remaining incongruences of (II) for the expressions
a+2b,2a+b,2a—b, a—2b, 3a — 2b, 2a — 3b, 2a — 3b; part (I) of Lemma
2 and (12) yield:
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a+2b5bl——3a1 *0 a—2bE a1+b1 *0
2a+b =a,—3b, £0 3a—2b= a;, —3b, £0 (modg).
2a—b =—a,—b,£0 2a-3b=3a,+b, F0

This completes the proof of part (II) of the lemma.

We then turn to the proof of theorem. We distinguish two cases («) and (8).
(x) ¢ = 0(mod 4); by part (II) of Lemma 2 the second equality in (10) and (9) it
follows that

4;=0, A} = 3cy, Z A} =3y

i=1 i=1 i=1
Since ¢; = —Z—, d = 1 relation (7) yields

(1) logIR(@b)| < (l0g3 — ¥ — #°3 + 2% D = log) 7.

which (by (6)) contradicts the hyphothesis (v) of the theorem.

(B) ¢ % 0(mod 4); by part (II) of Lemma 2, the third equality in (10) and (9) it
follows that

1

Y A= -5 ) cos(ra + sbyn = —%[cosan + cos bn + cos(a — b)n]
i=1 r.s

= =3[ + (=" +(=1)"""];
(5} 1
Y A= cg"’o-—:— - —2—~Zcﬁ'_'gcos(ra + sb)n = 3c — Y, c"cos(ra + sb)n
i=1 r,s r,s

for n = 2, 3. The last equality implies in view of (8):

iApr£—1ﬂ~w+m—W+oqr*nn=zl
i=1 8 2

Inequality (7) yields then the estimate
log|R(a,b)| < (logO)% —3logd + H—HI-"+ (=1 +(=1y""]

+ 2= + (=1 + (=17

— 25 [(= )" + (= 1) + (=11 + log|d].
Hence

(log 0)% — 0.070093067..., if a,b are both even
(18) log|R(a,b) £ .
(log 0)~4— —0.133497321..., otherwise,
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which (by (6)) contradicts hyphothesis (v) of the theorem. Therefore (1) is imposs-

ib

le and the theorem is proved.

The method of proof used here has Krasner’s proof [9] as its origin. The

estimates (17) and (18) improve the estimate |R(a, b)| £ 3# obtained by Krasner
by using an inequality due to Hadamard.

NotEe. In [8] the new bound L = 156442236847241650, due to Tanner and

Wagstaff, is announced without proof. For this bound: ¢,(0, L) = 199.538...,
c2(4,L) = 128.242...,c5(w3, L) = 186.274.. ., and so the inequality in corollary
2 can be improved to ¢ < 198.

10.

11
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