UNIQUENESS THEOREMS FOR
MEROMORPHIC FUNCTIONS

H. S. GOPALAKRISHNA and SUBHAS S. BHOOSNUMATH*

Abstract.

If f is a transcendental meromorphic function, a is an extended complex number and k is a positive integer or ∞, let

$$E(a, k, f) = \{z \in \mathbb{C} \mid z \text{ is a zero of } f-a \text{ of order } \leq k\}$$

where \mathbb{C} is the complex plane. If f_1, f_2 are distinct meromorphic functions and if there exist distinct extended complex numbers a_1, \ldots, a_m such that $E(a_i, k_i, f_1) = E(a_i, k_i, f_2)$ for $i = 1, 2, \ldots, n$ where each k_i is a positive integer or ∞ with $k_1 \geq k_2 \geq \ldots \geq k_m$, then it is shown that

$$\sum_{i=2}^{m} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} \leq 2.$$

Several consequences are deduced which include a theorem of Nevanlinna and the following result:

If the set of simple zeros of $f_1 - a$ coincides with the set of simple zeros of $f_2 - a$ for seven distinct values of a in the extended complex plane, the $f_1 \equiv f_2$.

1.

We denote by \mathbb{C} the set of all finite complex numbers and by $\bar{\mathbb{C}}$ the extended complex plane consisting of all (finite) complex numbers and ∞. By a meromorphic function we mean a transcendental meromorphic function in the plane. We use the usual notations of the Nevanlinna theory of meromorphic functions as explained in [1] and [3].

If f is a meromorphic function, then as in [1], we denote by $S(r, f)$ any quantity satisfying

Received August 12, 1975.

* Research of the second author is supported by the Department of Atomic Energy, Bombay.
as \(r \to \infty \), through all values if \(f \) is of finite order and outside a set of finite linear measure if \(f \) is of infinite order.

If \(f \) is a meromorphic function, \(a \in \mathbb{C} \) and \(k \) is a positive integer or \(\infty \), we denote by \(\bar{n}_k(r,a,f) \) the number of distinct zeros of order \(\leq k \) of \(f-a \) in \(|z| \leq r \) (each zero of order \(\leq k \) is counted only once irrespective of its multiplicity). Thus, in particular, \(\bar{n}_1(r,a,f) \) is the number of simple zeros and \(\bar{n}_2(r,a,f) \) the number of distinct simple and double zeros of \(f-a \) in \(|z| \leq r \). Also \(\bar{n}_\infty (r,a,f) = \bar{n}(r,a,f) \). \(\bar{N}_k(r,a,f) \) is defined in terms of \(\bar{n}_k(r,a,f) \) in the obvious way. Clearly

\[
\bar{n}(r,a,f) \leq \frac{1}{k+1}\{k\bar{n}_k(r,a,f) + n(r,a,f)\}
\]

so that

\[
\bar{N}(r,a,f) \leq \frac{1}{k+1}\{k\bar{N}_k(r,a,f) + N(r,a,f)\}.
\]

We also denote by \(E(a,k,f) \) the subset of \(C \) consisting of all zeros of order \(\leq k \) of \(f-a \). That is

\[
E(a,k,f) = \{ z \in \mathbb{C} \mid z \text{ is a zero of } f-a \text{ of order } \leq k \}.
\]

In particular, \(E(a,\infty,f) = \{ z \in \mathbb{C} \mid f(z) = a \} \) and we denote it simply by \(E(a,f) \).

Nevanlinna proved the following theorem [2, page 48 and 1, Theorem 2.6]

Theorem A. If \(f_1, f_2 \) are meromorphic functions and if \(E(a,f_1) = E(a,f_2) \) for five distinct values of \(a \) in \(\mathbb{C} \), then \(f_1 \equiv f_2 \).

In this paper we obtain a general result of which Theorem A appears as a particular case.

Let \(f_1, f_2 \) be meromorphic functions. If \(a \in \mathbb{C} \) and \(k \) is a positive integer or \(\infty \), then for \(r > 0 \), we denote by \(n_0^{(k)}(r,a) \) the number of common zeros of order \(\leq k \) of \(f_1-a \) and \(f_2-a \) in \(|z| \leq r \), each zero of order \(\leq k \) being counted only once irrespective of its multiplicity. In particular \(n_0^{(\infty)}(r,a) \) is the number of common zeros of \(f_1-a \) and \(f_2-a \) in \(|z| \leq r \) (all zeros are considered) and we also denote it simply by \(n_0(r,a) \). As usual, we set

\[
N_0^{(k)}(r,a) = \int_0^r \frac{n_0^{(k)}(r,a) - n_0^{(k)}(0,a)}{t} dt + n_0^{(k)}(0,a) \log r.
\]

We also define

\[
\bar{N}_1^{(k)}(r,a) = \bar{N}_k(r,a,f_1) + \bar{N}_k(r,a,f_2) - 2N_0^{(k)}(r,a)
\]

and write \(\bar{N}_{1,2}(r,a) \) for \(\bar{N}_1^{(\infty)}(r,a) \).
Our main result is the following

Theorem 1. Let f_1, f_2 be distinct meromorphic functions (that is, $f_1 \not\equiv f_2$). If there exist distinct elements a_1, \ldots, a_m in \mathbb{C} such that $E(a_i, k_i, f_1) = E(a_i, k_i, f_2)$ for $i = 1, 2, \ldots, m$ for some k_1, \ldots, k_m each of which is a positive integer or ∞ with $k_1 \geq k_2 \geq \ldots \geq k_m$, then

$$
\sum_{i=2}^{m} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} \leq 2.
$$

Proof. Suppose, first, that a_1, \ldots, a_m are all finite.

We have, by Nevanlinna’s second fundamental theorem, for $j = 1, 2$,

$$(m - 2)T(r, f_j) \leq \sum_{i=1}^{m} \bar{N}(r, a_i, f_j) + S(r, f_j)
\leq \sum_{i=1}^{m} \frac{1}{k_i + 1} \{k_i \bar{N}_{k_i}(r, a_i, f_j) + N(r, a_i, f_j)\} + S(r, f_j),$$

by (1)

$$\leq \sum_{i=1}^{m} \frac{k_i}{k_i + 1} \bar{N}_{k_i}(r, a_i, f_j) + \left(\sum_{i=1}^{m} \frac{1}{k_i + 1} \right) T(r, f_j) + S(r, f_j).$$

So,

$$\left\{ m - 2 - \sum_{i=1}^{m} \frac{1}{k_i + 1} \right\} T(r, f_j) \leq \sum_{i=1}^{m} \frac{k_i}{k_i + 1} \bar{N}_{k_i}(r, a_i, f_j) + S(r, f_j).$$

Adding the two inequalities corresponding to $j = 1$ and $j = 2$, we obtain

$$\left\{ \sum_{i=1}^{m} \frac{k_i}{k_i + 1} - 2 \right\} \left\{ T(r, f_1) + T(r, f_2) \right\}
\leq \sum_{i=1}^{m} \frac{k_i}{k_i + 1} \{ \bar{N}_{k_i}(r, a_i, f_1) + \bar{N}_{k_i}(r, a_i, f_2) \} + S(r, f_1) + S(r, f_2)
= 2 \sum_{i=1}^{m} \frac{k_i}{k_i + 1} N_0^{(k_i)}(r, a_i) + S(r, f_1) + S(r, f_2),$$

since, by hypothesis, $E(a_i, k_i, f_1) = E(a_i, k_i, f_2)$ so that $\bar{n}_{k_i}(r, a_i, f_1) = \bar{n}_{k_i}(r, a_i, f_2) = n_0^{(k_i)}(r, a_i)$ for $i = 1, 2, \ldots, m$.

The sequence $\langle k/(k+1) \rangle$ is increasing and so, since $k_1 \geq k_2 \geq \ldots \geq k_m$, (3) yields

$$\left\{ \sum_{i=1}^{m} \frac{k_i}{k_i + 1} - 2 \right\} \left\{ T(r, f_1) + T(r, f_2) \right\}
\leq \frac{2k_1}{k_1 + 1} \sum_{i=1}^{m} N_0^{(k_i)}(r, a_i) + S(r, f_1) + S(r, f_2)$$

(4)
Now, since \(f_1 \equiv f_2 \), it follows that, for \(a \in C \), each common zero of \(f_1 - a \) and \(f_2 - a \) is a pole of \(1/(f_1 - f_2) \). Since \(a_1, \ldots, a_m \) are distinct, we therefore have

\[
\sum_{i=1}^{m} N_{0}^{(k_i)}(r, a_i) \leq N\left(r, \frac{1}{f_1 - f_2}\right) \leq T(r, f_1 - f_2) + O(1) \\
\leq T(r, f_1) + T(r, f_2) + O(1) .
\]

Hence, from (4), we obtain

\[
\left\{ \sum_{i=2}^{m} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} - 2 \right\} \{ T(r, f_1) + T(r, f_2) \} \\
\leq S(r, f_1) + S(r, f_2),
\]

which implies (2), as, otherwise, (5) would yield

\[
T(r, f_1) + T(r, f_2) = o(T(r, f_1) + T(r, f_2))
\]
as \(r \to \infty \) outside a set of finite measure, which is impossible.

Suppose, now, that some \(a_i \) is \(\infty \). Then, let \(a \) be a (finite) complex number different from \(a_1, \ldots, a_m \). Then \(1/(a_1 - a), \ldots, 1/(a_m - a) \) are all distinct and finite. If \(g_j = 1/(f_j - a) \) for \(j = 1, 2 \), then \(g_1, g_2 \) are distinct meromorphic functions and

\[
E\left(\frac{1}{a_i - a}, k_i, g_1 \right) = E\left(\frac{1}{a_i - a}, k_i, g_2 \right)
\]

for \(i = 1, 2, \ldots, m \). Hence, by what we have proved above, (2) holds.

This completes the proof of Theorem 1.

Consequences of Theorem 1. Let \(f_1, f_2 \) be meromorphic functions.

(i) Suppose that there exist seven distinct elements \(a_1, \ldots, a_7 \) in \(\mathbb{C} \) such that \(E(a_i, k_i, f_1) = E(a_i, k_i, f_2) \) for \(i = 1, \ldots, 7 \), where each \(k_i \) is either a positive integer or \(\infty \) with \(k_1 \geq k_2 \geq \ldots \geq k_7 \) and \(k_2 \geq 2 \) if \(k_1 = 0 \). Then \(k_1/(k_1 + 1) \leq 1 \) with equality holding only when \(k_1 = \infty \) and \(k_i/(k_1 + 1) \geq \frac{1}{2} \) for \(i = 2, \ldots, 7 \) with \(k_2/(k_2 + 1) \geq \frac{3}{2} \) if \(k_1 = \infty \).

Hence

\[
\sum_{i=2}^{7} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} \geq 2 .
\]

Hence by Theorem 1, \(f_1 \equiv f_2 \).

In particular, with \(k_1 = \ldots = k_7 = 1 \), it follows that if the set of simple zeros of \(f_1 - a \) coincides with the set of simple zeros of \(f_2 - a \) for seven distinct values of \(a \) in \(\mathbb{C} \) then \(f_1 \equiv f_2 \).
(ii) If there exist six distinct elements \(a_1, \ldots, a_6\) in \(\mathbb{C}\) such that \(E(a_i, k_i, f_1) = E(a_i, k_i, f_2)\) for \(i = 1, \ldots, 6\) where each \(k_i\) is a positive integer or \(\infty\) with \(k_1 \geq k_2 \geq \cdots \geq k_6, \ k_3 \geq 2\) and
\[
\frac{k_1}{k_1 + 1} < \frac{k_2}{k_2 + 1} + \frac{1}{6}
\]
(which holds, in particular, if \(k_1 = k_2\)) then
\[
\sum_{i=2}^{6} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} > 2.
\]
Hence, by Theorem 1, \(f_1 \equiv f_2\).

(iii) If there exist five distinct elements \(a_1, \ldots, a_5\) in \(\mathbb{C}\) such that \(E(a_i, k_i, f_1) = E(a_i, k_i, f_2)\) for \(i = 1, \ldots, 5\) where each \(k_i\) is a positive integer or \(\infty\) with \(k_1 \geq k_2 \geq \cdots \geq k_5 \geq 2, \ k_3 \geq 3\) and
\[
\frac{k_1}{k_1 + 1} < \frac{k_2}{k_2 + 1} + \frac{1}{12}
\]
(which holds if \(k_1 = k_2\), then
\[
\sum_{i=2}^{5} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} > 2
\]
and so \(f_1 \equiv f_2\) by Theorem 1.
This includes Theorem A of Nevanlinna mentioned earlier.

(iv) If there exist five distinct elements \(a_1, \ldots, a_5\) in \(\mathbb{C}\) such that \(E(a_i, k_i, f_1) = E(a_i, k_i, f_2)\) for \(i = 1, \ldots, 5\) where each \(k_i\) is a positive integer or \(\infty\) with \(k_1 \geq k_2 \geq \cdots \geq k_5, \ k_4 \geq 4\) and
\[
\frac{k_1}{k_1 + 1} < \frac{k_2}{k_2 + 1} + \frac{1}{10},
\]
then, again
\[
\sum_{i=2}^{5} \frac{k_i}{k_i + 1} - \frac{k_1}{k_1 + 1} > 2.
\]
and so \(f_1 \equiv f_2\).
REFERENCES

DEPARTMENT OF MATHEMATICS,
KARNATAK UNIVERSITY,
DHARWAR, INDIA