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CLASSIFICATION OF JBW*-TRIPLE FACTORS
AND APPLICATIONS

T. DANG* and Y. FRIEDMAN**

1. Introduction.

The algebraic structure, known today as JB*-triples, which include C*-
algebras, JB*-algebras and certain Lie algebras, was introduced by Koecher
to classify finite dimensional Bounded Symmetric Domains. They were studied
later by different authors. Kaup showed the equivalence between Bounded
Symmetric Domains and JB*-triples for infinite dimensional cases, and
obtained an analogue of the Riemann mapping theorem (see [9]). On the
other hand JB*-triples occur in functional analysis by considering contractive
projections on C*-algebras and their generalizations. It was shown that the
category of JB*-triple is stable under contractive projections (see [10], [5]).

Recently, Dineen, Barton and Timoney showed the bidual M** of a
JB*-triple M is a JBW*-triple, i.e., a dual JB*-triple, whose triple product is
a w*-continuous extension of the triple product on M. JBW *-triples were
introduced and studied earlier by Friedman, Russo, and Horn [3], [6]. Horn
also defined and classified the so called type 1 JBW*-triple. His classification
reduces the classification of JBW*-triples of type I to the corresponding
classification of type I JBW*-algebras, the proof of which was quite com-
plicated. As a corollary he obtained that the type I triple factors are
exactly the Cartan factors. The abovementioned results were used to obtain
the Gelfand-Naimark theorem for JB*-triples (see [4]).

Following is a brief description of the Cartan factors of various types.

Let H, K be m and n dimensional complex Hilbert spaces (m, n can be
uncountable).

Tyee 1. C}, := #(H, K), the bounded operators from H to K.
For the next two types, assume H is equipped with a conjugation j: H — H;

then for any z € #(H), we can define its transpose as z' = jz*j.
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Tyee 2. C} := {ze B(H);z' = —z}.
Tyee 3. C) := {ze B(H);z' = z}.

The triple product on the above Cartan factors is defined by {x,y,z}
= $(xy*z+zy*x). Moreover, C% and C3 are, up to isomorphism, independent
of the conjugation j on H.

Type 4 (also called spin factor). These are JB*-triple M which can be
equipped with an inner product, and a conjugation * such that

(i) The original norm on M is equivalent to the Hilbert space norm induced
by the inner product;
(ii) The triple product satisfies

{x, 2} = 3(xly>z+ lyyx —<{x|z*Dy*).

Type 5. M, ,(0) := the space of all 1x2 matrices over @, the complex
Cayley division algebra. The triple product on M, ,(0) is {x,y,z}
= 3[x(y*z)+2(y*x)].

Type 6. H;3(0) := the space of all 3x3 hermitian matrices over (. The
triple product on H,(0) is defined via the Jordan product

{x.3,2} = (xey)ez+(zey)ox—(xoz)oy.

(The Jordan product is defined as xoy = 4(xy+yz). For a more detailed
description, see [6, §6] or [8].)

There is another approach to the classification of factors. This method was
used by Jordan, von Neumann, and Wigner to classify the finite dimensional
Jordan algebra factors [7]. Their idea was to “build” these factors from the
basic “building blocks” of the algebraic structure—the minimal projections
in this case. These “building blocks” could be obtained through a process
of “analysis,” which decomposed the factor into subspaces of lower dimension.
Such decompositions are given by the so called Peirce decompositions
associated with an arbitrary projection, which decompose the Jordan algebra
factor into three subspaces. Two of these subspaces are still Jordan algebras,
and therefore the same “analysis” can be applied to them until one reaches
minimal subspaces. Unfortunately, the third space is no longer a Jordan
algebra. To deal with this space, deep and formal results from algebra were
used. However, if we consider the same problem in the more general
category of JB*-triples, all the subspaces occurring in the Peirce decom-
position remain JB*-triples, and therefore the “analysis” can be carried out
systematically. In Section 2 we will do this to obtain a new proof of the
classification of type I JBW*-triple factors, of finite or infinite dimension.
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Even though this result implies the Jordan algebra factors classification as a
particular case, its proof is simpler since, as mentioned earlier, this “analysis”
does not take us out of the category. Moreover, this classification shed light
on the occurrence of the exceptional triple factors in this theory.

The “synthesis,” more precisely, the construction of the factor from its
building blocks is similar to the one used to construct the ranges of
contractive projections on C,; and C,, in [1]. This “synthesis” was also used
for constructing different types of orthonormal grids by McCrimmon and
Neher [12], [15], [16].

In Section 3, we will use this classification of type I triple factors, or
equivalently, the w*-closed ideal generated by a minimal tripotent to prove
the abovementioned Gelfand-Naimark theorem for JB*-triples, and some
other results.

Recall that a JB*-triple M is a complex Banach space M with a triple
product (x, y,z) = {x,y,z} from M x M x M to M, which is symmetric, linear
in the outer variables x, z and conjugate linear in the inner variable y. More-
over, the operator D: M — (M) defined by D(u)x = {u,u, x} for every u in
M satisfies

(1.1) D(u) is hermitian (i.e., exp(itD(u)) is an isometry for every real t) with
positive spectrum.

(1.2) iD = iD(u) is a derivation of the triple product, i.e.,
iD({x,y,z}) = {iDx, y, z} + {x,iDy, z} +{x, y,iDz}.

(1.3) D@l = lull?

for all u in M. It is known that (1.2) is equivalent to

(14)  {u,v,{x,y,z}} = {{u,0,x}, y, 2} + {{u,v, 2}, y, x} = {x, {v,u, y}, 2}
for arbitrary x,y,z,u,ve M, and (1.3) is equivalent to

1.5) Iz, z 2}l = llzIP.

For convenience, we will write z* for {z,z,z}. A nonzero element e of M
is called a tripotent if e* = e. For each xe€ M, we can define a mapping
Q(x):M - M by Q(x)y = {x,y,x}. If e is a tripotent, we have the corre-
sponding Peirce decomposition of M into subspaces M,(e), k € {0, 1,2}, which
are the ranges of the Peirce projections P,(e) defined as follows

Py(e) = Q(e)’?
(1.6) Pi(e) = 2(D(e)— Q(e)?
Po(e) = 1d—2D(e) +Q(e)*.

The following properties of these projections are well-known: P, (e) are
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contractive projections and M, (e) are JB*-subtriples of M, satisfying

(1.7) Pj(e)Pi(e) =0, for j # k;

(1.8) i Py(e

and

(1.9) M,(e) is the g eigenspace of D(e), ke{0,1,2}.

It follows from (1.9) that if N is a JB*-triple and ee M = N, then
M,(e) = N,(e) n M. Moreover, the following Pierce rules express the way
the triple products acts on different subspaces of the Pierce decomposition.
They will play an important role throughout.

(1.10) {M3(e), Mo(e), M} = {My(e), M, (e), M} = {0}.
(1.11) {Mi(e), M;(e), Mi(e)} S Mi_j.ile),

where M;_;,,(e) = {0} if i—j+k¢{0,1,2).

Formula (1.10) leads us to the definition of orthogonality. Two elements
x,y in M are orthogonal if there is a tripotent e such that x e M,(e) and
y€My(e); in this case (1.10) implies {x,y,z} = {y,x,z} = 0 for any z in M.
The M, (e) part of this Pierce decompositon is known to also be a JB*-algebra
with identity e under the product xo y = {x,e,y}, and the involution
x  Q(e)x (see [8],[14]). The following property of M,(e), which is easy to
verify, will be used.

RemArk 1.1. For each tripotent e, the map Q(e) restricted to M,(e) is an
antilinear bijection of M,(e) preserving the triple product.

For arbitrary tripotents e and f of a JB*-triple M, their Peirce
projections {P,(e), P;(f)} defined by (1.6), generally, do not commute, which
makes it difficult to consider their joint Peirce decompositions. However, in
certain cases their Peirce projections do commute, i.e., P;(e)P(f) = P, (f)P;(e)
for all j,k € {0, 1,2}. Two such tripotents are said to be compatible. As it was
shown (see [3],[13]), two tripotents e and f are compatible if e e M,(f) for
some k. The families of tripotents that we consider in Section 2 will satisfy
this property, and therefore we will freely exchange the order in the products
of their Peirce projections. Moreover for compatible tripotents e and f, the
product P;(e)P,(f) is the projection onto Mj(e) N M,(f). Thus, for a finite
family of mutually compatible tripotents, we can define its joint Peirce
decomposition in a natural way.

In general, JB*-triples may not have any tripotents at all. In order to
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carry out the analysis we must have “enough” tripotents. This can be
achieved if we ask our JB*-triple to be a dual Banach space. Thus, we are
led to the definition of JBW *-triples. More precisely, a JB*-triple U is called
a JBW*-triple if it has a predual (denoted by U,), and the triple product
is separately w*-continuous. For every element x in a JBW *-triple there is a
spectral decomposition x = | Adv;, where v; are tripotents. It is known that
from this, Proposition 1.2 follows.

ProposiTION 1.2. The set of tripotents is norm total in a JBW*-triple.
More precisely, each element in the JBW *-triple can be approximated in norm
by a finite linear combination of mutually orthogonal tripotents.

If {€,}aca is a family of mutually orthogonal tripotents in a JBW*-triple
U, then the sum Y, 4e, converges in the w*-topology [6, Lemma 3.17]. More-
over, p = Zae €. is a tripotent and )

(L12) Ua(p)+U,(p) = span’ {Us(e,)+ U, (e)).

A JBW*-triple is called a factor if it is not the sum of two orthogonal
w*-closed subtriples. To describe JBW *-factors, we will construct a basis
consisting of tripotents. Therefore let us take a closer look at the set of
tripotents.

Remark 1.3. If e and fare two tripotents with ee U, (f), then U,(e) € U,(f),
and Uy(f) & Ugle). In particular, if e and f are equivalent, i.e., ee U,(f)
and f € U,(e), then U,(e) = U,(f) = for all ke {0, 1,2}.

A tripotent v is said to be minimal in a JB*-triple M if M,(¢) is one-
dimensional

ProPOSITION 1.4. A tripotent is minimal in a JBW*-triple iff it is not a sum of
two orthogonal tripotents.

Since an orthogonal family of tripotents generates necessarily a commutative
JB*-triple, we must also consider tripotents which are not orthogonal to each
other. More precisely, we will be interested in the relation between a minimal
tripotent v and a tripotent u which is minimal in U;(v). As will be shown
in Proposition 2.1, such u, v must satisfy one of the following two relations:

(@) wu is colinear to v, denoted by u T v, if ue U (v) and ve U,(u);
(b) u governs v, denoted by ut v, if ue U,(v) and ve U,(u).

Remark 1.5. Let uy, u,;,u; be mutually colinear minimal tripotents. Since
{“l,uz,ugl} € Uz(ul) () Uz(uz) = {0} by (1.11), {u,,uz,u3} = (.

It will also be shown that if v is a minimal tripotent in U, then
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rank U, (v) = 2, that is, U, (v) cannot contain more than two mutually ortho-
gonal tripotents. If a JBW*-triple factor U is of tank 1, then it is the norm
closed span of a mutually colinear family of tripotents. More generally by
Proposition of Case 1, section 2, any mutually colinear family {u,} of minimal
tripotents spans a Hilbert space H, and Y ,P,(u,), converging in norm, is a
contractive projection of U onto H. If the rank of the factor is at least 2,
the tripotents in the basis will form “building blocks,” namely, trangles and
quadrangles defined as follows:

DerINITION. An ordered triplet (v,u, ) of tripotents is called a trangle if
v1d,ubv,utd, and 7= Qu.

ProposiTiON 1.6. If ut v (in which case we say (v,u) form a pretrangle),
let & = Q(u). Then (v,u,¥) form a trangle. Moreover, v = Q(u)j, and the
tripotent v+ 7 is equivalent to u.

Proor. From (1.11) it follows that {u,v,u}eM,_,,,(v) = Mo(v). Thus
v L &. Since Q(u)u = u, Q) = 3, {u,u,v} =, {v,v,u} = ju, Remark 1.1 and
(1.9) imply

{u,u,5) = {Q@u, O, Q)} = Qu)u,u,v} = QU = &,

Thus #€M,(u). Similarly one shows that # is a tripotent, {7, 0, u} = ju,
that is, u + &, and v = Q(u)d.

Since v and ¥ are orthogonal, v+7 is a tripotent. From (1.10),
{v+0,0+8,u} = {v,v,u} +{,5,u} =u, implying ueM,(v+7). Obviously
v+3eM,(u). Thus u and v+ 7 are equivalent.

DerINITION. An ordered quadruple (u,,u,,u3,us) of tripotents is called a
quadrangle if u, L us, uy L ug, uy T u; Tus T us T uy and
(1.13) ug = 2{uy, uy, us}.
From (1.4) it follows that (1.13) is still true if the indices are permutated
cyclically, e.g., u; = 2{u,,u3,us},... etc. Thus cyclic permutations of a
quadrangle remain quadrangles. A quadrangle can be represented as follows:

uy up

Uy Uy

In this diagram, two tripotents are orthogonal if they are on a diagonal, and
are colinear if they are on an edge. The product of any three tripotents (on
consecutive vertices) will give 4 the remaining tripotent. For instance,

{u19u4’ u3} = i’“z, {ul’ul’ul} = %u27 {ul’u3’ uZ} = 0"" etc.

ProposITION 1.7. Suppose uy,u,,us are tripotents with uy L us, and
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uy T uy; Tuy (in which case we say (uy,uz,u3) form a prequadrangle).
Let uy = 2{uy, uy, u3}. Then u, is a tripotent and (uy, u, us,u,) is a quadrangle.
Moreover, uy +uy and u,+u, are equivalent tripotents.

Proor. Consider the map Q(u, +u3) on U,(u, +u;) which is antilinear and
preserves the triple product. Obviously Q(u, + u3) fixes both u, and u;. More-
over, from (1.11), {uy,u5,u;} = 0 and {uz,u,,u;} = 0, implying

Quy +us)uz) = 2{uy, uy, uz} = u,.
The same argument as in the proof of Proposition 1.6 shows u, is a tripotent
satisfying u; T u, T u3. Moreover (1.11) shows uy = 2{u;,u,,u3} € Ug(us,).
Thus (u,, u,,us,us) form a quadrangle.

Since u, is colinear to both wu,, u;, and u, u; are orthogonal,
{uy +us,uy +us,u} = uy, implying u, € U,(uy +us). Similarly uy € U, (u; +u3).
Thus u,+u, € U,(u; +u3). By the argument, u; +u; e U,(u; +uy), showing
that u, +u; and u, +u, are equivalent tripotents.

By using both trangles and quadrangles as building blocks, we can
construct the Cartan factor of type 3, as will be shown in Case 2 of section 2.
The remaining Cartan factors are constructed mainly from quadrangles. How
do we obtain the remaining five different types of factor from the same
building blocks (quadrangles)? The answer is that we have two construction
techniques for gluing the quadrangles together.

ConstrucTiON A. Two quadrangles (uy,u,,us,us) and (v, v,,v5,04) are
said to be “glued” by Construction A, or “glued” by diagonals if u, = v, and
us = v4. The diagram of this construction is as follows:

U, = Uz
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This diagram suggests that (u,, v,,us, v3) form a quadrangle. However, this is
not true in general; further assumption is needed.

LemMMA 1.8. Let (uy,u;,u3,uy) and (vy,u,,v3,us) be quadrangles glued
together along the diagonal (u, u,). If all of the vertices are minimal tripotents,
and it is known that one of u,,us is colinear to some one of the v,,vs, then
(uy,v1,u3, —v3) form a quadrangle.

Proor. Without loss of generality, let us assume u; T v,. To show
(uy, vy, u3, —v3) form a quadrangle, by Proposition 1.7 it suffices to show that
vy Tuy and {uy, vy, u3} = —3v3. From (L.11), uy = 2{us, u;,u;} € U, (vy).
Since v, is a minimal tripotent, v; € U,(u3) U U,(u3) [3, Lemma 2.1]. But
vy ¢ Uy(u3) since from minimality of u; follows U,(u3) = Cu;. Thus
vy € Uy(u3), and vy T u;. To show {u;,v;,u3} = —4v,, we have from (1.4),

{“hvl,“s} = 2{ulsvla {“4,“1,“2}}

= 2({{uy, vy ugfug, us b+ {{ur, v, uz},uy,u,} — {ug, {vi,uy,uy},uy}).

Since uy, vy, u, are mutually colinear minimal tripolents, Remark 1.5 implies
{uy,v,,us} = 0. Similarly {u;,v;,u,} = 0. Thus

{“1, Ul,“s} = “2{“4a {Ux,“h“l}“z} = —{“4,171,“2} = ‘%Ua-

Let us call a quadruple (u;, u,us, us) an odd quadrangle if (u,,u;, us, —uy)
is a quadrangle. Thus odd quadrangles have all the properties of quadrangles
described earlier, except that the triple product of three consecutive tripotents
will give —4 of the remaining one. In order to preserve the symmetry of our
construction, we replace the original quadrangles by odd ones, and obtain
the following proposition.

ProrosiTioN 1.9. If (uy,u,,us,us) and (vy,us,v3,us) are odd quadrangles
consisting of minimal tripotents such that one of u,,u; is colinear to some one
of vy,vs, then (uy,v,us,v3) form an odd quadrangle.

Thus as we shall see, if we start out with an appropriate family of odd
quadrangles and apply Construction A, we will obtain a spin grid consisting
of odd quadrangles pairwise “glued” together diagonally. To such grid we may
add one trangle. These grids form bases for Cartan factors of type 4. (See
section 2, Case 3.)

ConstrucTiION B. Two quadrangles (u,u,,us,us) and (vy,v,,0,,0,) are
glued together by Construction B, or glued side by side if u, = v, and
uy = vy. The diagram of the construction is as follows:
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ul uz = U, Ul

Uy Uz = 03 Uy

ProrosiTioN 1.10. Let (uy,u,,us,uy) and (vy,u,,us,vs) be quadrangles of
tripotents. If u; T vy, then (u,,v,,vs, us) form a quadrangle.

Proor. Because of Proposition 1.7, it suffices to show u, Lo, and
{Ul’ ul,u4} = 5‘04. From (l.ll) fO“OWS Ug = Z{ul, uz,u3} € UO(Ul), that is,
uy 1 vy. From (1.4) follows

{Uhul,ud-} = Z{Ulsuh{ul’uz’uS}}
= 2({{vr, up, ur fuz,uz} + {{vy, uy, usf uz,uy

—{uy, {uy,v1,u5}, u3}).

Since u; 1 u;, and u,,v;,u, are mutually colinear tripotents, {r,,u;,u3} =0
and {u;,v,,u;} € U(u,), implying {uy, {u;,v,,u,},us} = 0. Thus we have

{vy,uy,us} = 2{{vy, uy, uy b uz, us} = {0y, uz,u3} = $u,.

RemMARK. In the previous proposition, if we had started put with odd
quadrangles, we would have still obtained a quadrangle. Thus, it is more
appropriate to apply Construction B to a family of quadrangles.

Cartan factors of type 1 are obtained by applying Construction B to an
appropriate family of quadrangles, as will be shown in Case 4 of section 2.

To construct the remaining three Cartan factors we will need to use both
constructions. Basically, each of these factors consists of spin grids of the
same dimension, (partially) glued together by Construction B. As will be
shown in section 2, the dimensions of these spin grids can only be 6, 8, or 10,
which give rise to the Cartan factors of types 2, 5, and 6, respectively.
Moreover, for each minimal tripotent v in these factors, the space U,(v) is a
JBW*-triple constructed from spin grids of two dimensions less then the
dimension of the original grids. For factors involving spin grids of dimension 6,
the space U, (v) are of rank 2 and are Cartan factors of type 1, which consist
of all 2 x k matrices for arbitrary k. Therefore we have Cartan factors of type 2
of arbitrary size. However, if we wish to build up a factor from spin grids
of dimension 8, U,(v) must be a rank 2 Cartan factor of type 2, which is not
a spin grid. Such a factor is unique—the 5x 5 anti-symmetric matrices. Thus
there is only one Cartan factor of type 5, and the factor consisting of 5x 5
anti-symmetric matrices paves the way from the special to the exceptional
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factors. Note that this factor as well as the Cartan factor of type 5 con-
structed from it, which is the first exceptional factor, are not Jordan algebras.
On the other hand, the next factor, which is constructed from spin grids of
dimension 10, is the exceptional Jordan algebra, the Cartan factor of
type 6. Since this one is already of rank 3, no factor other than type 4 can
be constructed from spin grids of dimensions higher than 10.

Finally, in order to extend homomorphism to the w*-closure, we will need
the following extension lemma.

DerinTiToN 1.11. Let M be a JB*-triple, a functional f of M*, is said to
be an atom if there is a minimal tripotent v of M such that

(1.14) Py(v)x = {f,x)v
for any x in M. In this case we will write f = f,.

DEeFINITION 1.12. A JB*-triple M is nuclear if any f in M* has a decom-

position f = Y a;f, where {v;} is an orthogonal family of minimal tripotents
in M and Y |o| = |If]l < co.

ReMARrk 1.13. If M is a JBW*-triple and v is a minimal tripotent of M, then
since the left hand side of (1.14) is w*-continuous, we have that f, is in M.

LEMMA 1.14. Let M, be a w*-dense JB*-subtriple of a JBW*-triple U,.
Let M, be a nuclear JB*-triple and ¢ :M, - M, be a triple isomorphism.
Then, this isomorphism extends to an isomorphism ¢: U, — M%*.

ProoF. Let f, be an atom of M% and let v = ¢(w). Then, since ¢ is an
isomorphism, we have

P*o Xpv = ([, 9(x))v = P2(0)9(x) = ¢(P2(w)x) = (£, X)P(w)

for any xe M,, proving ¢*(f,) is an atom of M¥. It is known that each
isomorphism is an isometry. Thus ¢* is an isometry, implying M, is nuclear.
Let w be a minimal tripotent of M,. Since P,(w) is w*-continuous, we have
P,(w)M, = Cw is w*-dense in P,(w)U,; implying P,(w)U; = Cw. Thus every
minimal tripotent of M, is also a minimal tripotent of U,. By Remark 1.13
above, (1.14), defines f for all x in U,. Thus each atom of MY can be
identified with an atom of U,,. This identification induces a natural
embedding i: M¥ - U,,, with i(f)IM = f for any f in MY}. Since M, is
w*-dense in U,, we have i(g|M) = g for any g in U, implying that the map i
is surjective. Thus, the map ¢ = (ie¢*)* is an isomorphism from U, to
M¥*, Standard argument shows that @ is a w*-continuous extension of ¢.

The general plan of our classification of a JBW *-triple-factor U containing
a minimal tripotent, say v, is as follows. Use Peirce decomposition to
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decompose U into subtriples U,(v), U,(v) and Uy(v). U,(v) is 1-dimensional.
We describe U,(v) by picking up a maximal ortho-colinear family F, of
tripotents in U,(v). In most cases, this description reduces to the previous
case of the classification. Note that U,(v)+ U,(v) is no longer a JBW *-triple.
We need to complete F, by adjoining elements obtained by completing pre-
trangles and prequadrangles (x, v, y) where x, y are from F,, using Propositions
1.6 and 1.7. These new elements together with F, and v form a family F,
of ortho-colinear-governing tripotents which is closed under triple products.
We then show that F, is w*-total in U. To achieve this, we show that F,
is norm-total in U, (v) and that each element u of F, can be exchanged with v
via an automorphism, and then apply (1.12).

Next we determine the product rules on F, to verify that they are the same
as the product rules on the corresponding Cartan factor. Here, the main tools
used are Constructions A and B described earlier. The same verification was
done in [12] and [16]. Neher also obtained a full classification of maximally
connected grids. Since our verification is significantly shorter, we include it
here for completeness.

Finally, the product rules on F, determine a natural isomorphism from the
norm closure of span F, into the Cartan factor, which can be extended by the
previous lemma to U.

AckNOWLEDGEMENT. We thank Professor B. Russo for his suggestions and
remarks.

2. Ideal classification.

Our goal in this section is to classify the w*-closed ideals generated by a
minimal tripotent in a JBW *-triple, and factors containing a minimal tripotent.
This classification is similar to the one in [1], and generalizes the classification
of Jordan, Von Neumann, and Wigner [7] of finite dimensional JB*-algebra
factors to infinite dimensional JBW*-triple factors. The main result is the
following.

MaIN THEOREM. Let U be a JBW*-triple, v be a minimal tripotent in U,
then J(v), the w*-closed ideal generated by v, is a Cartan factor of one of the 6
types, and J(v) is a summand in U. That is, U = J(v) ® K, where K is a
w*-closed ideal in U orthogonal to J(v).

To prove the above theorem, we will first classify J(v) into different cases,
then discuss each case separately. Our main tools for the classification will be
the following Propositions 2.1 and 2.3.

ProposiTioN 2.1. (“Tripe system analyzer (TSA)”). Let U be a JBW *-triple
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system containing a minimal tripotent v. Let u be a tripotent in U,(v); then
exactly one of the following 3 cases will occur:

(i)  u is minimal in U. This occurs if and only if u and v are colinear.

(i) u is not minimal in U but is minimal in U,(v). In this case utv. Let
o = {u,v,u}; then ¥ is a minimal tripotent of U, and (v,u,?) form a
trangle.

(iii)  u is not minimal in U,(v) (thus u is not minimal in U either). In this
case u = u; +1,, where u,, G, are 2 orthogonal minimal tripotents of U,
contained in U,(v). Let § = {u,v,u}. Then ¥ is a minimal tripotent of
U, and (v,u,,?,d,) form a quadrangle.

ProoF. From the definition of minimality, u must be either (i) minimal in U ;
or (ii) minimal in U,(v), but not minimal in U ; or (iii) not minimal in U,(v).
It is easy to show that since v is a minimal tripotent of U and ue U,(v),
veU,(u) v U, (u) (cf. [3, Lemma 2.1]).

(i) If u is a minimal tripotent of U, then v¢ U,(u). Thus ve U, (u); that is,
v T u. Conversely, if v 7T u then by the Colinear Exchange Theorem [ 12, p. 1501],
the automorphism B(v+u, v+u) defined there exchanges u and v. Since any
automorphism maps minimal tripotents to minimal tripotents, u is a minimal
tripotent of U.

(ii) Now, assume u is not minimal in U but is minimal in U,(v). From (i)
above, v¢ U,(u), implying ve U,(u), that is, ut+v. From Proposition 1.6,
(v,u,?) forms a trangle. Since the map Q(u) exchanges v with &, and U,(v),
U,(7) are both contained in U,(u). Remark 1.1 implies that ¢ is minimal
tripotent of U.

(iii) If u is not minimal in U,(v), then u = u; +u,, where u,,4, are 2
orthogonal tripotents in U,(v). If veU,(u,) then U,(v) E U,(u,), and
i, L u, implies i, L v, contradicting i, € U,(v). Thus ve U,(u;). Similarly,
ve U,(d,). Therefore by (i), u;, ii; are minimal tripotents of U, and (u,,v, iI;)
form a prequadrangle. From Proposition 1.7, it follows that (uy,v,d;,7) form
a quadrangle. Since # T u,, part (i) implies that # is minimal in U.

COROLLARY 2.2. Let v be a minimal tripotent in a JBW*-triple U; then
rank U, (v) = 2.

ProrosiTION 2.3. Let v, ¥, uy, ii, be minimal tripotents of a JBW*-triple
U such that (v,u,,p,ii;) form a quadrangle and U,(v+?)+# 0. Then
m = dim U,(v+ ) is even and 4 = m = 10.

We will need the following lemma in the proof of Proposition 2.3.

LemMA 2.4. Let v and & be orthogonal tripotents of a JBW*-triple U. Then
U,(v+#) and U,(v+ ) can be decomposed into
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@n Ui +9) = [Ui() n Uo(®)] @ [U1@) N Upv)];

(2.2) U,(v+9) = U, (v) @ U, (0) @ [U,(v) n U, ()]

Proor. By the generalized Peirce decomposition [11] relative to the
orthogonal family {v,5}, U has a decomposition.

U=U,00)@ U,0)® U,(v) nU,(0)® U,(v) nUo(0) ®
@ Uy (3) nUpv) @ Ug(v) n Uy(®)
which implies (2.1) and (2.2).

Proor ofF Prorosition 23. Let U = U,(v) n U,(5). Note that in (2.1),
U i) nUy@) = Uy(v) n U (v+7) and similarly, U,(@) nUpy(v)
= U,(@) n U (v+7). Thus we can assume without loss of generality that
Ui(v) nU (v+0) # {0}. Now since u,+d, and v+ are equivalent
tripotents, by applying (2.1) once more to the JBW*-triple U,(v) and
orthogonal tripotents u,,#,, we may assume without loss of generality that
U,@,) nU,(w+5) nU,(v) # {0}. Let z be a tripotent in this subspace.
Since z and u, are two orthogonal tripotents in U, (v), z is a minimal tripotent
of U and by Proposition 2.1, this implies that P,(z)J = {0}. Thus, denoting
P,(2)U by U,(z) (k =0, 1), we have U = U,(z)+ Uo(z). Using (1.11) and that
vTzLl3d, it is easy to check that the mapping Q(v+75) = 2Q(v,7) is a
bijection from U,(z) onto Uy(z). Therefore dim U,(z) = dim Uo(z); and by
(2.2) we have

(2.3) m=dim U,(v+7) = 2+dim U = 2+ 2dim U, (z)

is even.

To show that m = 10, let us assume that m = dim U,(v+¢) 2 12. Since
Uo(z) is a JBW *-triple of rank 1, dim U, (z) 2 5, and u, € Uy(z), we can choose
Uy, Uz, Us, us in Ug(z) such that {u;}-, is a colinear family of tripotents.
Since u; and u, are colinear, each u; is a minimal tripotent of U. Thus,
(v,u;,7) form prequadrangles, which can be completed to quadrangles
(v, u;, 0, 4;) with &; = 2{v,u;,#}. Using &; are minimal in U, and (1.11), we
have u; T d; for i # j, implying (z, i#;, u;) form prequadrangles. Define

Uyz = 2{z, 1, u3}
u45 = 2{2, id'4, us}.

The family {u;,u,3,u4s} is obviously in U,;(v). We will show it is an
orthogonal one and thus contradicting rank U, (v) £ 2 (Corollary 2.2).

By (1.11), u, is orthogonal to both u,; and u,s.

By (1.11), u,3 L us and u,3 € U, (di,). Since u,5 is minimal in U, Proposition
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2.1 gives i, € U (uz3). Thus by (1.11) again uss € Ug(u,;), that is, u,; and
u,s are orthogonal.

Let v be a minimal tripotent of a JBW*-triple U. Let J(v) be the w*-closed
ideal generated by v. We will classify J(v) according to the following scheme.

Classification scheme. From Corollary 2.2, rank U, (v) is either 0, 1, or 2.
Case 0. Rank U, (v) = 0, that is, U, (v) = {0}. Then obviously J(v) = Cc ~ C.

A. If rank U,(v) = 1: Let u be a tripotent in U,(v). From Proposition 2.1,
exactly one of the following two cases may happen.

Cast 1. Rank U,(v) = 1 and u T v. We will show that in this case, J(v)is a
Hilbert space, which is a special case of a Cartan factor of type I.

Case 2. Rank U,(v) = 1 and u } v. We will show that for this case J(v) is a
Cartan factor of type 3, the “symmetric matrices.”

B. If rank U;(v) = 2. Let u be a nonminimal tripotent of U,(v). By
Proposition 2.1(ili), u = u, +#,. Let & = {u,v,u}. Then # is a minimal
tripotent of U, and (v,u,,5,4,) form a quadrangle. Exactly one of the
following five cases will occur.

Cast 3. U,(v+7) = {0}. We will show in this case J(v) is a Cartan factor
of type 4, the spin factor.

If U,(v+) # {0}, Proposition 2.3 can be applied giving m = dim U, (v +7)
is even, and 4 £ m £ 10. Thus we have:

Cast 4. U,(v+79) # {0}, dim U,(v+5) = 4. We will show J(v) is a Cartan
factor of type 1, the “full matrices.”

Case 5. U,(v+79) # {0}, dim U,(v+7) = 6. We will show J(v) is a Cartan
factor of type 2, the “anti-symmetric matrices.”

Cask 6. U, (v+7) # {0}, dim U,(v+7) = 8. We will show J(v) is a Cartan
factor of type 5, the exceptional JB*-triple-factor of dimension 16.

Case 7. Uy (v+7) # {0}, dim U, (v+7) = 10. We will show J(v) is a Cartan
factor of type 6, the exceptional JB*-triple-factor of dimension 27.

We now discuss each case in detail.

Case 1.

PROPOSITION. Let v be a minimal tripotent in a JBW*-triple U such that
rank U, (v) = 1, and there is a tripotent u in U,(v) with u T v. Then J(v) is
isometric to a Hilbert space, and is a summand in U.
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The proof of the above proposition follows from the lemma below, which
we will state in a more general setting.

LemMMA. Let {u;};c; be an arbitrary family of mutually colinear minimal
tripotents in a JB*-triple M, then

(i) W :=span{u;};.; is a JBW*-triple, and is isometric to a Hilbert space
with {u;};, as an orthonormal basis.

(i) P:=Y,.;P,(u;) converges strongly, and does not depend on the order
of the summation. Moreover, P is contractive projection from M onto W.

Proor. (i) First, we show if {u;}7-, is a-finite set of mutually colinear
minimal tripotents; then for all a;eC,

2

(24)

n
Z oU;
i=1

n
= Z ”aiuillz-
i=1

From Remark 1.5, it follows that {u;u;u} = 0 unless it is of the form
u?, or {u;,u;, u,}. Thus,

i=1 ij.k

n 3 )
(Z “i“i) = Y oo up, uj )
(2.5) = Z |°‘i|2°‘i“i+22 Z |ailzak{uia U, uk}
i=1 i kfi
= ZIaiIZ Z“kuk-
i k

Therefore,

3

proving (2.4). It follows from (2.4) that W is isometric to a Hilbert space
with {u;};c; as an orthonormal basis. Moreover, since the family {u;};.,
is closed under the triple product, W is a JBW *-triple.

n
Z Oyl
k=1

n
Z ol
i=1

(ii) First, we show that if {u;}7_, is an arbitrary family of mutually colinear
minimal tripotents in M, then for all a;€C,

6) o( £ a) = 0 £ om) $ P

i=1 i=1
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It is obvious that

0( £ o)~ % wt0w)+2 3 0t
i=1 i= i#j

where the operator Q(u;, ;) is defined by Q(u;,u;)z := {u,, z, u;}. It is easy to
show Q(u;) = Q(u;)P,(u;). Thus to show (2.6), it suffices to show that

Qui, uy) = Quz, uy)(Py(u;)+ Py(uy)) for i + j.
Let z be an element of M, then

2

2
Q(ub“j)z = Q(u;, u;) Z Py(u;) Z k(“
k=0

Obviously,  P,(u;)Py(u;) = Py(u;). Py(u;)Py(u;) = Pa(u;),  Py(u;)Py(uy)
= P,(u;)Po(u;) = 0. On the other hand, (1.11) shows Q(u;, u;) vanishes on the
remaining terms, giving Q(u; u;) = Q(u;, u;)(P2(u;)+ P2 (u;)), and thus
proves (2.6).

Next, let F be a finite subset of I. From (2.5), Zie Fou; is a tripotent iff
Y log)* = 1. It follows that for each element z in M, there are a complex number
4 and a tripotent v in the span of {u;};.r such that Y, pP,(u;)z = Av.
Since P,(v) = Q(v)?, from (2.6) we have

Py(v)z = Py(v) ), Pr(wi)z = P,(0)(v) = Ao = ) Pa(u)z.
ieF ieF
Thus for any finite subset F of I, Y, rP,(u;) is a contractive projection.
From this and (2.4), statement (ii) of the lemma follows easily.

Proor oF THE ProprosiTION. By Zorn’s lemma, there is an index set I
containing 1 and a maximal colinear family {u;};.; of tripotents in U, (v)
with u; = u. Since u; T u, it follows from Proposition 2.1 that each u; is a
minimal tripotent of U and u; T v. If U,(v) N [[Nic; U1 )] # {0}, let w be
a tripotent in that space. Since every tripotent in the rank one JBW*-triple
U, (v) is minimal, Proposition 2.1 implies w T u; for all i e I, contradicting the
maximality of {u;};c;. Thus U;(v) N [[ie; Ui(u)] = {0}.

If z is an element of U,(v), then Y, P,(u;)z converges in norm by the
above lemma, implying

z— ) Py(u)ze Uiw) n l:ﬂl Ul(ui):l = {0}.

iel
Thus U, (v) = span{u;);c;, implying

U,(v)+ U, (v) = span{v, ui}ie;,
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and is a JBW*-triple isometric to a Hilbert space. Moreover, U,(v)+ U, (v)
is clearly w*-closed in U. To show J(v) = U,(v)+ U,(v) and is a summand,
we only need to show Uy(v) is orthogonal to u; for every i e I. Obviously,

Uo(v) = Py u;)Uo(v) + Py (u;)Uo(v) + Po(u;)Uo(v).

Since u; is minimal in U, P,(u;)Uo(v) = {0}. If Py(u;)Uo(v) # {0}, let & be a
tripotent in that space. Since v, # are two orthogonal tripotents in U, (y;),
Proposition 2.1 gives that (v,u;,0) form a prequadrangle which can be
completed to a quadrangle with i; = 2{v, u;, 5}, which is orthogonal to u;
and is in U,(v), contradicting rank U,(v) = 1. Thus Ugy(v) = Po(u;)U,(v),
proving Ugy(v) L u;.

CoroLLARY. If U is a JBW*-triple of rank 1, then it is isometric to a
Hilbert space. Moreover, every maximal colinear family of tripotents in U form
an orthonormal basis.

Case 2. The following defintion is adopted from [12]:
DeriNiTION. Let F = {u;jli,jel} be a family of tripotents in a Jordan
triple system U, for some index set I. F is a hermitian grid if:

(i) For every i, j, k,l in I, we have

Uij = Uji;
ui; Loy if {i, j} 0 {1} =9
u;—u; Ty ifi, j, k are different.

(i) Every triple product among elements of F which cannot be brought
to the form {u;;, uj,uy,} vanishes.

(iii) For arbitrary i, j, k,! triple products involving at least two different
elements satisfy

(2'7) {uiﬁ ujk, ukl} = i’u“, for i # l,
@8 {uijp jpo Ui} = ui.

It is easy to see that each Cartan factors of type 3 has a hermitian grid,
whose span is w*-dense.

PrOPOSITION. Let v be a minimal tripotent of a JBW*-triple U. If
rank U,(v) = 1, and there is a tripotent u in U(v) such that ut v, then J(v)
is a Cartan factor of type 3 (and is a summand).

Proor. By Zorn’s lemma, there is in U,(v) a maximal colinear family of
tripotents {u,;};c;, which includes u; where I is some index set not
containing 1. Since u T uy; (if u,; # u), Proposition 2.1 implies u,; v for
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alliel. Let T=1 U {1}, u;; = v and define

Uiy = Uy,
29) Ujj = uj = 2{“1.‘,“11,“”} fori # j,
Uy = {ulbull’uli}-

We will show the family F = {u;}; ;7 forms a hermitian grid.

First, we show that the family F satisfies property (i) of hermitian grid.
Let i, j be distinct indices. Since u,, € U,(uy;), by (1.9) and Remark 1.1,
u; = Q(uy)uy, is @ minimal tripotent of U, and moreover, u,; governs both
u;, and u;. On the other hand, by (1.11)

U = {“u, ulhuli} € Ug(uy;);

Le., the two tripotents u; and u,; are orthogonal. Thus (u;;+u;;) is a tripotent,
and the map Q(u,;+u;) is an antilinear homomorphism of order 2 on
Ua(uyj+u;).

Cramm 1. For distinct indices 1, i, j, the map Q(u,;+u;;) exchanges u,, with
ujj uy; with u;; and fixes u;; as well as u;. That is, it exchanges 1 with j
in the set of indices {1, 1, j}.

The action of the map can be represented as the symmetric reflection along
the diagonal u,;+u;; of the following table:

Uy Uyi Uy
Uy Ui Uij
U U;j Ujj

Since the map is of order 2 in order to prove that Q(u,;+u;) exchanges
Uy; Wlth u,~j, it Sumces to ShOW that Q(u1j+ui,~)u“ = u,»j. But

]
Quyj+uiuy; = {uyj+ug, uy, g j+u)
] ]
= {ugi, gyt + g uys Uy )+ 2{uy o g, ug)

By (1.11) the first two terms are in U;(u;) and Uj;(u,;), respectively, thus
vanish. On the other hand, by first applying (1.4) and then (1.11) to
{uyjouyugy = {ugjou, {ug uy g, uyifg, we get 2{uyj uyi i = u;;. The re-
maining statements of the claim are obvious.

From Claim 1 above, it follows that u;; is a minimal tripotent of U, (u;)
and wu;; governs u;;. On the other hand, from (1.11) follows u;; L uy if
{i,j} n{k, 1} =P, and u;; T u if i, j, k are distinct.

Next, we show that the family F satisfy properties (i) and (iii). Since any
two elements of F are orthogonal if they do not share a common index,
every nonvanishing (triple) product among elements of F must have one of
the following forms.
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(2.10) {uij i, u} i, j, k, I are arbitrary.
(2.11) {u;j ujp,uy}, where i, j, I are arbitrary, k ¢ {i, j,I}.

Since these formulas involves at most 4 indices, consider first:

Case A. The 4 indices i, j,k,I are distinct. Since u;j, uy, u; are mutually
colinear minimal tripotents of the JBW *-triple U, (u;;), {u;j, i, uj;} = 0. Thus
it remains to show {u;j, u;, u,} = ju,, which is equivalent to showing that
(uyj, uyy, gy, uy ;) form a quadrangle.

Let i, I be any two distinct indices with i, I ¢ {1,2}. By applying (1.4) and
(1.11) to {uyp, uypuy} =2{uyz uyy, {Uyithyy Uy )}, we obtain {uy,, uy, uy} = 3u;,.
Thus by Proposition 1.7, (uy,, uy,, 4, u;, ) form a quadrangle (for any 4 distinct
indices 1,2,i,I). Now we can show (u;; uy, uy, u,;) form a quadrangle as
follows: Apply Proposition 1.10 to

(a) the quadrangles (u,;, uy,,u;, 4;;) and (uyy, Uy, Uiz, ;) to obtain that
(w1, Uy, Uy, u;) is a quadrangle ;

(b) the quadrangles (u;,,uy;, Uy, tyz) and (uyz, Uy, Uy, 42) to obtain that
(w1, uyy, Usg, wyj) is @ quadrangle ;

(c) the quadrangles (u;j,uy;,uy, u;;) and (uy;, uyy, Uy, 4y;) to obtain that
(uij uyy, ugy, uyj) is a quadrangle;

The above construction can be visualized by the diagram below:

Uz Uy Uy
U Ui; Uy
Uy2 Uy Uy

It remains to verify products of the form (2.10) and (2.11) for the
following case.

Case B. The number of distinct indices of the set {i, j,k, I} is at most 3.
By using the following claim we can assume that j = 1.

CraM 2. For distinct indices 1, i, j, k, the map Q(u,;+u; +u,) exchanges
the indices j with 1 in the set of indices {1,i, j, k}.

The proof of this claim follows immediately from Claim 1.

By assuming j =1 in triple products of the form (2.11), cardinality of
{1,i,k,1} is at most 3 and k¢ {i,1,/}, we can only have the possibility (a)
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i=1;()!=1;()i=L By (l.11) the product (2.11) vanishes in each case.
Similarly, by assuming j = 1 in the triple products of the form (2.11), and
cardinality of {1,i,k,I} is at most 3, we have the possibilities (a) 1 = i;
b)l=k;()1=1;d)i=k;()i=1;(f) k =L From (2.9) product in case
(b) satisfies (iii) of the definition of hermitian grid. From (i) of the definition
follows that products in cases (c) and (d) which are of the form D(x)y satisfy
(2.7). Cases (a), (e), and (f) are treated as follows. Replace the last term
in the product by its definition from (2.9), then apply (1.4) to reduce it to
products calculated earlier. Thus the family {u;;} defined by (2.9) forms a
hermitian grid.

Let p = ) ju;. First, we show that J(v) = w*-closed span {u;;}. It suffices
to show U, (p) = w*-closed span {u;;} and U, (p) = {0}. From [6, Lemma 3.17],

U.(p) = span {Ul(uii)’ Ui(uy) n Ul(ujj);i’jer}'

Since u;; is minimal in U, U,(u;) = Cu;;. On the other hand, since u;; governs
both u; and uj;, the tripotents u;; and u;+u;; are equivalent, giving
Us(uij) = Uy (u;+uj;). By (2.2),

Uii) nUug) € Usluy).

Using u;; as minimal in U,(u;) (in U,(u;) as well), we conclude that
Ui(u;i) N Uy(uj;) = Cuyj. Thus

Ua(p) = span  {u;}; jer-

For U,(p) = {0} it suffices to show that U, (u;) E U2(p) for all iel. For
arbitrary i, let w = $(u; +uy, +uy;). A straightforward calculation reveals w
a tripotent. By [3, Lemma 1.1], the map T = P,(w)—P;(w)+ Po(w) is an
automorphism of U with T? = Id. Obviously, T leaves the space U,(p)
invariant. Moreover, a straightforward calculation show T exchanges u,, with
u;;. But from the Corollary in Case 1, U, (u;1) & U,(p). Thus, U, (u;) E U2(p).

Finally we show that J(v) is a Cartan factor of type 3. Let H be a Hilbert
space with an orthonormal basis {&;;ieT}. Let us equip H with a conjugation
J defined as J(} 4;¢) = Y A& For i,jel, let S; = e, and S;; = e;;+e; for
i # j where e;; and ej; are matrix units corresponding to the basis {&3}. The
family {S;;} is then a hermitian grid. Let M, be its norm-closed span. Then
M, is a nuclear JB*-triple, and moreover, M3* is a Cartan factor of type 3
(as described in section 1). Let M; = norm-closed span {u;}; ;7, and define
a linear map ¢: M, - M, by ¢(u;;) = S;;. Obviously ¢ is a triple isomorphism.
Thus by Lemma 1.14, it extends to an isomorphism @:J(v) » M**, proving
that J(v) is a Cartan factor of type 3.



312 T. DANG AND Y. FRIEDMAN

Case 3.

PrOPOSITION. Let v and © be minimal tripotents of a JBW*-triple U such
that rank U, (v) = 2 and U,(v+0) = {0}. Then J(v) is a Cartan factor of type 4
and is a summand.

Proor. It is obvious that J(v) = U,(v+7), and is a summand. Let u, = v,
ii; = #. By Zorn’s lemma there is a maximal colinear family {u;};.,; of minimal
tripotents in U, including u, (where I is some index set). For iel, with
i#1, let ;= —2{uy,u;,d,}. Then the (uy,u;,d,,i;) are odd quadrangles
glued together along the diagonal (u,, ). It follows (from Proposition 1.9)
that (u,,u;, 4,,4;) form odd quadrangles for i # j.

If (Nie;Ui(u;) # {0}, let u, be a tripotent in that JBW*-triple. From
Proposition 2.1 and the maximality of the family {u;};.;, it follows that u,
is a minimal tripotent of ();c;U,(u;), and u, governs both u;a; for all
iel, implying

Ol Uiw) = Pz(“o)(ﬂ Ul(“i)) = Cuo.
1 i
By multiplying u, with an appropriate scalar A if necessary, we can assume
without loss of generality that u, is a tripotent satisfying {ug, uy,uo} = —ii.
From (1.4) and (1.11), it follows that {ug, u;, uo} = —;, and {ug, d;, up} = —u;
for any iel. From the lemma of Case 1, the summations )., P,(u;)z and
Y.ie1P2(#;)z converge in norm for all ze U. Thus J(v) is the norm closed
span of either {u;, &;};c; or {u;, d;, up}ies-

We define an inner product on J(v) as

Y o+ @i+ Pul Y. Aty + Ll + Sug ) = Y oki+ (@)(); +283.

iel iel iel

Denote the inner product norm by ||- ||, and the original norm on U by |- ||.
We will show that these two norms are equivalent on J(v). Let

zZ = Z 2.,-“;+Z,~ﬁ,~+ﬂuo

iel

be an arbitrary element of J(v). Using Lemma 2 and Bessel's inequality we
have

llzll = Z A+ Z i, || +11Buoll
iel iel
1/2 1/2
s (Z M.-P) + (z ILI) +1Bl = 3|lzll;.
iel iel
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On the other hand,

2 2
23 = Y IAP+ X IGE+2812 = || X Pow)z|| + || Y Patd@)z|] +2lBuoll.
iel iel iel iel ’
By the lemma of Case 1,
Buoll = ||z— Y, Pa(u)z— Y. Pr(d)z|| < 3izl|
iel iel
and ||z||3 < 8|izl|>. Therefore the original norm ||-|| and the inner product

norm || - ||, are equivalent on J(v), proving that J(v) is isomorphic to a Hilbert
space.

Finally let * be a conjugation on J(v) defined by (u;)* = iI;, (uo)* = uo.
Then the triple product on J(v) can be expressed in terms of the inner
product by

2{a,b,c} = (albdc+{c|bya—<alc*)b*.

Simple verification shows this identity holds on the basis elements {u;, i, uo };;
of J(v). Then by passing to the limit we conclude that it holds for arbitrary
a,b,c in J(v).

We will need the following corollary later:

CoroLLARY. If U is a spin factor (i.e., a Cartan factor of type 4), then U is
the norm closed span of a family consisting of minimal tripotents {u;, i;};c;
and possibly a tripotent uy such that

() uo Fu., ug b ii;, Quou; = —it;, Quo)it; = —uy, for alliel;
(ii) (u;,u , i, 4;) are odd quadrangles for i # j;
(iii) U = Uy(u;+i;) for all iel.

Such a family {u;, it;, uo} will be called a spin grid.

Case 4.
DeFINITION (see [12]). Let 1, J denote some index sets. A family of minimal
tripotents {u;;};¢; je, is @ rectangular grid if
(i) uj,uy are colinear if they share a common row index (j =1i) or a

column index (k = I), and are orthogonal otherwise;

(i) (upoujpuun), j#Fi k#1isa quadrangle;

(iii) all other types of products (i.c., not of the form D(x)y or {x,y,2},
where (x, y, z) form a prequadrangle) vanish.

It is easy to see that each Cartan factor of type 1 has a rectangular grid
whose span is w*-dense.
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PropOSITION. Let v be a minimal tripotent in a JBW *-triple U. Suppose there
are minimal tripotents u,,d,,¥ such that (v,u,,t,) form a quadrangle, and
dim U,(v+7) = 4; then J(v) is a Cartan factor of type 1 and is a summand in U.

We will need the following lemma which gives the structure of U,(v) in
this case. Note that by the corollary in Case 3, the hypothesis dim U, (v +7) = 4
is equivalent to U,(v) n U,(u,) n U,(i1,) = {0}.

LeEMMA. Let v,uy,w, be minimal tripotents in a JBW*-triple U such that
(uy,v,w,) form a prequadrangle and U,(v) n U (u,) 0 U(w,) = {0}. Then
there are maximal colinear families of tripotents {u;};c; and {w;};c, (with
1el nJ) such that

(i) Uy(v) = spani{u;};c; © span{w;};.; = # @ H,;
(i) #, and A, are orthogonal, i.e., every tripotent in # . is orthogonal
to every tripotent in ¥ ,;
(iii) Py(v) = Y. j(P2(u;)+ P2(w;)) (where the summation converges strongly).

Proor. Since U,(v) is a rank 2 JBW*-triple containing u,,w, as two
orthogonal tripotents and U, (v) = (P, (u; +w,)+ P, (u, +w,))U,(v). Let

M = P(uy)Po(w;)U,(v)

-~

M = P,(w;)Py(u,)U,(v).
Then by (2.1) and (2.2),
Py +w)U,(0) =M@ M
Pyu; +w U (v) = Py(u )U,(v) @ Pr(w)U () @ Py(uy )P (wy)U, (v).
From the hypothesis, P, (u,)P;(w,)U,(v) = {0}, giving

Py(uy +wy)U () = Py(uy)Uy(v) @ Py(wy)U,4(v)
= Cul @ CWx.

Thus, U,(v) = Cu; ®Cw, ® M @ M.

Since M, M are orthogonal to w; and u,, respectively, they are of rank 1
(or 0). By the corollary of Case 1, they are the norm closed spans of maximal
colinear families of tripotents. By Proposition 2.1, every tripotent in M is
colinear to u, and every tripotent in M is colinear to w,. Thus there are
index sets I,J (with 1el nJ); and maximal colinear families {u;};¢;,
{W;}jes of tripotents, satisfying part (i) of the lemma.

Since #, and #, are Hilbert spaces spanned by {u;};c; and {w;};,,
part (iii) of the lemma follows from the lemma of Case 1.

For part (ii), it suffice to show that u; L w; for all (i, j)elxJ—{(1, 1)}
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By (1.11), {u;,u;,w;} e M. Since rank M = 1, if {u,u,w;} # 0, there is a
minimal tripotent ee M and a scalar A such that {u,u,w;} = de. We will
show (uy,u;,e) form a prequadrangle. It is known that u; T u;, and u; Le.

On the other hand, by (1.11),
e = Py(u)e+ Py(u)e = pu;+ Py (uy)e.

Since e = Py(u;)e, we have ee U, (u;), implying e T u; (by Proposition 2.1).
Thus (uy,u;,e) form a prequadrangle which can be completed with
f=2{uy,u,e}. By (1.11), feU,{®) nU,@,) nU,(w;), contradicting
Ui() nUy(uy) 0 Uy(wy) = {0}.

If u,,u, are two colinear minimal tripotents, then (u,+u2)/\/§ is a
tripotent and the map

T(uy,u) 1= P, <“‘j§“2> -P, <~—ﬁ“‘\;§‘2) +P, ("—‘%)

is an isometry on M, i.e., an isometric automorphism with T(u,u,)* = Id.
Straightforward calculation shows that T'(u,,u,) exchange u; with u,, and

(212) T(ul, uz) =1Id +Q(u1 +u2)2 —2D(u1 +u2, uy +u2),

which is exactly the colinear exchange map in [12, Section 1.1]. As will be
shown later, if u,,u, are two colinear elements from a rectangular or
sympletic grid, then roughly speaking T(u,,u,) will exchange two “rows” or
two “columns” of the grid.

ProOF OF THE PROPOSITION. Let u,; = v, u;, = uy, and u,; = i,. From the
above lemma, there are maximal colinear families of tripotents {u;,iel},
{uy;, jeJ} in U,(uy,) with 2eI S J and 1¢ 1 such that

(2.13) Py(uy,) = ZPZ(uil)+ Y Py(uy))

iel jelJ

where the summation converges strongly. Also (u;,u;;,u,;) form a pre-
quadrangle ; thus, define u;; = 2{u;y, uy 1, uy5}, (i, j) €I xJ.

Let T =1 u{1},J =J u {1}. By Proposition 2.1, u;; is a minimal tripotent
of U for any (i, j)e T xJ. We will show the family {u;;; (i, j)eIxJ} form a
rectangular grid. Properties (i) and (iii) of the definition of rectangular grid
follow from (1.11). To show (iii), ie., (u,uy,u; uy) form a quadrangle
(for i+ j and k #[), note that the four quadrangles (uj;,uyy, Usp Up),
(Wjy, uy sty ugy), (WU, Uags Uans uy) and (u;y, Uy, Uy, Uy) can be glued together
according to Proposition 1.10 to yield the quadrangle (uj,u;;, uy, ua). The
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process is suggested in the diagram below and is similar to the one in Case 2:

Uyy Uy Uun
Ujr U Uj
Uiy Uik Uy

For (i, j)e I x J, define the symmetries T'(u,,,u,;) and T(u,;, u;;) as in (2.12).
Straightforward calculations shows:
T(uyy,upj): ugg = Uy
Ut ™ — Uy k#1)
Upj = Uy
uy = —uy (£ 1,))
and
T(uyjoui): uyy = uy
uy = —uy (L#))
u;

ukj ind —uk_,- (k % l,i).

= Uy

By taking composition of the above maps if necessary, for each (i, j) e I x J we
can assume there is an isometric automorphism y such that y(u,;) = u;; and

Y(uy) = Tuy leJ—{j}
Ylug) = Tuy
Y(uy) = Tu; kel—{i}

Y(uy) = Tuy.

Since y is an automorphism, for each tripotent e, we have

P.w(e) = yPiew™' (k=0,1,2).

Thus, using (2.13) and that y is isometric, we have
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Py(u;) = Py(W(uyy)) = WPy (uy, )y~ !
= Y YPua )y + Y WPy (uy !

kel leJ

= Y Pa(ya))+ ¥ Pr(w(uy)

kel leJ

(2.14)

= Y Pyuy+ Y Py(uy).
kel—{i} leJ—{j}

Let p = Y juy. Since U,(p)+ U,(p) is the w*-closed span of
{U2 (), Ul(uii):ier}’

(2.14) implies U,(p)+U,(p) is the w*-closed span of {u;;(,j)elxJ}.
On the other hand, it is obvious that P,(u;;)U,(p) = {0}, and moreover from
(2.14) follows P, (u;;)Uq(p) = {0}. Thus, Po(u;;)Uo(p) = Uo(p) for arbitrary
i, j, proving Uy (p) is orthogonal to U,(p)+ U, (p). That is J(v) is the w*-closed
span of {u;; (i, j)e I x J}, and is a summand.

To show that J(v) is a Cartan factor of type 1, let H, K be Hilbert spaces
of appropriate dimensions, and {e;;; (i, j))€ I x J} be a system of matrix units
of #(H,K). The family {e;} is a rectangular grid. Let M, be the norm-
closed span of {e;;}. Then M, is a nuclear JB*-triple and M3* = #(H, K)
is a Cartan factor of type 1.

Let M, be the norm-closed span of {u;} and define a linear map
¢:M, > M, by ¢(u;;) = e;;. Then ¢ is a triple isomorphism and thus has an
extension to an isomorphism ¢:J(v) - M¥* by Lemma 1.14.

Case 5.

DEerINITION. A family F = {u;;i, je I} in a JBW*-triple is called a sympletic
grid if u; =0, u; are minimal tripotents with u;; = —u;; (for all distinct
i,jel)and

(i) u;; and u,, are colinear if they sharc an index and are orthogonal,
otherwise. ‘
(i) (uij wy, iy, uy;) form a quadrangle for pairwise distint i, j, k, I.
(ili) Nonvanishing triple products among elements of the the family are one
of the forms D(x)y or {x,y,z} where (x,y,z) form a prequadrangle.

Each Cartan factor of type 2 is the w*-closed span of a symplectic grid.

ProroSITION. Let v be a minimal tripotent in a JBW*-triple U such that
rank U,(v) = 2. If there is a minimal tripotent & orthogonal to v with
dim U,(v+70) = 6, then J(v) is a Cartan factor of type 2, and is a summand.

Prookr. Since U, (v + ) is a 6-dimensional spin factor, the corollary of Case 3
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implies U,(v) contains a quadrangle (u;s, U4, Uz4,U,3) consisting of minimal
tripotents, and dim U (v) n U,(u;3+u,4) = 4. Let J(u;3) be the w*-closed
ideal of U,(v) generated by u,;. By the proposition in Case 4, J(u,3) is
isomorphic to a Cartan factor of type 1, and is the norm-closed span of a
rectangular grid {u,;, u,;};<;, where I is some index set not containing {1, 2}.
Since J(u,3) is a summand of rank 2 in the rank 2 JBW*-triple U,(v), we
have U,(v) = J(u,3). Let u;, = v. The lemma of Case 1 implies:

(2.15) Py(uy;) = Z (P2(uy;)+ P (uz;)).
iel :
Let T=1 u{1,2}. For distinct i,jel, let u;y = —uy;, u; = —u,;. From the

definition of a rectangular grid, u,; L u,j, implying (u;;,u;,,u,;) form a
prequadrangle. Thus define

uU = 2{“,’2, Uiz, ulj} fOl‘ dlStht i, jE I
u; =0 foralliel.

We will show that {u;;;i, jel} form a symplectic grid. To show u;; = —uj
for i, jeT, it suffices to consider the cases i, jel. By Lemma 1.8, the two
quadrangles (uy;, u;p, ujp, uy;) and (u;j, Ui, U2, uy j) can be glued together along
the diagonal (u;,,u;;) to give the quadrangle (u,;, u;;, uj, —u;,), i€,

Uy = —Z{u,-z,u;z,uu} = —Uj.

The construction is described in the following diagram:

Uy

J
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Property (i) of the definition of symplectic grid can be verified easily with
(1.11). Property (iii) follows from (1.11) and the fact that any two distinct non-
zero elements of the family {u;;;i, j e I'} are either orthogonal or colinear mini-
mal tripotents. To verify (i), note that the four quadrangles (u;;, u, 2, uy j, u;;),
(Wi2, Uy 25 Uy Ur)y (Uie2s Uy2, Uy, Upg) @D (U2, U5, Uy j, Uy) can be glued together
according to Proposition 1.10 to yield the quadrangle (u;;, uy, uy, uy;). This
can be visualized in the following diagram:

Uys Uy Uy
Uiz ujj u;
Uy Uy j Uy

For each i,j in I with i # 1, j # 2, define the symmetries T(u,,,u,;) and
T(uyj, u;) as in (2.12). Straightforward calculation gives

T(uyz,upj): uye—~> —uye (k #2,j)
Uyj = —Uy;
Uy = —uy  (k #j),
and

T(uyjs W) U > — Ui (k #1)

Uy = — Uy
ukj - Uy (k % 1,1‘)‘

For distinct i, in T, by taking composition of the above maps if necessary, we
can assume there is an isometric automorphism y such that y(u,,) = u;; and

)= Tuy 1#2,)
Yuy;) = Tup
Y,) = Tu; k#F L1

Yuip) = tuy;
By the same reason as in the proof of the proposition in Case 4, we have

)= Paluy)+ P3(ua)
(216) Pl(“u) kez{,‘} Z(uk}) /Efg{]} 2Ui
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(in which the summations converge strongly). Let W be a maximal orthogonal
subset of {u;;i,jel} and p=13,.ye It follows from (2.16) that
U.(p)+ U,(p)is the w*-closed span of {u;;;i,j e I’} and moreover U,(p)+ U,(p)
is orthogonal to Uy(p). The detailed argument is the same as in Case 4.
Thus J(v) is the w*-closed span of u;; and is a summand.

To show that J(v) is a Cartan factor of type 2, let H be a Hilbert space
with an orthonormal basis {{},.; and a conjugation J defined by
J(Z4&) = ZX¢,. For i,jel, i < j, let a; =0 and a;; = e;—e;; where the e;;
are matrix units corresponding to the basis {£;}. The family {u;;;i,jel} is a
symplectic grid. Let M, be its norm-closed span. Then M, is a nuclear
JB*-triple, and moreover M%* is a Cartan factor of type 2.

Let M, be the norm-closed span of {u;}, and define a linear map
¢:M; - M, by ¢(u;;) = a;;. Obviously ¢ is a triple isomorphism. Thus, by
Lemma 1.14, it extends to an isomorphisnr ¢: J(v) - M**, proving that J(v)
is a Cartan factor of type 2.

Case 6. Throughout this case and Case 7 we will use the following notations
LetI ={0,1,2,3,4,5};1, = I—{i} for any ie [ ;and (i, j, k, |, m, n) denotes any
permutation of (0, 1,2,3,4,5). If ¢ is a permutation on I, then sign(¢p) = 1
or —1 depending on whether ¢ is even or odd.

DermviTioN. For any fixed iel, a family # = {u;uj,u,:j,k,nel;} is
called an exceptional grid of the first type if

(i) {up:j kel;} form a sympletic grid;
(ii) for any j,k, I s,t in I;, we have

uiTujk,uiJ_u,‘

u, L ug if ke{s t};
@1 T if ke {s,t};
Uy Tu, lfk %/I;

(iii) the nonvanishing products among elements of .# are of the form
D(x)y or {x,y,z} where (x, y,z) form a prequadrangle in a quadrangle
of one of the following three types (j, k,I,mel;):

(a) (ujkv ujh Umis umk)a

(b) (sign(@)u;, uj, Uy, Umn), where ¢ = (i, j,k, I, m, n),

©) (uj,uy, —uj, uy).

LEMMA. Let 7 = {u;,up,u,:j,k,nel;} be a set of minimal tripotents in a
JB*-triple such that

(i) {uj:j,kel;} is a sympletic grid,
(ii) w; T uy for all distinct j kel
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(iii) u, = sign(@)2{uj, Ui, U,y for any lel;, and ¢ = (i,j,k,I,mn) is a
permutation with j <k <m < n.

Then ¥ is an exceptional grid of the first type.

Proor. By (1.11) we have that all relations (2.17) are satisfied and .# is an
orthocolinear family of minimal tripotents. Therefore the nonvanishing
products of # are of the form D(x)y or {x,y,z} where (x,y,z) form a pre-
quadrangle.

If the quadrangle contains only elements of the form u; with j kel it
belongs to the symplectic grid and is of the form (a). If the quadrangle
contains u;, it is of the form (b). Otherwise, it must be of the form (c). Thus,
it remains to show that (b) and (c) are actually quadrangles in .#.

To show that (b) are quadrangles, we will use the following:

CraM. Let ¢ = (j,k,I,m,n) be any permutation on I;. If sign()u;, uj, thy, p,)
form a quadrangle and t is any permutation on the set {j,k,m,n}, then
(sign (T u;, Uiy Uty Uremymy) fOrm a quadrangle.

Proor oF CLAIM : Since every permutation is a product of transpositions, i.e.,
permutations that exchange only two elements of the set and leave the other
elements fixed, we can assume that t is a transposition. Moreover, if
exchanges k with j, or n with m, then the claim holds since u,; = —uj and
Uyy = —U,, Thus we can assume further that t exchanges j with m. By
Lemma 1.8, the two quadrangles (sign(@)u;, U, Uy, Upy) aNd (U, Ujks U jns Upmn)
can be glued together along the diagonal (uj, u,.,) to obtain the quadrangle
(—Sign (@), Up, Uy, Ujy). That is, (Sign(Te s, Usgjyeqrys s Urmpm) 1S @ quadrangle,
proving the claim. The diagram of this construction is

ujk

sign(o)u;

jn
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To show (c) form quadrangles: If ¢ = (i,k, [, j,m,n) and ¢' = (i, j, I, k,m n),
then sign(p) = —sign(¢’). Thus we have two quadrangles (sign(¢)u;, uy, 4, )
and

(— Sign((p)“i’ ujb Uy, umn) = (Sign((p)ub - ujla U, umn)

which can be glued together along the side (sign(¢)u;,u,,) according to
Proposition 1.10, to obtain the quadrangle (uj, u, —uj;, uy). The diagram of
the construction is

Upg sign(o)u; —Uj

uj u,,,,, Uy

ProposITION. Let v be a minimal tripotent in a JBW*-triple U. If there is a
tripotent ¥ orthogonal to v such that dim U,(v+7) = 8 and U,(v+7) # {0},
then J(v) is 16 dimensional and spanned by an exceptional grid of the first type.
Moreover, J(v) is isomorphic to a Cartan factor of type 5 and is a summand.

Proor. If v,,0; are orthogonal tripotents in U,(v) »n U,(#), then
dimU,(v) nU,(v;+3,) =6 and by Lemma 2.4, we may assume that
Ui(v, +7;) nU;(v) # 0. By the previous case, the ideal generated by v, in
U,(v) is isomorphic to a Cartan factor of type 2. Since rank U,(v) = 2 this
ideal and U, (v) must be isomorphic to C2, the 5 x 5 antisymmetric matrices.
Let {u;:j kely} be a sympletic grid spanning U, (v). Denote u, = v.

For any integer /€ l,, define

ul = Sign((p)z{ujk’ uOs umn}

where ¢ = (0, j, k,[,m,n) with j <k <m < n.

From Proposition 2.1, each u, is a minimal tripotent in U. By the above
Lemma, the family # = {ug, uj,u,:j,k,n€ly} is an exceptional grid of the
first type. To show J(v) = span.# and is a summand, let p = uy+u,. Since
uo T uy T u; for any three distinct indices i, j,k, any element of .# can be
excahnged with uy by an automorphism of U. Thus, for any f € #, we have

dim Ul(f) = dlm Ul(uo) = 10.

From (2.17) each element of # is colinear to exactly 10 other elements of the
grid, implying U, (f) € span #. By repeating the same argument in Case 4,
we have U,(p)+U,(p)=span# and is orthogonal to Uy(p). Thus
J(v) = span .# and is a summand.

Since M, (@), the 16 dimensional exceptional factor, satisfies the hypo-
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thesis of this proposition, it is spanned by an exceptional grid of the first type;
ie, J(v) and M, ,(0) are isomorphic.

Case 7. Let ¢ denote the sign + or — with the natural multiplication rule;
e, +—=—+4+=—, ——=+,... etc.

DefiNiTION. A family of tripotents 4 = {uf, u;;:i,jnel;e = L} is called
an exceptional grid of the second type if

(i) {uij}ijes is a 6x6 sympletic grid;

(i) for any iel and ¢ = %, the family {—euf,u,u,*:jknel;} is an
exceptional grid of the first type;

(iii) the quadrangles of the family % are those determined by parts (i) and
(ii) above or of the form

(2.18) W5, u; %, u %, up) for distinct j k,el;

(iv) the family ¥ is ortho-colinear, and therefore all nonvanishing products
among elements of ¥ are either of the form D(x)y, or {x, y,z} where
(x,y,z) form a prequadrangle.

PrROPOSITION. Let v be a minimal tripotent in JBW*-triple U. If there is
a minimal tripotent ¥ such that dim U,(v+7) = 10 and U(v+7) # {0}, then
J(v) is spanned by an exceptional grid of the second type, and is a summand.
Moreover J(v) is isomorphic to H4(0).

Proor. Let ug be a minimal tripotent in U,(v), J(ug) be the ideal in
U, (v) generated by ug. The same argument as in the Proposition of Case 6
shows that J(ug ) = U,(v), and is spanned by an exceptional grid of the
first type; namely, {ug,uj,u, :jk,nely}.

Let v = —ug and define

ul— = Sign((p)z{ujk’ —'u(;.v umn}

where ¢ = (0,j,k,m;n)and i <k <m < n.
(2.19) o 1= 2{uy, —ug,uj'},
where i€y, and j is some element in Iy N 1;.

Note that for i,lel,, u; and u; are also minimal tripotents of U; and
that the family {—ug,uy,u, : j,k,nely} is also an exceptional grid of the
first type by construction. Moreover, the definition of u;, in (2.19) does not
depend on the choice of j. To show this, let | be another element of
Io n1I; N1, Since {ug,uj,u, } is an exceptional grid of the first type,

(“;,“?,“ij,“u) = (“j+,“1+, —Uji, Uy;)
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is a quadrangle. Thus by Lemma 1.8, it can be glued to the quadrangle
(ui0» u;j, —ug ,u;) to obtain that

(i, Uy —Ug » —Ui") = (Uio, Uy, —Ug , U )

is a quadrangle, proving u;, = 2{uy, —ug,u;"}. The diagram of the con-
struction is as follows:

u,'j

Let ugo = 0, ug; = —u;o. We will show that the family
g = {u:’uij:ivj’nEI;e = i}

is an exceptional grid of the second type. Let i, j,k be arbitrary elements of I,.
From (1.11) follows that wu;o T uj if ie{j,k} and wio Luy if i¢{j.k}.
Moreover, if i,jk are pairwise distinct, we can glue the quadrangles
(40, Ui, —ug ,u;) and (uyo, Uyj, —Ug ,u; ) together according to Proposition
1.10 to obtain that (u;o, u;j, uyj, uyo) is a quadrangle. Thus, since the family
{uij}ijer, is @ 5x 5 symplectic grid, the family (u;;}; ;c; is a 6 x 6 symplectic
grid, proving (i).

As noted already, part (ii) holds if i = 0. For i # 0 we can apply (1.11) to
verify that uf T uy for all distinct j,k €I, Thus, because of the Lemma in
Case 6, it suffices to show that

(2.20) (sign @(— euf), uj, Uy, Upy)

are quadrangles for any ¢ = (i, j, k, [, m, n). The proof of this depends on the
fact that (2.18) are quadrangles; so we consider (2.18) first.
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Let ¢ = (0,1, j,k,I,m). Then we have two quadrangles ( —sign(@)ug , u;j, uy , Upm)
and (sign(@)ug , u;j, Uy, u;,), which can be glued along the diagonals (u;j, uy,)
according to Lemma 1.8 to obtain the quadrangle (ug,uq,ur,u)), for
arbitrary k # 0. Now, if j# 0 and j+# k, then the two quadrangles
(ug,uo,u;,ui") and (ug,uq,u;,u;) can be glued together according to
Proposition 1.10 to obtain the quadrangle (u;,u;, u;, ;" ); thus proving that
(2.18) are quadrangles for any distint j,kel.

Next we show that

(2.21) (ug, ui, ujo, u;;)

are quadrangles for any i € I and any &. From (2.19) we obtain the quadrangle
(ug, u;",ujo, u;;). Applying Proposition 1.10 to this and the quadrangle
(ug, ug , u; ,u;") from (2.18) we obtain the quadrangle (ug,u; ,ujo, u;;); thus
proving (2.21) are quadrangles.

Now we are ready to verify (2.10) are quadrangles. Since {—euf, uy, u,:
Jj, k,nely} are exceptional grids of the first type, elementary properties of
permutations imply that (2.10) are quadrangles if Oe {i,/}. Thus, it remains
to consider the cases when Oe {j,k,m,n}. By applying a transposition if
necessary we can assume that k = 0.

Let ¢ = (0,i,j,l,m,n) and ¢ = (i,j,0,,m,n). From (2.21) we obtain the
quadrangle (eu;, eup, u;;, ujo). Applying Proposition 1.10 to this and the
quadrangle (eup, u;j, u; °, —sign(o)u,,,), we obtain the quadrangle (euf, ujo, u; °,
—sign(o)u,,,). It is easy to verify that sign(c) = sign(g), implying (sign @(— eu?),
Ujo, U , Up,) is @ quadrangle for ¢ = (i, j,0,1,m,n). Thus (ii) is verified.

We have already verified that (2.18) are quadrangles. The remaining claim
of (iii) can be verified by inspection, using (i) and the relations (2.17). Part
(iv) follows from (i) and (ii). Therefore we have shown that % is an exceptional
grid of the second type and consists of minimal tripotents. Next, observe
that each element g in % is colinear to exactly 16 other elements of 4. Thus
an argument similar to the one in Case 6 finishes the proof of this proposition.

3. Application.

The first corollary of our Classification Theorem is the decomposition of a
JBW*-triple into atomic and nonatomic parts. This result was proved earlier
by Friedman and Russo, and the description of the atomic part was proven
by Horn.

CoROLLARY 3.1. Every JBW*-triple U can be decomposed into orthogonal
direct sum of two w*-closed ideals o/ and ¥, where o/ is a direct sum of
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Cartan factors, and is spanned by minimal tripotents; and .A~ has no minimal
tripotent.

Proor. Let {J;};c; be the set of distinct w*-closed ideals generated by
minimal tripotents of U. By Theorem 2.1, each of them is a Cartan factor
and a summand. Denote the orthogonal components of J; in U by J;. Let

a=@J , v=J-

iel iel

o/ and .4 are obviously orthogonal w*-closed ideals in U.

For each i e, let P; be the contractive projection from U to J; with kernel
Ji. Moreover, since their ranges, the ideals J; are mutually orthogonal,
Y i1 Pi(x) converges w* for each xe U. For jel,

mG—ZmuO:mm—men:m@pnm:q

implying x— Y ;Pi(x)e #. Thus U = & @ 4.

Recall that in our constructions, each Cartan factor other than those of
type 3 is spanned by a grid consisting of minimal tripotents. On the other
hand, the Cartan factors of type 3 are spanned by hermitian grids {u;;} with
u; minimal, and u;; not minimal for i # j. However, it is easy to verify that
such u;; (i # j) can be written as the sum of two minimal tripotents

g = S+ g+ ug;) 3 — u— ).
Thus o is the w*-closed span of the minimal tripotents.

The proof of the Gelfand-Naimark theorem below is similar to the original
one in [4] and is included for completeness.

Tueorem 3.2. (Gelfand-Naimark theorem). Every JB*-triple can be iso-
metrically embedded (as triple system) into a direct sum of Cartan factors.

Proor. Let M be a JB*-triple. Then its bidual M** is a JBW*-triple in
which M can be isometrically embedded [2, Theorems 1,1 and 2.1]. Denote
this embedding of M into M** by =n. Since M** is a JBW *-triple, it has a
decomposition into atomic and nonatomic parts: M** = o/ @ 4" as described
in Corollary 3.1 above. Denote the projection from M** onto .o with kernel
A by P. Let T=Pon:M — of. Obviously P is a triple homomorphism
and ||Tx|| £ |ix|l, Vx € M. We will show T is isometric.

Let x e M with ||x|| = 1. The set {p e M*: p(x) = 1 = ||¢||} is closed and
convex, hence contains an extreme point y. Elementary argument shows y
is also an extreme point of M}, the unit ball of M* Thus by [3, Propo-
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sition 4], there is a minimal tripotent e e M** such that y(e) =1 and
Y(z) = y(P,(e)(z)), Vze M**. In particular,
W(T(x)) = Y(Py(e)T(x)) = y(P;(e) e Pon(x))
= Y (Py(e)en(x)) = yY(n(x)) = y(x) = 1.
Thus || T(x)|| = 1.

Now, we obtain some properties of the spin factors following from their
construction in section 2. Let U be a Cartan factor of type 4; i.e.,, a spin
factor, and {u;, @i;, ug};c; be a spin grid spanning U (cf. Corollary, Case 3).
If a is any element of U, we will denote its components relative to the grid
by {a;, d;, ap}; that is, a = Zau;+ Gil;+ agu,. Recall that U has a conjugation:
(3.1) (Z(aiu;+§iﬁ;)+aou0)* = Z(diﬁ,»+il:,~u,~)+douo

and inner product

(3.2) <alby = Eab;+ab; +2aob,
and, the triple product is given by
(3.3) 2{a,b,c} = Lalb)c+<{c|bya—<alc*)b*

For any element a in U, its “determinant” is defined as
deta: Y ad;+ag.
iel
Note that deta = 3{ala*), and depends on the choice of the spin grid.

ProposiTioON 3.3. Ranka = 1 (i.e., a is a multiple of minimal tripotent) iff
deta = 0. In this case ||a|| = |lall,-

Proor. From (3.3) follows

Q(a)x = <alxpa—i{ala*)x*

for any x in U. Therefore, Q(a)U = Ca iff <ala*) = 0, implying ranka = 1
iff deta = 0.

Suppose <ala*y = 0. Then form (3.3) we have a® = ||a||3a. Therefore
llall> = lla®|l = llall3llall, and llal| = llall2.

LemMa 3.4. If a and b are nonzero orthogonal elements in a spin factor, then
b = Aa* for some A€C.

ProOF. Since a L b and rank of spin factor is 2, we have rank a = rank b = 1.
From (3.3) follows
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0 = {a,b,a} = <albya—3<{ala*yb* = (a|b)a.

Thus, <alb> = 0.
On the other hand,

= 2{a,a,b} = (ala)b+<{blada—{alb*)a*
implies b = (Calb*)/||al?*)a*.

Now we will decompose an arbitrary element a of U into a linear
combination of two orthogonal minimal tripotents. Because of Lemma 3.4,
any such decomposition is of the form a = t,x +t,x* for some minimal
tripotent x. This is equivalent to the following system of equations in terms
of the component of a and x,

a; = t;x;+t,%;
(3.4) a; =, X;+t,x; foriel
ap = t1Xg+1t; Xo
and
(3.5) detx =0
llxll> = 1.

Let s, = |t;},s; = |t;|. Then from (3.4) and (3.5) we get t,t, = deta.
Moreover
(3.6) st+s3 = llall3
515, = |detal, s, 25, 20,

which determine s,, s, uniquely.
If s, #s,, (3.4) has a unique solution

X; = fya;—t,d;)
i S%—S% ( 144 24§
1 -
%= —t,d;+ 1,4
i sf—sﬁ( 20 1 |)

1 -
Xo = 5— (t1ap — 24,
0 s%__s%(lo 20)

which also satisfy (3.5).

Therefore, by letting e = (t,/s,)x, f = (t5/s2)x*, we have a unique de-
composition of a: a = s;e+s,f with s,,s, as nonnegative reals; and e, f as
orthogonal minimal tripotents whose components are
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. 1 deta -
' Sf—S% ' Sy

8

- 1 deta _ -
3.7) é; = : (— a,+sla‘>
1 =52 Sy
. 1 s deta
= - - a
0 S% _sg 140 51 0
and

(3.8) fi==

1 deta _
f0= 2 2( s ao“5200>.

2

In summary, we have the following proposition.

PrOPOSITION 3.6. For each element a in U, there is a unique set of non-
negative real numbers {s,, s,} determined by (3.6), such that any spectral decom-
position of a has the form a = s,e+s,f, for some orthogonal minimal tripotents
e and f. Moreover, if s, # s,, then the tripotents e and f are unique, and are
given by (3.7) and (3.8) above. If s, = s, any solution of (3.4) and (3.5) will
give a decomposition.

The numbers s, and s, are called the singular values of a. Note that they
do not depend on the choice of the spin grid.

CoroLLARY 3.7. [la|| = max{s,,s,}.

Since U is isomorphic to a Hilbert space with equivalent norm, U can be
identified with its dual U* (as well as U,), and each functional on U is of
the form f(x) = {(x|f) for some element f in U. Using the one-to-one
correspondence between minimal tripotents and the extreme points of the
unit ball of U,, we obtain the following corollary from Proposition 3.6.

COROLLARY 3.8.
A1l = si+s2 = /IIfll2+2]det f]

where ||f||; denote its norm as a linear functional, and s,,s, are its singular
values. :

Moreover, if we identify U with a JBW*-algebra with u, 4+, as the identity,
then the states on U are identified with those elements f in U satisfying
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L+ 2det fl = f+], = 1

where f, and f, are the components of f relative to u,, i, .

Finally, from our construction follows

ProrosiTioN 3.9. Any Cartan factor either has a basis consisting of an
ortho-colinear family of tripotents or can be embedded as an invariant subspace
of a symmetry acting on a space spanned by an ortho-colinear family.

This follows immediately from the fact that a trangle can be embedded
into a quadrangle in a natural way.

REFERENCES

1. J. Arazy and Y. Friedman, Contractive projections on C, and C,, Mem. Amer. Math. Soc.

2. T

200 (1978).
Barton and R. Timoney, Weak*-continuity of Jordan triple products and its applications,
Math. Scand. 59 (1986), 177-191.

3. Y. Friedman and B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew.
Math. 356 (1985), 67-89.
4. Y. Friedman and B. Russo, The Gelfand-Naimark theorem for JB*-triples, Duke Math. J. 53
(1986), 139~-148.
5. Y. Friedman and B. Russo, Algébres d’opérateurs sans ordre: Solution due problme du pro-
Jjecteur contractif, C.R. Acad. Sci. Paris, Sér. I Math. 296 (1983), 293-296.
6. G. Horn, Klassifikation der JBW*-triple vom typ I, Ph.D. Dissertation, University of
Tibingen, 1984.
7. P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum
mechanical formalism, Ann. of Math. 35 (1934), 29-64.
8. W. Kaup, Uber die Klassifikation der symmetrischen hermitischen Mannigfaltigkeiten unend-
licher Dimension, I Math. Ann. 257 (1981), 463-486.
9. W. Kaup, A Riemann mapping theorem for bounded symmetric domain in complex Banach
space, Math. Z. 183 (1983), 503-529.
10. W. Kaup, Contractive projection on Jordan C*-algebras and generalizations, Math. Scand. 54
(1984), 95-100.
11. O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes, University of Clai-
fornia, Irvine, 1977.
12. K. McCrimmon and K. Meyberg, Coordination of Jordan triple systems, Comm. Algebra 9
(1981), 1495-1542.
13. K. McCrimmon, Compatible Peirce decompositions of Jordan triple system, Pacific J. Math.
103 (1982), 57-102.
14. K. Meyberg, Lectures on Algebras and Triple Systems, Lecture Notes, University of
Virginia, Charlottesville, 1972.
15. E. Neher, On Jordan triple systems with enough tripotents, preprint, University of Virginia,
Charlottesville, 1972.
16. E. Neher, Grids in Jordan triple systems, University of Ottawa, 1986.
T. DANG Y. FRIEDMAN
DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA
IRVINE, CA.92717 RIVERSIDE, CA.92521
USA. USA.



