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ISOMORPHISMS BETWEEN COMPLEXES
WITH APPLICATIONS TO
THE HOMOLOGICAL THEORY OF MODULES

HANS-BJORN FOXBY

In a category of modules over a ring the tensor product functor and the
homomorphism functor are connected via a number of functorial morphisms.
The corresponding morphisms between the derived functors of these functors
are isomorphisms in suitable subcategories of the derived category of the
category of modules. The aim of this paper is to show some applications of
these isomorphisms to some problems of homological nature in the theory of
modules over Noetherian rings.

One application is to the theory of finitistic dimensions of Noetherian rings.
Recall the following result (due to Gruson and Raynaud [7] and Jensen [12]):
If a module over a d-dimensional Noetherian commutative ring is of finite flat
dimension (= Tor-dimension), then its projective dimension is at most d. The
proof given here is based on a study of the vanishing of the cohomology of the
complex RHom (X, Y) where X and Y are bounded complexes of flat modules.
This proof seems to be of a completely different nature from that of the original
proof.

Another application is to Poincaré series. For a finitely generated module M
over a local ring 4 with residue field k consider the two power series PM(1)
=Y, B, (M)t and IM(1)=3, i (M)t* where B,(M) and p' (M) are the dimensions
of the k-vectorspaces Tor, (k, M) and Ext' (k, M), respectively. It is proved that
these power series are connected via a number of formulas. One of them is

™M@ = *OPY™Y)

which holds for a finitely generated module M of finite projective dimension.
The main result of the last part of the paper follows easily from this formula,
and states that the ring 4 is a Gorénstein ring, if there exists a non-zero finitely
generated module of both finite injective and projective dimension.

The paper is closed by a result that shows the connection between the
Intersection conjecture (of Peskine’s and Szpiro’s) and the notation of infimum
of complex used in the first part of the paper.

I take this opportunity to thank Anders Thorup for his stimulation and
helpful discussions concerning this material.

Received May 30, 1976.
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1. The isomorphisms.

In this first section of the paper we recall some of the properties of the
functors *® and RHom in the derived category of the category of modules
over the ring A. Here, and in all that follows, the ring 4 is assumed to be
Noetherian, commutative and with a multiplicative identity. Hartshorne’s
notes [8] serve as a basic reference in the discussions that follow. We shall
study complexes of A-modules:

Lo Xl X s XML,

here simply denoted by X. Let K denote the triangulated category whose
objects are complexes of A-modules and whose morphisms are homotopy
equivalence classes of A-homomorphisms of complexes (the A-homo-
morphisms of complexes are supposed to commute with the differentials of
the complexes), cf. [8, p. 25]. Let D be the derived category of the category of
A-modules, that is, the localization of K with respect to the multiplicative
system consisting of all quasi-isomorphisms of complexes (cf. [8, p. 37]). Let
D*, D™, and D® denote the full subcategories of D whose objects are complexes
bounded below, bounded above, and bounded on both sides, respectively.
Finally the full subcategory of D (respectively of D*, D™, or D) consisting of
complexes with finitely generated cohomology modules is denoted by Dy, (and
respectively by Dy, Dfg, D};).

The category of A-modules will be considered as a subcategory of D by
viewing a module M as a complex X with X°=M and X'=0for /+0. Thisis a
full subcategory of D (cf. [8, p. 40]).

The functor Hom: K°°? x K — K has a right derived functor RHom: (D™)°P
x D* — D.Thatis, if X isin D~ and Y is in D*, and if either X is a complex
of projective modules or if Y is a complex of injective modules, then
RHom (X, Y)~Hom (X, Y) (as complexes in D). In this situation we have
H'(RHom (X, Y))=Morg (X, Y[I]) where Y[I] is “the complex Y shifted [ steps
to the left”, that is Y[[]'=Y'*". For details consult [8, Chapter I § 6].

The left derived functor of the functor ®: K x K — K will be denoted
L®: D xD~ — D. If X and Y are complexes in D~ and if one of them
consists only of flat modules, then X!® Y~ X®Y (in D).

The four fundamental isomorphisms are collected in the following result.

ProrosiTioN 1.1. Let X, Y, and Z be complexes. Then there exist four
Junctorial isomorphisms:

M) X'(r'@z2)2(X*®@Y)'®2Z for X, Y, and Z all in D"
(2) RHom (X,RHom (Y, Z))~RHom (X'® Y,Z) for Xand Yin D™ and Z
inD*.
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(3) X'*®@RHom (Y, Z)=RHom (RHom (X, Y), Z) for X in D and Y and Z in
DP provided Z is isomorphic (in D) to a bounded complex of injective modules.

(4) RHom (X, Y)'!® Z~RHom (X, Y*®2Z) for X in Di; and Y and Z in D
provided Z is isomorphic (in D) to a bounded complex of flat modules.

Proor. (1) and (4) can be found in [8, p. 112].
(2) follows directly from the functorial isomorphism of complexes:

Hom (X,Hom (Y, Z)) * Hom (X ® Y, Z)

for complexes X, Y, and Z.
(3) Since there is a functorial homomorphism of complexes:

X ®@Hom (X, Z) » Hom (Hom (X, Y), Z)

for X in D™ and Y and Z in DP, there exists a functorial morphism:
X'®RHom (Y, Z) - RHom (RHom (X, Y),Z). This is an isomorphism if
X=A and Y,Z e D®. The functors ——"®RHom(Y, Z) and RHom (RHom
(—,Y),Z) are both way-out left, the latter because Z is isomorphic to a
bounded complex of injective modules, see [8, Chapter I, Proposition 7.6, p.

80]. Now by a version of the lemma on way-out functors [8, p. 69 we get the
desired isomorphism.

Now we recall some facts about dualizing complexes. In order to facilitate
the discussion that follows, we assume that the ring 4 is a homomorphic image
of a Gorenstein ring of finite Krull-dimension, but everything that we will state
here holds for general dualizing complexes as well, cf. [8]. In fact there is a
question to be asked: Is each (local) ring that admits a dualizing complex a
homomorphic image of some Gorenstein (local) ring? If the local ring 4 is
Cohen-Macaulay and if 4 has a dualizing complex, then this dualizing
complex is isomorphic to a module, say €, and it turns out that any
commutative extension of A by Q is a Gorenstein ring. This has been proved
by Fossum in [4].

In the rest of this section of the paper we assume that A4 is a homomorphic
image of a Gorenstein ring of finite Krull-dimension, say 4= R/t, where R is an
n-dimensional Gorenstein ring. Let Q be the minimal injective resolution of R
(as an R-module) and write I, (or just I) for Homg (4,Q). Since Q'=
11 Eg(R/q) where the sum is taken over all prime ideals q in R of height [ (sce
Bass [3]) we have

I'= 11 Eq4/m,
ap)=1
where, for a prime ideal p, the notation d(p) denotes the height of the (unique)
prime ideal q in R with g/r=p. Therefore I is a bounded complex of injective
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A-modules and each cohomology module H'(I)=Extk (4,R) is finitely
generated (so [ € D}’g). Since the canonical morphism A — RHom (I,]) is an
isomorphism, the functor RHom (RHom (—, I), I) is isomorphic to the identity
functor on D¢ (by Proposition 1.1. (3)) and I is said to be a dualizing complex,
see p. 258 of [8].

The two natural isomorphisms in the next result follow from Proposition
1.1. (3) and (4).

CoroLLARY 1.2. There exist two functorial isomorphisms involving the
dualizing complex 1.

(a) If X is isomorphic to a bounded complex of injective modules, then
X~I*®RHom (I, X).

(b) If X is isomorphic to a bounded complex of flat modules, then
X ~RHom (I,1'® X).

Note finally that for each prime ideal p in A the localized complex I, is a
dualizing complex for the local ring A,. If q is the prime ideal in R with g/r=p
then I, =Homg_ (4p, Q)

2. The infimum and the supremum of a complex.

In this section we study what we call the infimum and the supremum of a
complex, denoted and defined by, respectively:

i(X) = inf{l | H'(X)*0}
and
s(X) = sup{l| H'(X)+0}

with the usual conventions that if X is a trivial complex (that is, X is acyclic, or
in other words X is isomorphic to the zero complex) then i(X)=oco and s(X)=
—00. Note that if i(X)> — oo then X is isomorphic to a complex, say J, of
injective modules such that J'=0 for I <i(X). Similarly if s(X)<oo then X is
isomorphic to a complex, say F, of free (or projective, or just flat) modules such
that F'=0 for I>s(X). Using these facts it is easy to prove the following simple
but useful lemma.

LemMa 2.1. For the non-trivial complexes X and Y we have the following two
inequalities:
W) IfXisin D™ and Yis in D", then

i(RHom (X,Y)) = —s(X)+i(Y).

Furthermore, if s=s(X) and i=i(Y), then
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H™**'(RHom (X, Y)) = Hom (H*(X), H'(Y)) .
(2) If X and Y are in D™, then
sS(X'®Y) £ s(X)+s(Y).

Furthermore, if s=s(X) and t=s(Y), then

H*Y(X'QY) = HS(X)QH!(Y).

ProoF. (1). We may assume that Y is a complex of injective modules and
that X'=0 for I>s and Y'=0 for I<i. Then H™**(RHom (X,Y))
=Morg (X[s], Y[i]) and this module is isomorphic to Hom (H*(X), H'(Y)).

The proof of (2) is even easier.

ProrposiTioN 2.2. Let X in D}g and Y in D* be non-trivial complexes, and
assume that Supp H'(Y)< U, Supp H'(X) where i=i(Y). Then

i(RHom (X, Y)) £ —i(X)+i(Y).

Proor. Choose p in Ass H(Y) and let B denote the local ring A,. By
hypothesis X is a non-trivial complex, so s(X,)2i(X,)2i(X). Since X € D,
we have an isomorphism:

RHom, (X,Y), = RHomg (X, Y,)

(both sides are contra-variant way-out right functors in X), and hence
i(RHomg (X,, Y,)=i(RHom (X, Y)). For s=s(X,) the B-module H*(X,)
(which is  H°(X),) is finitely generated. ~Hence we have
Homp (H*(X,), H'(Y,))+0 since pB is in AssgH'(Y,). This gives
i(RHomg (X, )= —s+i, by part (1) of the Lemma, and we are done.

COROLLARY 2.3. Assume that A is a homomorphic image of a Gorenstein ring of

finite Krull-dimension (so A admits a dualizing complex I). Let the complex X be
isomorphic to a bounded complex of flat modules. Then

iI'®X) 2 i) +i(X).

Proor. From Corollary 1.2.(b) and the above Proposition we get i(X)
=i(RHom (I,I*"®X)) £ —i(D+i(l"®X).

The following technical result turns also out to be useful.

LEMMA 2.4. Suppose the complex X is in D° and the complex Y is in D*. Then
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s(RHom (X, Y)) £ sup s(RHom (H'(X), Y[1]))

Proor. For any number I let X2' denote the truncated complex
20505 (X/Im (X' - X)) - XM X2,
Note that we have a triangle in D

X§l+l
o N
H'(X)[-1]— x*

(cf. [8, p. 70]).

Suppose that the supremum on the right hand side is at most ¢. Since X =
X 2! for all I small enough we are required to prove that s(RHom (X2',Y))<t¢
for all . This will be done by descending induction on I. For I>s(X) X' is
trivial, so assume that s(RHom (X2'*1,Y))<t. From the above triangle we
obtain another one

RHom (H'(X), Y[1])
H N
RHom (X2'*1)Y) — RHom (X2.Y)

and from this triangle we get s(RHom (X2',Y))<t as desired.

ReMARk 2.5. From [3] it follows that i(I)=htgr when A=R/r where R is
Gorenstein. Note also i(I,)=d(p)—ht,p for a prime ideal p in 4.

Now we are ready for the main result of this section.

THEOREM 2.6. Assume that A is a homomorphic image of a Gorenstein ring of
finite Krull-dimension. Let both X and Y be isomorphic to bounded complexes of
flat modules. Then

s(RHom (X, Y)) £ —i(X)+s(Y)+dimA

Proor. The notation will be as in the end of section 1. In particular
n=dimR. Let i=i(X), s=s(Y), and d=dim A.

Note first of all that RHom (X, Y)~RHom (X*®1I, I*® Y) by Corollary
1.2.(b) and Proposition 1.1.(2). Then choose Z in D* isomorphic to X @I
such that Z'=0 for I<i+i(I) (this is possible by Corollary 2.3). Choose also a
complex of flat modules P e D® isomorphic to Y such that P'=0 for /> s. Here
I®P is a complex of injective modules, IQP=I*®Y, and (I®P)'=0 for I>
s+n. Whence we get Hom (Z,I®QP)'=0 for I> —i+s+ (n—i(l)). Therefore
s(RHom (X, Y))=s(Hom (Z,I®P))< —i+s+d as desired in the (important)
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case where d=n—i(I) (e.g. if 4 is local, cf. the Remark preceding the Theorem).

The proof in the general case is more complicated. Let e be the smallest of
the numbers s—n and inf {/ ‘ P'+0}, and let F be a complex of free modules
such that F=Y and F'=0 for I>s. Since iM@F)=i(M®P)=e for all
modules M, we have

Tor,(M,N) =0

for >0 and N=F¢/Im (F¢~! — F¢), so F2¢is a complex of flat modules (one
flat module and s—e free modules). Since J=I® (FZ¢)x1 L® Y, we have

RHom (X,Y) ~ Hom (Z,J) .

Now assume s(RHom (X, Y))> —i+s+d and we seek a contradiction. By
Lemma 2.4 there exist numbers p and I, with [> —i+s+d, such that
Hom (H?(Z),J?*")40. So it is possible to pick a prime ideal p in both
Supp HP(Z) and AssJP*!, Also

p 2 i(Z,) 2 il +i(X,) = d(p)~htp+i

by Corollary 2.3 and Remark 2.5. Hence d(p)<p—i+d.
From this it follows that

e<s—n=<dp)+s—n S p—i+s+d—n < p+l—-n

and so

JPH = ]n_[ ITQFr*i-a,
q=p+l-s
Since p € AssJ?*! we get p € Ass (I9® FP*!~9) for some g2 p+[—s and hence
p € AssI? that is d(p)=q=p+1—s>p—i+d. This contradicts the fact that
d(p)<p—i+d as proved above, and we are done with the proof of the
Theorem.

3. Flat dimension and projective dimension.

In this section we will apply the preceding Theorem to the homological
dimension theory of a module, but let us first fix the notation.
For an A-module M set

id4 M =the injective dimension of M,
pd4 M =the projective (or homological) dimension of M, and
fd 4 M =the flat (or weak homological) dimension of M.

The corresponding finitistic dimensions of the ring will be denoted as
follows.
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FID (A4)=the finitistic injective dimension,
FPD (A4)=the finitistic projective dimension, and
FFD (A)=the finitistic flat dimension

(and each of these is the supremum of respectively id4 M, pd, M, and fd4, M,
when M in each case runs through the 4-modules of finite injective, projective
and flat dimensions, respectively).

These finitistic dimensions have been studied by Auslander and Buchsbaum,
see [1].

THEOREM 3.1. (Auslander and Buchsbaum) The following equalities hold:

FID (4) = FFD(4) = sup depth4,.
peSpec A
In particular, dim A — 1< FFD (A)<dim A, and for A local FFD (4)=dim A
if and only if A is Cohen—Macaulay.

In 1962 Bass constructed for each integer d <dim A an A-module M with
pd4 M =d, see [2], and hence FPD (4)=dim A. It is easy to see that FPD (A4)
=dim 4 if A is Gorenstein. In fact, Bass stated that he knew of no ring with
strict inequality. The problem whether such a ring could exist was solved ten
years later by Gruson and Raynaud (see [7]).

THEOREM 3.2. (Bass, Gruson and Raynaud) Let A be a ring, then

FPD (4) = dim 4 .

In the following result (see Jensen [12]) the ring R need not be Noetherian
(nor commutative).

ProrosiTION 3.3. (Jensen). Let N be a flat (left) R-module and suppose (left-)
FPD (R)<o00. Then pdg M < c0.

As an immediate concequence of these two results we obtain the following
corollary.

CoroLLARY 3.4. If fd 4 M <00, then pd4 M <dim A.

Note that Theorem 3.2 and Proposition 3.3 (in the (commutative)
Noetherian case) follow directly from this Corollary. Also the inequality
FFD (4)<dim 4 follows of course from the Corollary.

We will now give an alternative proof of this Corollary in the case where 4 is
a homomorphic image of a Gorenstein ring of finite Krull-dimension, e.g. if 4
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is an essentially finitely generated algebra over a field, or if A is a complete
local ring. In fact, in their proof of Theorem 3.2 Gruson and Raynaud first

prove the result for complete local rings and then deduce the general result
from this special one.

ProoF oF CoroLLARY 3.4. Let M be a module with fd, M <oo and write d
=dim A. In the exact sequence

O->N—->F;,—»...>F,-M->0

each F; is assumed to be a free module. Let K=Coker (N — F,). From
Theorem 2.6 it follows that s(RHom (M,N))<d, and hence Ext!(K,N)
=Ext?*! (M,N)=0, so K is projective, that is pd, M <d.

4. Poincare series.

In this section A is assumed to be local with maximal ideal m and residue
field k=A4/m. We will give some formulas connecting minimal injective
resolutions with minimal free resolutions. We start with an illustrative
example.

ExampLE. Let M be a finitely generated A-module of finite injective
dimension. In the minimal injective resolution of M:

0-M->E S>E' -5 ... 5E' 50

each of the injective modules E’ contains a certain number, say u'(M), of copies

of E,(k). (See Bass [3] where the equalities d=idy M =depth4 are
demonstrated.)

Now assume that 4 is a Gorenstein ring of dimension d. Then it is well-
known that pd, M is also finite. In fact, in the minimal free resolution of M:

0O->F,»> ... F >F,>M-0
the free module F; has rank w=i(M), cf. [5].

For a vector space V over the field k the dimension of V is denoted by [V:k].
Let Z((t)) denote the ring of formal Laurent series with integral coefficients
(that is formal sums 3,5 sa,t' where d and all g, are integers.)

DeriniTIONS. (1) For X in Df‘; and [ in Z let

u(X) = [H'(RHom, (K, X)):k] and
@ =Y #Xr e Z() -
1
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(2) For X in Dy and ! in Z let
Bi(X) = [H™'(k"®,4X):k] and
PX()) = ¥ B(X) € Z((1) -
1

ReMARK. For a module M this definition of u'(M) coincides with the one in
Bass [3], and #,(M) is the Ith Betti-number, so PM(t) is just the Poincaré series

for M.

THEOREM 4.1. Let X be in Dy and Y be in Dy,
(@ If Xe D}’g then

W(RHom (X, Y)) = ¥ B,(X) s 2(Y)
for all I. And therefore ’
REm ) = PX()17(r) .
(b) If Y is isomorphic to a bounded complex of injective modules, then
Bi(RHom (X, Y)) = 3 u?(X) u*~!(Y)
)

for all I. And therefore
PRHOm (X, Y)(t) — Ix(l) IY(t-l) .

THEOREM 4.2. Let X and Y be in Dg,.
(@) If X € D}, then

ﬂt(XL® Y) = Z Bp(X)Bl—p(Y)
) 4
for all I, and so
PX®Y (1) = PX(t) PY(1).
(b) If Y is isomorphic to a bounded complex of flat modules, then
HEXEQY) = ¥ wP(X)B,-i(Y)
4
Jor all |, and so
XY = X PY( Y.

Note that all the four summations of integers in these two theorems are

finite.
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Proors. 4.1. (a). If we let V=RHom, (k, RHom, (X, Y)), then
V =~ RHom, (k'® , X, Y)

by Proposition 1.1.(2). Now k'® X~ (*k'®,X)®,k (in D(k), the derived
category of the category of vector spaces over k) and hence

V = RHom, ((k'® 4 X)®,k, Y) = RHom, (k*® ,X, RHom, (k, Y))

by a version of Proposition 1.1(2).
Each complex Z in D(k) is isomorphic to its cohomology complex H(Z)
(since each short-exact sequence of vector spaces splits). Therefore

V = Hom, (H(k"® 4X), H(RHom, (k, Y)),

and this is a complex with zero differentials. Whence

H'(V) = Hom, (H (k*® , X), H(RHom, (k, Y)))'

= [] Hom, (H ?(k*® 4 X), H'"?(RHom, (k, Y)))
4
and we are done.
The proof of 4.1.(b) is very similar. We get
k'® ,RHom, (X, Y) = RHom, (RHom, (k, X), Y)

RHom, (RHom, (k, X), RHom, (k, Y)) ,

I

by Proposition 1.1.
Also 4.2.(a) and (b) follow from Proposition 1.1.

Now we are going to apply these results to modules. If we let X =4 and
Y=N we get the following Corollary.

CoROLLARY 4.3. Let N be a finitely generated module.

(1) Ifidy N <oo then PN(t)y=14(t)IN(t™Y).
(2) If pd4 N <oo then IN(t)=I4(t) PN (t71).

That formulas like these should hold was suggested by Birger Iversen.

It is well-known that the ring A is Gorenstein if and only if the class of
finitely generated modules of finite injective dimension coincides with the class
of finitely generated modules of finite projective dimension. The next result
shows that: if there is a non-zero module in the intersection of these two
classes, then A is Gorenstein. Herzog [9] has proved this if the module N in the
intersection satisfies pd4 N <3 and both A and N are Coher—-Macaulay.
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COROLLARY 4.4. If there exists a finitely generated non-zero module N such
that both id4 N and pd, N are finite, then the ring A is a Gorenstein ring.

Proor. Let d=depthA. Then d=id4N and d=pdyN (cf. [3]). From
Corollary 4.3 we get
0 = B(N) = g(Ar°(N)+... +p* " (A p'(N) for I>pd,N .

That is, u'(4) ' "'(N)=0 for I<i<I+d. In particular y'*?(4)p*(N)=0. But
u(N)#0 (see Bass [3]), so u'*%(4)=0 for all I>pd, N. Hence we have proved
that A is Gorenstein (cf. again Bass [3]).

COROLLARY 4.5. Assume that A is a d-dimensional Cohen—Macaulay local ring
that is a homomorphic image of a Gorenstein local ring. Let Q be the dualizing
module, and let C, M, and N be finitely generated non-zero modules such that C
is Cohen—Macaulay of grade g, pd4 M <00, and id4, N < 00.

(@) If g=0 (that is depth C=d), then
MmN = PRIV (),
PR CENG) = 1991V,
PC®M () = PC(t) PM(1), and
1®M@y = I PM(t7Y) .
(b) For all |
W (Ext? (C,Q) = B4,-4a(C) and
Bi(Ext? (C,Q)) = u'**79(C)
(c) For all l
B,(Hom (,N)) = u*"YN) and
QM) = B, (M) .

Most of these formulas are known from Herzog and Kunz [10] and [5].
Proor. See e.g. [6, Lemma 3 (1) and (0)] and [5, Lemma 3.3].

COROLLARY 4.6. For the finitely generated non-zero modules M and N let
s=depth M, d=depth A and assume id4 N <00. Then

Bo(Ext?™* (M, N)) = p*(M) p*(N) .
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Proor. We have s(k'® ,RHom (M, N))=s(RHom (M, N))=d —s, and hence
B,-o(RHom (M, N)) = B,(Ext’™* (M, N))

by Lemma 2.1. Therefore the desired assertion follows from Theorem 4.1(6).

CoroLLARY 4.7. For the finitely generated non-zero modules M and N let
g = inf{l | Ext'(M,N)*0}

(so g is the maximal length of an N-regular sequence in the annihilator of M).
Then

10 (Ext? (M, N)) = Bo(M)p?(N) .

Proor. By Lemma 2.1 (1) we have i(RHom (k,RHom (M,N)))=g and
u(RHom (M, N))= p°(Ext? (M, N)). Hence we are done by Theorem 4.1 (a).

We close this section with a corollary that follows directly from Corollary
43. (2).

CoroLLARY 4.8. Let N be a finitely generated non-zero module of projective
dimension p (<00). Then

wP(N) = 1 (4) B,(N)
where s=depth A.

S. Connection to the Intersection conjecture.
For a finitely generated modules M and B over the local ring A the
Intersection conjecture states:

This conjecture holds when the ring A is of equicharacteristic, see Peskine and
Szpiro [14] and Hochster [11], but also for general rings if M satisfies special
conditions (e.g. pdy M <2 or grade, M <1).

In the following we will assume that B is cyclic, say B=A/a (and this
restriction costs no loss of generality). Write Iz=RHomg (B, R), that is, I
denotes the dualizing complex for the ring B.

ResuLt. If pd4 M <00 and dim, (B® 4M)=0 then
dimB—-pd,M = i(Ig'®@ M)—i(y).

Math. Scand. 40 - 2
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Proor. Since pd4 M <co we have
) RHomg (Ip, Iz"® M) = B*"® M

by (a version of) Proposition 1.1.(4). Note that s=s(Ig)=i(Iz)+dimB
—depth B (cf. Remark 2.5) and that

Hom (H*(I), H'(Iz"® 4M)) + 0

for I=i(Iz“® 4 M), since dim H'(Iz"® 4, M) <0 for all i. Therefore the infimum
of the left hand side of (0) is

(L) —s+1 = i(Ig*® 4M)—i(I5) —dim B+depth B .
The infimum of the right hand side of (0) is:
(R) i(B*®4M) = —sup{j| Tor} (B,M)+0}

—pdy M +depth B .

Here the last equality follows easily by induction on depth B using that
dim Tor{ (B, M) <0 for all i.
The assertion of the Result now follows by comparing (L) and (R).

Since the Result states that the Intersection conjecture holds if and only if
ilg)Zillg*® 4 M) we are lead to the question.

QuesTioN. Do we for all complexes X in D}’g and all finitely generated non-
zero modules M with pd, M < oo have

i(X) 2 iX'®,M)?

It should be noted that there is an affirmative answer in the following two
very special cases:

1°. pd4 M <2. The proof in this case uses however, that such a module M is
Tor-rigid provided grade, M = 1, that is, for all finitely generated modules N
we have

Tor, (M,N) = 0 = Tor, (M,N) = 0,

cf. [14, Proposition (1.4)].

2°, grade, M<1. Here is used that the so-called Strong Intersection
conjecture holds: dimB<grade,M if pdjM<oo and dim (B®,M)=0.
(Namely: If grade, M =1 and pd, M < o0, there exists a non zero divisor a in 4
such that Supp (4/(a)) < Supp M (cf. MacRae [13]). Now dim (B/aB)=0 gives
dimB<1)
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