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ON A COMPLETE INITIAL-BOUNDARY
VALUE PROBLEM FOR PARABOLIC
PSEUDO-DIFFERENTIAL OPERATORS

VEIKKO T. PURMONEN

1. Introduction.

In this paper we discuss parabolic pseudo-differential initial-boundary value
problems, stated in Sobolev spaces of sections of vector bundles. The notation
and terminology are adopted from [GG] and [P], to which we refer for more
details. Accordingly, let Q be a compact and connected, n-dimensional (n = 2)
C*® manifold with interior 2 and boundary I'. In addition, set Q = € x R, and
S=T x R, with R, = {teR:t > 0}. Let Q be smoothly imbedded into a com-
pact and connected, n-dimensional Riemannian C* manifold X without bound-
ary, and let x and x’ denote points in 2 and I', respectively, and choose a normal
coordinate x, near I" such that x = (x', x,). We suppose that E and F, are smooth
vector bundles such that E = E|g and F, = Ey|, where E and F, are Hermitean
complex C* vector bundles over X with fiber dimensions N = 1 and M, = 0,
respectively; here the case M, =0 is included for notational convenience
(see [GG, p. 46]). Furthermore, for example, let E* denote the trivial extension of
E to a bundle over Q.

In order to state our problem, let m be a positive integer and d an even positive
integer, the forthcoming parabolic weight. For a multi-index veZ™ we write
V= (Vag+p)ap = (Vad+ )0 <a<m,0 <p<a>and let p € N™ be the multi-index which has
the property y,4.+5 = o + 1foralla =0,...,m — 1, =0,...,d — 1. ForleZlet
I stand for the multi-index veZ™ with Vag+p =1 for all a=0,...,m—1,
B=0,...,d— 1. Now,if Ir,, ., denotes the identity on F,, .4, we set If,“,,(z) =
z'IFm, for 1 2 0and I, 4(z) = 0 for [ <0. Set further F = Fo®... ® Fpu_1,
and define a diagonal operator I*(z) from F to F by

I'(z) = diag(Ig(2), - . ., L%, (2)).
Analogously we introduce the operator

I, = diag(I3°(@), - -, L (3).
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Here z is a complex parameter which is related to d, = /0t by the Laplace
transformation.
The operator (system)

ar 0 m—J) d 0
A(0) = [O 1*(d, )] + Z A [0 O (_J)(a)]

is called parabolic, if the operator
C*(@Q,E) C>*(Q,E)
A(Z): @ - ® s
C>(I',F) C*(I',F)

which depends polynomially on the complex parameter z and is of the form

2" 0 z 0
A(Z) [0 I"( )]+ Z A(m » [O 1“ (m=j j)(z)]

is parameter-elliptic on every ray z = pe® withp 2 0, —n/2 < 0 < n/2 (see [GG,
Sections 1.5, 3.1]). Here

oy _ [PE~P 4 Gm=d Km=d
4 = Tm=J) Rm=J

is a Green operator (system) of order (m — j)d, the parabolic weight d being an
even positive integer, which means that (see [GG, Chapter 2])

(i) PP =rg P™~ e, and P™ 7 is a classical pseudo-differential operator
of order (m — j)d from E to E with the transmission property at I (the operators rq
and e, give the restriction and extension by zero, respectively);

(i) G™ 7 isasingular Green operator of order (m — j)d and class r < (m — j)d
from E to E;

(i) K™ = (K% Mosa<mosp<a» Where K71 is a Poisson operator of
ordermd — ad — B + (m — j)dfrom F g, pto Eand K%;7) = Ofora <m — 1 — j;

(iv) T" P = (TS o ca<mosp<4> Where TG ) is a trace operator of order
r=ad + B —jdand classr + 1from E to F,4. 5 when o 2 j, and T3 = 0 for
a<j;

(v) R"™ P = (th':{s).a'up')oga,a'<m.0§ﬂ,p'<d, where R;’;:i’,a'd+p' is a pseudo-
differential operator of order(m — j)d + (¢ — &')d + B — B from F .y, 5 to Fpy s p
andisOwhena <jora’' <m—1—j.

If the operator A(d,) is parabolic, then the following initial-boundary value
problem (1.1-3) is called parabolic:

Ly aa)[t]-[7]
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(1.2) ypOlu="h; forj=0,....m—1,
and,fora =0,....m—1,8=0,...,d -1,
(1.3) )’ra{Wauﬂ =Naa+pj fOrj=0,...,a

where 7, is the usual trace operator with respect to ¢,y, v = v|, - o. Here we suppose
that, for s = 0,

feHO(Q,p, EY),

g= (gad+ﬂ)a.ﬁ € @ H(s+md—-ud—ﬁ—1/2) (S’ P chd+ﬂ)a
a.f

m-1

h=(h)e @ H*m-i-42(Q,F),
j=0

a«
n= (nad+ﬂ‘j)a.ﬁ.je @ @ Hs+md+d——ﬂ—14—-l/2—d/2(r’ F:ui+ﬂ)a
a,p j=0

and we seek a solution (u,w) = [:] such that

ue HC*"(Q, p, E),

W= (Wagsp)ap €@ HC™47E712(S o Fiyrp).
a,p

The Sobolev spaces we use here are defined and denoted, with slight simplifica-
tion, as in [P] (see also the references there). Thus, the Sobolev space of order s of
sections of E is denoted by H*(R, E) (instead of H*(@, E) in [P]), and in this
notation we have

H®(Q,p,E') = H'R, p; H(Q,E)) n (R, p; H*(Q, E)),
where p 2 0 and, for a Hilbert space H,
H'(R4,p;H) = {ve2'(R,;H):e " ve H'(R,; H)}.

The spaces H*(I', F,4+ 5) and HY(S, p, F',; , ;) have analogous meanings. Further-

m—1d-1
more, for the sake of brevity, we write @ insteadof @ @ .
apB a=0 =0

Our treatment of the problem (1.1-3)in the case of homogeneous initial values
is based on the application of the Laplace transformation with respect to ¢. This
leads us to a polynomially parameter-dependent elliptic boundary value prob-
lem. In Section 2 we briefly give an isomorphism result (Theorem 2.3) for the
parameter-elliptic operator A(z) of such a problem. An essential part of the result
is a consequence of the general theory on parameter-dependent boundary prob-
lems developed by Gerd Grubb in [GG].
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In [P] we have been concerned with questions of solvability of parabolic
problems without the boundary function (section) w, that is, problems of the form

m-1
Mu+ Y (PR + G™Moiu = f,
j=0

m—1
Y T Pdlu=g, fork=0,...,md—1,

j=0
yp0u=h; forj=0,...,m—1.

This problem can have a solution only for such data f; g, h; which satisfy certain
intrinsic compatibility conditions (cf. [P]; see also [GG-S)). It is our purpose in
the present paper to show that this “deficiency” appears no more in the problem
(1.1-3). In Section 3 we prove that the problem (1.1-3) always has at least one
solution (Theorem 3.3). The uniqueness of a solution follows from the special
a priori estimate given in Theorem 3.5. The general a priori estimate is derived in
Theorem 3.8. In the considerations certain values of s are exceptional (cf. [P]).
However, by making use of a method originating in [GG-S], we are able to treat
these exceptional values, too.

2. Polynomially parameter-elliptic problems.

2.1. Itfollows from [GG, Corollary 2.5.6] (see also [P, Theorem 2.7]) that for
any s 2 0 the parameter-dependent operator A(z) extends by continuity to
a continuous operator

H;"™(Q, E) H(2,E)
(2.1) A(Z): @D g ® ’
@a.ﬂ H§+M‘+"”"/2(F, Fad+ﬂ) ®E,B H;+md—ad—ﬁ-1/2(r, Fad+,8)

whose norm is uniformly bounded for all z with Rez = 0. Here, for example,
H;(£, E) denotes the space H*(£, E) with a norm depending on z in proportion to
the parabolic weight d (see [P]).

Let us now suppose that the operator 4(d,) is parabolic. By arguing asin [GG,
Sections 3.3, 3.4] and [P, Section 2.8], one can conclude from [GG, Section 3.2]
that for any s = O there exists p > Osuch thatfor every z with Rez = p the inverse
A(z)"! of the operator A(z) in (2.1) exists, depends analytically on z in the
corresponding operator norm, and satisfies the estimate

o [l

= CIF. Oll 0, @ @, Hy ™4 1(T Fuy)

H* "™QE) @@, H*™+4~ -1 F,,. )
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for all

(F,G)eHY,E)® @ H3*™ =P~ V([ F 4. p)
a,B

uniformly in z with some constant C > 0.

2.2. In solving the parabolic problem (1.1-3) with homogeneous initial values,
we shall make essential use of the Laplace transformation %,

(Lv)z) = jw e #o(t)dt.

Let s 2 0 and p > 0. Referring to [P] for more details, we recall that % is an
isomorphism from the space

H{:))] (Q? P E') = HO(R +5 P, HS(Q’ E)) a H:g)(R +5 05 HO(Q’ E))
to the space
H(C,, Q,E) = #°(C,; H(Q,E)) n #°(C,; H*(Q, E)),

and an analogous result holds in the case of I' and S. Here the space
H{,, = H{o)(R4, p; H) is defined as the closure Hj in H" of the space of C®
functions with compact supportin R, valued in a Hilbert space H, unlessr = 1/2
mod 1, in which case H{,, is defined by interpolation. The space #”(C,; H)
consists of such analytic functions U from C, = {ze C: Rez > p} to H that

0
|lU||§f,(Cp;H) = supf lo + it |U(o + it)|4dr < co.
a>p =

In particular we then note that

LAW) [:] = A(2) g[:‘v]

(u’ W)EHtsé-]&-md)(Q’ p, E’)@ ® HE.B-]!-md+d—ﬂ-1/2)(S’ 0, F:uH-ﬁ)'
a,p

for all

For the proof of this, as well as for the following result we refer to our consider-
ations in [P, Section 3]; only some modifications are needed.

2.3. THEOREM. Let s 2 0 and let p > 0 be chosen as in 2.1. Assume the operator
A(0,) to be parabolic. Then the parameter-elliptic operator A(z) is an isomorphism
Sfrom

HC™(C,, QE)d @ HCTmITEUD(C,, T, Fpysp)
a.p
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onto

.#(’)(Cp’ QE)e ® He+md-ad=f=1/2) (Cp’r’ Fﬂd"’ﬁ)'
a.p

3. Parabolic problems.

3.1. In this main section we suppose that the operator 4(9,) is parabolic, and
consider the parabolic initial-boundary value problem (1.1-3).

It will turn out important to know how the higher order traces of u and w with
respect to t are connected with the data f; g, h, and n. Therefore we shall first state
the next theorem giving such a relation. The proof of the result is then technical
and will be omitted here. In what follows we write

Y =y0/ forjeN and y" =9I, forveZ™,

and, if the identity on E @ F is given in the diagonal form diag (Ig, I, . . ., If,,_,)
set

I° = diag (I, 0,...,0)
and
I, = diag(0,0,...,0,If,,0,...,0) fork=0,...,md — 1.

3.2. THEOREM. Suppose that s = 0,

(u, w)e H**"(Q, p, E') @ O; HErmara=B=UD(S, p, Fiysp),
a,

1)-saf:]

(@) Ifs>d/2and o =max{leN:ld < s — d/2},v° = (V344 )a,s € N™ with
Vo+p =max{keN:kd <s+md—lod —ad — p— 1/2 — d/2}

and set

Jora=0,....m—1,8=0,...,d — 1, then we have
,ym+1u _ . f m-1 l_KM‘l-—x m—iy .yx+iu
[V"HW] B J{o[g M x‘é‘o 4o a=zo 4 Py

for all v with0 S v < v°ie., 0 < vy4p S Voyyp for all o, P). Here the operators
M and N are defined as follows:

0
,/(°=[’;) ;f,] M3'=0 forl=12,...,
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,yl 0 m—1 i .
A =[ 7]- Y A™D gt forl=1,2,...,
0 v j=0
md—1
M=1"My+ Y L MG forleZ veN™,
k=0

and

%oz_[’(‘)ﬁ ;)] Hgh=0 forl=12,...,
F

m-—1
Nl= =T Am D 4Im forl=1,2,...,
j=o
md—1
M =1+ Y LAg*™ forleZ,veN™,
k=0
b) If0<s=<d2and0Sa<m—1,0=p=sd—1(with M.,z > 0) such
that s + md — ad — f — 1/2 — d/2 > 0, then

a+1+k

Y Wed + =7kg¢d+ﬂ

a m-1 d—1
P (PR Y o . P g
i=0 a=m-1-j p'=0

forallk =0,...,kY ., where
k.5 =max{keN:kd <s+md —ad — B —1/2 — d/2}.

3.3. THEOREM. Let s = O be given, and let p > O be as in 2.1. Then the parabolic
initial-boundary value problem (1.1 —3) has a solution

(u’ W)EH(s+md)(Q’ P, Et) @ @ H(s+md+d—ﬁ—-l/2)(s, 0, Ftad+p)-
ap

Proor. We divide the proof according to the value of s.

3.3.1. First we suppose that s £ d/2modd and s — f % 1/2 + d/2 mod d for
every f with M,,, 5 > 0 for some a.
A. Let s > d/2. Let us define

m+lo

hs = (hj)je @ Hs+md—jd-—d/2(g’ E)
i=0

and
at+1+lo+vip )
7= (r,j‘“ﬁ‘j),_,,,- € Q; .@0 H+md+d—p-jd- 1/2—-d/2(r, Fosp)
a,, J=
by setting

3.1 b = h; forj=0,....m—1,
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(3.2) n;d-f—ﬁ,j:nad‘fﬂ.j fOI‘j=0,...,a,
and further (see Theorem 3.2 for notation and motivation)
hs m—1 m—1-x h .
(33 ['"”] Mo [f]+ 2 MTEY AT 0[ e }
r’u-H g K= i=0 r’u—(m)
forl = .»1y, and
S m—1-k 3
(3.9) [ f'"‘“° } = Jt’;’[f] + Z ATE Y, AT 0[ s ]
”[4+To+v g i=0 ”ﬂ—(m)
for 0 £ v £1°. Here as well as in what follows we use the notation
”v = (r”d+ﬂvvud+ﬂ)a‘ﬂ for V= (Vad+ﬂ)a.ﬂ GZmd

(also with s), where by definition 7,4+ Bovaes =0 for ve.+p <0. By the trace
theorem there exists

(uO, WO)EH(S+M")(Q, p, E‘)@ G‘) H(s+md+d’ﬂ— 1/2)(S’ 0, F;d+ﬂ)

a,p
such that
(3.5) Yul=h} forj=0,....m+1I,
and,fora =0,....m—1,=0,...,d—1,
(3.6) YWoasp =Moavp; forj=0,...,0+ 141+ vYy.p
Now we set

AR
(3.7 [g A(0y)

Then, by (3.1)-(3.6) and using Theorem 3.2, we obtain

o
M, g" =.Il{,[£] forl=0,...,l

and

o .
MY g" = MY [ﬂ for0 <v =<

Therefore, it follows from the definitions of the operators .#% and .#"% (see
Theorem 3.2) that

G'f° 7 g% = ('f,y'g) forl=0,...,1,
and

@f%y°*vg%) = (of,y*rg) for 0 < v <O
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Under the assumptions on s we thus have

f_fOEH{f))](Q:p’Et)
and
Gad+p — ggd+pEH{%T'M—“_ﬂ_Uz)(S’P’ F;d+[i)
fora=90,....m—1,=0,...,d - 1.
B. If0<s<d/2, thenforalla =0,...,m—1,8=0,...,d — 1 we make use
of the definition (3.2) again, and if

Key+p =max{keZ:kd <s+md —ad—p—1/2—d/2} 20,
we define

(3.8 nid+ﬁ,a+1+k = ?kgad+ﬁ

d—1

m—1
(7;':'+_ﬂl)hk+j + Z Z R(u’:i‘;l]?),a’d+ﬂ’ r’;'d+ﬁ',k+a'—m+l+j>

a=m—-1-jp'=0

M=

j=0

1]

fork=0,...,x2%, ;. Hence we have

K +md+d—B—jd—1)2~d/2
N = (M32a+.j)e8;€D ® H™ M2 Fogsp)
a,p j=0

Now there exists

@, W) e HC*™(Q, p, EY @ @ HO* ™+ 4=~ 1D(S p iy, )
such that ’
(3.9 Yul =h; forj=0,...,m—1
and,fora =0,....m—1,8=0,...,d -1,
(3.10) Y Wosip = Masrp; fOrj=0,..,0+ 14k,
Let f° and ¢° be defined by (3.7). Then we have immediately

f —fOEH}:))](Q’p7E')
and

(3.11) Gaa+p = Gaarp €HGi ™ TP TVD(S, 0, Fry )
when «2, | g=—1L1I kS, s 2 0, then (3.11) follows from (3.8)-(3.10) and The-
orem 3.2 (b).

C. Now we continue the consideration jointly. Applying the Laplace trans-
formation £ to f — f° and g — ¢°, we have Z(f — f®)e #“(C,,Q,E) and
(g~ g°)e@ s#stmi=ed=E=12(C , T, F,y+5). By Theorem 2.3, we can find

ap

(U, W)e#¢*™(C,,Q,E) @ X Crmara=E=UD(C,, T, Fua+p)
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which satisfies the equation
U £(f - f°
woli)-[500]
W] LZg—-4g")
By using the inverse transformation % ~! of £, we then have

(2740, 27 W) HE™ Q.. EY0 @ HE™ ™75, Furry)

g—lU _ 40
wf 255

This, however, means that the definition

uw=w + £ 1UwW + 2 W)

such that (see 2.2)

gives a solution of the problem.

3.3.2. Next we consider the case s = kod + d/2 with ko€ N; note that then
s— B #£1/2+d/2modd forevery f=0,...,d — 1.

We use here the method of [GG-S]: One adds a variable x,,, €]0, co[ =
R.,.,.+ to the space coordinates and considers  the boundary of
@ = Q x 10, o[, and Q the boundary of § = Q x ]0, co[. Let E denote the trivial
extension of E over £, and E* the trivial extension of E* over §. We also use, for
r 2 0, the corresponding spaces

H'(Q, E) = H°(10, co[; H'(@, E)) n H'(10, oo[; H(®, E)),

H(Q; p, E') = H°(Q0, oo[; H(Q, p, E) n H'(00, o[; H(Q, p, E")),
and

H{3(0; p, EY) = H°Q0, o[; H,(Q, p, E) " H'(J0, oo[; H(Q, p, EY)).

Further, define analogously IS, f",,, +8 F w+p>» and the spaces H(F F,. s
H(')(§; Ps F‘ad'i-ﬂ)’ H}Q}(& ps Fvaup)-

Now, if we let 7, . ; denote the usual trace operator with respect to x,, , ;, then it
follows from the trace theorem that there are sections fe H®*/2((; p, E*) and
Joarp € HE™ =0 p [, 5) such that

(3.12) YwerS =S
and
(3.13) Yn+1Gad+p = Gad+p

fora=0,....m—1,8=0,...,d — 1. Similarly we can find

hje gs+md-ia-diz+12(G By forj=0,...,m— 1
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and

flaa+p; € HETma+a=B-J=di2(F F  5) forj=0,...,a
such that
(3.14) Yo By = by
and
(3.15) Yn+1Maa+p.j = Nad+p,j
fora =0,...,m—-1,8=0,...,d — 1. We now set (cf. 3.3.1, part A)
(3.16) K = k; forj=0,...,m—1,
(3.17) flaa+p.j = faa+p.j forj=0,...,a,

and define (using the same notation to the natural extensions of the operators)

(3.18) [ et ] M []] + mf m-i_KA"""‘)[ e ]
. ﬁs ) = Mg .
u+l - i=0 ”u-(m—x—i)

for1=0,...,kg, and further

(.19) [FM ] ._.,450[5]+mfw°"‘m_f“,4<m-n[~ e ]
i=0

u+ko+v_l x=0 Ny—m=x=1)

for 0 < v < u® with p,,; = m — 1 — «. Then there exists

(ao’ WO)EH(S+M+ 1/2)(Q"'; P E"’t) oY) H(s+md+d—ﬁ)(s~'; P, F;d+ﬂ)
a,p

such that

(3.20) Ya®=h forj=0,....m+ kg
and,fora =0,...,m—1,§=0,...,d — 1,

(3.21) PWousp = Moasrp; forj=0,...,m+ko.
If we set

7o 7 He*12(G; p, EY)
(3.22) |:~0] = A(ax)[ ~o] € ® ,
g Wl @ HOT ™40 (S, p, Frysp)

then we have (cf. Theorem 3.2)

.ym+la0 i'o m-1 Km 1-x - .yx+ia0
(3.23) [Y" ”wo] [ + z Ny Amd - g0

K= i=0
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forl=0,...,ko,and

,ym+koa0 . i’O m-1 . _Km—l—x —b ,yx+ia0
(3'24) [y”+Io+vw0 = '/Ilvo go + Kgo '/V\; ° Z A ,yu—(m)wo

i=0

when 0 < v < 4% Asin 3.3.1, it now follows from (3.16)—(3.24) that

(3.25) #'7%7'3°) = ¢'f,'g) forevery1=0,...,k
and
(3.26) (¥ f 0, kot 30) = (ko firko*¥5) forall v,0 < v < uO.

Therefore, taking into account that s = kod + d/2, we have
f—7°eHE "0, EY
and
Gad+p — !724+ﬁ eHﬁﬁLMd—ad-m(g'; ps F;d+ﬁ) for g >0,
and hence (cf. [L-M, Chapter 4, p. 10])
(3.27) tmer(f = 7O e HR(Q, p, EY)
and
(3.28) Y+ 1(Gaa+p — Guarp)EHG ™ 7P~ VD(S, p, Fiy,p) for f>0.
Now, let us define

% o HE*m(Q, p, EY
(329) I:wo:l = Yn+1 |:wo:| € @ @

+md+d-p—-1/2
G»ﬂH(s ™ / /)(S’p’Ffzd+ﬂ)

and
0 0 HO(0, p, EY)
(3:30) [f] - y[f:,]e ® .
9 g ®a.ﬂ H(S+M_¢d—ﬂ—1/2)(s’p’F'ad+ﬁ)

Since v, +; and A(d;) commute, it follows from (3.22) that

uo fO
A(at)[wo:l = [ go]-
By combining (3.14), (3.16), (3.20), and (3.29), we also get

Yul=h; forj=0,...,m—1,

and similarly, fora =0,...,m -1, §=0,...,d — 1, we have, by (3.15), (3.17),
(3.21), and (3.29),

'ijgd.;.p = Naa+p,; fOrj=0,...,0

Now we deduce from (3.12), (3.27), and (3.30) that
f - foE H%:))](Q’ P E‘),
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and from (3.13), (3.28), and (3.30) that
Gad+p — gguﬁ EH%-)FM—M—B—UZ)(S,P, Fa+g) for f>0.

For B = 0it follows from (3.13), (3.25), (3.26), and (3.30) that y/(g,, — g%) = Ofor
j=0,....,m+ ko —a — 1. Since s + md — ad — 1/2 % d/2 mod d, this implies
that

Joa — Goa € Hi7 ™ 7%~V (S, p, FL).

Therefore, to complete the proof in this case, it suffices to use the same reasoning
asin 3.3.1,

3.3.3. Finally we consider the case in which s — B, = 1/2 + d/2 mod d for
some B, such that M, 4 > 0for some a. Hence s = kod + B + 1/2 + d/2 with
ko = —1, which implies s ¥ d/2 mod d.

A. Let us first suppose that ko = 0. Let f; §oa4 5, h;, and 7,44 4 ; be given as in
3.3.2.

Then we make use of (3.16)—(3.19) to define ﬁj. for j=0,...,m + kg, and
Mg for a=0,....m—1,=0,...,d—1,j=0,...,0+ 1+ pS,,, where
this time the component u, , ; of u®e N™ is given by

(3.31) Hoa+p =max {keZ:kd < (m— o+ ko)d + o — B + 1/2}.

According to the trace theorem, there exists

(@, )€ HE T VD(G; p, BV @ @ HO* ™4~ P(S; p, Fy . )
a.p

such that
Yia® = forj=0,...,m+k,
and

ijo=ﬁ;d+ﬂ,j forj=0,...,d+1 +,Ltgd+ﬂ.

7o ®
[go = A(at) wo I
then the same reasoning as made in 3.3.2 shows that

PF—=F%=0 forj=0,...,k
and,fora =0,...,m—1,=0,..,d -1,

If we set again

PGuarp — Goasp) =0 forj=0,...,p4%.p
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Since now s # d/2 modd and

tmer(f — 70 e HO(Q, p, EY)
with Py, 1(f — f9) =0forj=0,...,ko, it follows that

tae1(f = F0)e H(Q, p, EY).
Further, by assumption on s, we obtain

Guasp — Gsp EHGI™ 4P Sip, Pyl p),
so that (cf. [L-M, Chapter 4, p. 10])
n+1(Gad+p — Goasp) € Hlgy ™ PV, p, Foyip).

Next we define (u°, w°) = 7,4 ,(@% w°) and (f°,4°) = y,+1:(f % d°). Asin 3.3.2, it

then follows that we have
0 0
A0
@] =[]

yfu°=hj forj=0,...,m—1,

such that

}’jWng =Na+p; fOrj=0,...,0a,
and
f - fOGHf’o)](Q,p, E‘)’
gl!d+ﬂ - ggd+ﬁEH{‘(‘)‘;’M‘M*ﬁ—1/2)(S9p’F'ad+ﬂ)

fora« =0,....m—1,8=0,...,d — 1.

B. Inthe case k, = —1 we have s = B¢ + 1/2 — d/2; note that then B, = d/2.
Assume again that f, §os+ 4, hj, and 445 ; are given as in 3.3.2.

Now we set, fora =0,....m—1,=0,...,d — 1,
(3.32) Mad+pj = Naa+pj fOrj=0,...,0,

and then, if pd; ., = 0 (see (3.31)), we define

(3.33) Mad+pa+1+k = )’k9~u+p

m-1 d-1
- Z( ¢d+ﬁ Ek+j+ 2 Z R(:i':[ji).a'd+p' ﬁa'd+p'.k+a'—m+1+j)

a=m—-1-j p'=0
fork=0,...,ud. s By the trace theorem we find

%, W) e He+md+ 12 (3 p By @ @ HE*™ =4~ (S, p, Ft; . 5)
f B
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such that

(3.34) Yia®=h; forj=0,...,m—1

and

3.35) Y Woasp = Maaspy fOrj=0,...,2+1 + Harpe
Define

o] -l
When p,, s 2 Oitfollows from (3.32)-(3.35) that (see 3.3.2 and Theorem 3.2 (b))
Y§%usp =V Guasp foreveryj=0,...,u%,,
Since s + md — ad — B % d/2 mod d, this implies that
(3.36) Guars — Goasp €HG ™0 S p, Py ).

If . 5 = —1, then (3.36) holds immediately.
Asin part A, we now define (u°, w%) = 7, 1(@°w°) and (£, ¢°) = yu+1(f°,4°),

and have then
uO fO
) o] = [10]

Yul=h; forj=0,....,m—1

such that

and,fora =0,....m-—1,=0,...,d -1,
PWhiep =Maasp; forj=0,...,a
Moreover, since s < d/2,
f - fOGHﬁ))](Q, P> E')’
and from (3.36) it follows that
Gaa+p — ggﬁpEH{BfM—“_ﬁ—I/Z) (8,0, Foasp)

fora =0,....m—-1,=0,...,d - 1.
C. The proofin this case can now be completed with the same reasoning as in
3.3.1.

The theorem is proved.

3.4. We shall next show that the parabolic initial-boundary value problem
(1.1-3) can admit at most one solution (u, w). This will be a consequence of the
following a priori estimate for a solution in the case s = 0.
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3.5 THEOREM. Fors = Qlet p > 0 be chosen asin 2.1. Then there is a constant
C > 0 such that the inequality

”(u w)"H"’")(QpE')@ @ Hmd+d-p— 1/2)(S 0, F!

R

m-—1

+ Z ”‘yju"Hmd—jd—d/Z(n‘E)
Jj=0

HOQ,p,E)@® @, H™ 48~ 13(5, p, F:

fyes)

+ Z Z Iy’ Wad+ﬂ"Hmd+d #-ja=1/2-di2(, Fad+a)>
ap j=

holds for all
(u,w)€ H™(Q, p, E) @ @ H™*4--12(S, p, Fiy ).
a.p

Proor. For brevity we set

(3.37) [f ] - A(a,)[“],
g w

(3.38) h =yu forj=0,...,m—1,
and, foralla =0,..., m—1,=0,...,d -1,
(3.39) Noa+pj =V Waasp fOrj=0,...,0+ 14k,

where  «$,,, =max{keZ:kd <md —ad — p—1/2—d/2} 2 —1. When
rca“ﬂ = 0, it follows from Theorem 3.2(b) that

(3.40) ’Iad+p,a+1+k = )’ Gad+p

a

- Z (Tg::;?)’kﬁu + Z Z R¢d+ﬂ¢d+ﬁ )’Ha’_MHHWa'“p')
j=0 a=m—-1-j p'=0

foreveryk = 0,..., K%+ 5. By the trace theorem, we now find u®e H™¥(Q, p, E')

such thaty/u® = h{ forj = 0,...,m — 1in a continuous way, that is, the estimate

m-1

(3.41) "u "H("“’)(QpE') C Z "hollgmd jd-di2Q E)
=0
is satisfied with some constant C > 0.
Similarly, for any a =0,...,m—1, =0,...,d — 1, there exists wf,,ﬂ,e
Hma+d=6-12(S, p Ft,, ) such that Ywd,, =14, for j=0,...,a+1+
0
Kaa+p and

(342) ||W24+p 'lH(md+d—ﬂ- 1/1)(5_,,';:“,)
a+1+xd,
é C Z "r’gd.'.ﬂ’juﬂmd‘fd—ﬂ—jd—l/2—d/2(r‘pld+/”.

i=0,
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Therefore, it follows that
(u —u®w —w) e HEP(Q, p, E) @ @ Higi ™~ 12(S, p, Fiy.. )
a,p
with w® = (W2 g)ss, and hence

(L —u®), Lw— w)e #"(C,, QLE)® @ H ™ F1D(C I Fypp)
a,p

In view of Theorem 2.3, we now have the estimate (note that the symbol
C denotes a generic positive constant)

(LW — u®), L(w — w)
‘A(z)[.?(u —u%

L(w — WO):N%“”(C,,,Q, E)® @, # ™~ 0-12(C, I, F

"x(md)(cw Q,E)@ @a,ﬂ ”(md+d~[l~1/2)(cp’ r, F,,H.p)

=C

B

ad + p)
and hence

I — u®w — wO)ll yom -5-
=1 w =Wl g p, bY@ . Hige 4412050, F:

wap)
0
u—u
A(az)[ 0] :
w—w md— a8 -
HG(Q.0,EY® @apHG " P~ 12(S,p,F,, . )

From this we then derive the inequality

=C

u,w m m —g-
”( )“H( "’(Q,p,E')@ @a.ﬁH( d+d-p 1/2)(S’p’F:.d+ﬂ)

ad+p

= C<“(uo’ Wm0, @ @,y 44571205, F1, )

+ ”(.f; g)”H(O’(Q,p,E‘) ® @a,p Hmd—ad—-p- ”2)(S’p’Ff,d+p)).

By combining the above inequality with (3.41) and (3.42), and using the equations
(3.37)—(3.40), we obtain the desired estimate.

3.6. REMARK. Essentially the same reasoning yields the corresponding a priori
estimate for all 0 < s < d/2 with s — B £ 1/2 + d/2modd for every B (with
M, .4 > 0 for some a).

3.7. THEOREM. Let s = 0 be given. Then for all p > 0 sufficiently large the
parabolic initial-boundary value problem (1.1-3) has only one solution

(1, W)€ HO*™(Q, p, E') @ @ H*m*+4=8=12)(S, p, FL, )
a.p

PROOF. In view of Theorem 3.3, this is a corollary of Theorem 3.5.
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3.8. THEOREM. Let s = 0 be given, and let p > O be as in Theorem 3.7. Then the
parabolic operator A(0,) satisfies the a priori estimate

(3.43) ll(u, W)”H‘”""’(Q,p,E') @ @, HO ™+ a=p-13(S o F*

seoal)

m-—1

)

HOQp.E)® @y H ™07 IS p.F,, )

+ Y W ullgeom-sa-ang
j=0 ’

a
+ Z Z "'ylwad+ﬁ"Hs+md+d—ﬁ~jd—l/z—d/Z(r,FM+’)>

a,p j=0

for all
(1 W H*™(Q,p, E) @ @ HO 44470108, . Fry

with a positive constant C.

ProOF. Let
(u’ W)EH(sﬂnd)(Q,p, Er)@ @ H(s+md+d—ﬂ— 1/2)(S, o, F:ud+ﬂ)
a,p

be given. To simplify notation, we write

1))

hj=yu forj=0,...,m—1,
and, fora =0,....m—1,=0,...,d—1,
Nad+p,j = VP Waasp forj=0,...,0
Note that in this proof the symbol C is used to denote a generic positive constant.

3.8.1. Suppose first that s 3 d/2moddand s — § % 1/2 + d/2 mod d for every
B=0,...,d — 1 with M., > 0 for some a. In view of Remark 3.6, it is then
enough to consider the case s > d/2.

Now, let the integers I and vy, , ; be given asin Theorem 3.2(a). Then the traces

(3.44) B = Yue H**™-4-42Q E) forj=0,...,m+ o
and
(3.45) Miarpj =V Waasp € H* P M4 B=H=124XL F oy, p)

forj=0,...,0+ 141l +v4+s
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are well-defined. By the trace theorem, there exists

@°, W) e H**™(Q, p, E') @ @ HE*™i*4=P=12)(S, p F', )
a,p

such that
(3.46) Yu® =hy forj=0,...,m+ I,
(3.47) YWoaip = Muarp; forj=0,... 0+ 1+ 1+ vy,

and furthermore,

m+lo
(348) ||u0]|H(.+ma)(Q, , Et) _S_ C .ZO "h: ” H:ﬂnd—jd—dll(ﬂ’ E)
j=
and
(349) Ilwgd+ﬂ"H‘”"““_"””(S,p,F'“ﬂ)
a+1+lo+vdy,
SC Y T Mgy lgemiris-sra-ang g, )

j=0

fora=0,....m—1,=0,...,d — 1. From (3.44)—(3.47) we now get
(u - u09 w— WO)EHE.:);M”(Q’ ps E') o @ Hﬁ).].-m‘*.dﬂﬁ_ 1/2)(8’ ps Fad+ﬂ)'
a.p
Therefore, using the Laplace transformation and Theorem 2.3, we thus obtain
the inequality (cf. the proof of Theorem 3.5)

(3.50) I (u, W)IIH<=+M)(Q,I,’E:)® @ pHE MBS p F, )

hS C(”(f, Dl e, p.m9 0 @, pHEmi—ed=8- (S p F )

ad+

+ 1 wO)| HO*™(Q, 0, E') @ @, ,HO*+m+4-#- 1/2)(3,,,,1.:‘”))-

Here it follows from (3.44), (3.45), (3.48), (3.49), and Theorem 3.2 that the latter
term on the right-hand side of (3.50) can be estimated by the right-hand side of the
required inequality (3.43), which then implies the assertion.

3.8.2. Let us next suppose that s = kod + d/2 with ko € N. We first observe (cf.
3.3.2) that there exists

(f, ) e He+ 1D p, By @ @ HE*m==4=P (S, p, 'y, )
a,p

which satisfies the equation

(351) 7n+l(ﬂg~) =(f’g)
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and the inequalities

(3.52)
and

(3.53)

"il"H(H 12@G: p, EY) = C||f”H¢J)(Q,p,E')

|Gad+ 5 ||H<x+md—ad—m(§;p’ﬁ;“ﬂ) S Cligaa+p|l pee+ma-aa-s- S, p, Y, )

fora=0,...,m—1, §=0,...,d — 1. Analogously we find

hje He*md=id-di2+ UG By forj=0,...,m— 1

such that

(3.54) ynﬂ};j:hj

and

(355) ”ﬁ}"Hs+md—jd—d/2+ I/Z(d,E) é C"hj"Hs-Pmd—jd—d/Z(Q’E),

and further fig.p ;€ H**™*e4-#~J~d2( F . ;) such that

(3.56) Yn+ 1 flaa+p,j = Nad+p.j

and

(3.57) "ﬁad+ﬁ,j "Hs+md+d—-ﬂ—jd—-d/2(f’ﬁu+ﬂ) é C“r’ud.;ﬂd ||H3+md+d—ﬁ—jd—~I/Z—dIZ(F,FM+”)

fora=0,....m—1,4=0,...,d-1,j=0,...,a.
For these f, g, h}, and fj,q+5,; We define

and

Fe Hs*md—id=di2+ 2§ By forj=0,...,m+ ko

Mogsp € HSTmTa- b=y F F ) forj=0,...,m+ ko

by the equations (3.16)—(3.19). Then there exists

(@, W) e He ™ DG, p, ) @ @ HO ™ 4P (S, p, Fiy )
a,p

such that
(3.58) Yi®=h forj=0,...,m+ ko,
(3.59) ij24+ﬁ=ﬁ:d+ﬂ,j forj=0,--.,m+ko,
and
m+ko
(3.60) 1 g+ ma+ 124, g1y < € ,Zo BN pgo+me-sa-a2+ 1125 gy
m+ko
(3.61)

"ng+ﬂIIH(:+M+J—5)(§';p'pu+’) sC j;o 1 aa+ p.jll ppremava-o-sa-anp g1, -



ON A COMPLETE INITIAL-BOUNDARY VALUE PROBLEM ... 117

Now we set
~0
(3.62) [ gf;] = A(3) [::O]
and
(363) (uO, wO) = 7n+1(ﬁo, wO), (fO, gO) = Yn+ 1(i’0’ 50)

Then it can be seen as in 3.3.2 that

0 0
(3.64) A(0) [::o:l = [J;o:l’

(3.65) Yul =h; forj=0,....m—1,
(3.66) Yjngw = Nad+,j forj=0,...,q,

and, furthermore, that
(f = %9 — 99 H(Q.p, E)® @ Hify™ 4~ F-1D(S, p, Fiyy ).
a,p

According to Theorem 2.3, there exists now

(U,W)esx*"(C,, QE)y@ @ # ™4 F~1(C,, T, Fpyyp)

a,p
such that
Y L(f-1°
CHE
Lw =26 -
and
(3.67) ”(U, W)”‘#(r#md)(cp,g’E)e @a.ﬂ x(a*‘md-*d-ﬁ— 1/2)(varsFad+})

SCILS - 1), 2~ go))".;f(n(cp,g,g)@ @ HCT=B~1D(C, T, F,y, )"

Thus we have the equation
¥-'u f=r°
A0 =
( ')[5«”“WJ [g -g°
with
(£71U, £ W) e Hist™(Q, p, E') @ @ Higi ™40~ 1(S, p, Fiy ).
a,p

But then, by Theorem 3.7, it follows from (3.64)-(3.66) that (£ "' U, L' W) =
(u — u°, w — w°). Therefore, by using (3.63), (3.67), (3.51)—(3.53), and (3.62), we
get

”(u, W)”H(Hund)(Q,p,El) @ @a'pH(sﬂ-mdhi—ﬁ— 1/2)(S’p’F:d+p)

s C("(f, gNlH"’(Q,p,E')@ @, pHE =812 5 Ft

ai+p)

ad+p

+ ”(ﬁo’ Wo)"}[(“ﬂ” llzb(Q";p'El) ® @m‘"(wmw-m{s’;p’ﬁ" )):
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where it follows from (3.60), (3.61), (3.16)—(3.19), and (3.52), (3.53), (3.55), (3.57)
that

1@, WOl e+ mas 124G p, By @ @, , HO ™+ 4-9(S:p, )

ad+p

é C(||(ﬂg)||H(:+l/2)(é,p’Et)® @a.’H(r*md—ad-ﬂ)(g';p’F:“*.ﬂ)

m-1
+ ||hj|]H:+ma—ja-d/2+l/2(Q E)
j=o ’
a
+ Z Z ||’7ad+ﬂ.j||H’+""”_"jd"/2(fyFu+p)>
a,pj=0

§ C(”(f, g)"H‘”(Q,p,E‘) ® @.,,H‘”'""“"_’- ”z’(S,p,F'“”)

m-1

+ z "hj "H:+m4-jd-d/2(g,E)
i=0

a
+ z Z ||'7¢d+ﬂ.j"[{=*"'““#‘i“1/2'4/2(1",]:“”))-
a,pj=0

This clearly implies the desired inequality.

3.8.3. Itremains to consider the case in which s = kod + B, + 1/2 + d/2 with
ko = —1 for some B, such that M,,,, > O for some a. However, if we proceed
essentially asin 3.8.2, modifying now the reasonings in accordance with 3.3.3, we
obtain the required estimate in this case, too.
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