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THE PROJECTIVITY OF THE MODULI SPACE
OF STABLE CURVES
I: PRELIMINARIES ON ¢det” AND “Div”’

FINN KNUDSEN and DAVID MUMFORD

Introduction.

This paper is the first in a sequence of three. In the last paper Mum-
ford will prove that the coarse moduli space of “’stable” curves is a pro-
jective variety. The proof is a direct application of the very powerful
Grothendieck relative Riemann-Roch Theorem.

The notion of a stable curve was introduced by Deligne and Mum-
ford [1]. A stable curve is a reduced, connected curve with at most
ordinary double points such that every non-singular rational compo-
nent meets the other components in at least 3 points.

In this first paper we deal with some essential preliminary construc-
tions which may also have other applications.

In the first paragraph we give the details of a construction whose
existence was asserted by Grothendieck and described in the unpub-
lished expose of Ferrand in SGA “Theorie des Intersections —. The
construction is to assign to every perfect complex % an invertible sheaf
det Z in such a way that det becomes a functor from the category of
perfect complexes and isomorphisms (in the derived categorical sense)
to the category of invertible sheaves and isomorphisms. Roughly det &%~
is the alternating tensor product of the top exterior products of a locally
free resolution of & . However in making this precise a certain very
nasty problem of sign arises. The authors’ first solution to these sign
problems was described by Grothendieck in a letter as very alambicated*
and he suggested to use the ’Koszul rule of signs’’ which we follow in
this paper.

The second paragraph deals with a generalization of Chow’s construc-
tion assigning a ’chow form” to every subvariety of P». We functorialize
this and analyse the invertible sheaves involved, following some ideas
in an unpublished letter of Grothendieck to Mumford (1962) and in

*) This apparently means similar to an alchemical apparatus.
Received April 10, 1975.
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[3, p. 109]. Finally we must mention that we have several overlaps with
J. Fogarty ’Truncated Hilbert functors’ [4]. He analyses the relation
between Div and Chow in the case & is an 0-dimensional perfect com-
plex, i.e. a coherent sheaf of finite Tor. dimension. In his notation Div
and Chow correspond to V and o respectively.

Chapter I: det.

Let X be a scheme. We denote by #x the category of graded inver-
tible 0 x-modules. An object of #x is a pair (L,x) where L is an inver-
tible @ x-module and « is a continouus function:

x: X->2Z.

A homomorphism %:(L,x) - (M,B) is a homomorphism of ¢ x-modules
such that for each z € X we have:

o(x) #+ B(x) = h, = 0.
We denote by Zisx the subcategory of &y whose morphisms are iso-

morphisms only.
The tensor product of two objects in £y is given by:

(L) @ (M,B) = (LOM,x+) -
For each pair of objects (L,«x),(M,B) in #x we have an isomorphism:
v, o000 (L) ® (M,p) —— (M,f) Q (L,x)
defined as follows: If I € L, and m € M, then
p(I@m) = (—1)6@+@.m Q1.

Clearly:
Var,p,@, 0" VYa,»,0.0 = lz, 0000 -
We denote by 1 the object (0x,0). A right inverse of an object (L,«)
in #x will be an object (L’,«') together with an isomorphism
8: (L) @ (I',o) —=—> 1.
Of course &' = —«.
A right inverse will be considered as a left inverse via:

(L',o) ® (Lyor) —2— (L,o) @ (L', o) =2~ 1.
We denote by €y the category of finite locally free @x-modules, and by

€isx the subcategory whose morphisms are isomorphisms only.
If F € ob(%x) we define:

det*(F) = (AmexF rank F)
(where(A™** F), = AmkFzf )
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It is well known that det* is a functor from %isy to Pisx.
For every short-exact sequence of objects in € x

0>F 2> F-L,F">0
we have an isomorphism :
i*(x,f): det*F’ @ det*F'' —~— det*F
such that locally,
(o, B)((eg A oo Ae) @ (BfiA... ABf)) = e A ... AoggAfyA ... ASf,
for e, I'(U,¥’) and f;e I'(U,F).
The following proposition is well known :
ProrosITION 1. i) i* 48 functorial, i.e., given a diagram:
O>F > F-—L,F"50
N
0-G¢ 1> G—-2-@" >0

where the rows are short-exact sequences of objects in € x, and the columns
are 1somorphisms, the diagram:

det*F’ @ det*F’’ 220, det*F
lldet‘ A Qdet* 47 lldet' 2

det*@’ ® det*G”’ T:a)" det*@
commutes.

ii) Given a commutative diagram of objects in € x

0 0 0
¥ 4 ¥

0->F 5@ —FH 50

yor b

0>F 25 Q@ —L5H >0

A
O—>F" «” G" [ H"—>O

+ 4 +
0 0 0
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where each row and each column is a short-exact sequence, the diagram

I, &) ®i*(y”, 8”)

det*F’ @ det*F"’ @ det*H’ @ det*H"’ det*F @ det*H

lli‘(w’» B)Y®i*(a”, 8) - (1Qvdet* I, det*H' @1) lli‘(a. 8)

det*@’ ® det*q"’ — det*G

7,0)
commutes.
iii) det* and i* commute with base change.

The isomorphism i* is a special case of a more general canonical iso-
morphism: suppose % is a locally free @ x-module and:

O =MEcFEc.. c<FE=E

is a filtration such that FE/F-1E are all locally free. Then there is a
canonical isomorphism:

i*({(FE)): ®_, det*(FiE/Fi-1E) —~ det*(E) .

Moreover these isomorphisms satisfy the following basic compatibility
generalizing (ii) above: suppose {F°E} and {G°E} are 2 filtrations on
such that for all 4,j

G4I = FE n GIE|(F*-E n GE) + (F'E n GI-1E)

is locally free. For each fixed 4, the G%4 are the graded objects associated
to a filtration on F'E[Fi-1E, and for each fixed j, they are the graded
objects associated to a filtration on G/E[GY-1E. Thus the i’s give us a
diagram:

®y ;det*(@59) —~ > @, det*(FiE/F-1E)

N |

®, det*(GE|GI-1H) —~— det*E

This then commutes. We will not enter into the details here however,
because the general isomorphism ¢ can be defined inductively as a com-
position of the special isomorphisms ¢ associated to short filtrations:

(0)=FE < F'E < F°E = E,
which is then just the ¢ associated to the exact sequence:

0> FE —~E—~E|F'E 0.
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Moreover, the general compatibility property is just a formal consequence
of the special one — (ii) above.

Next we consider the category € x of bounded complexes of objects
in €x, morphisms being all maps of complexes. A map of complexes
which induces an isomorphism in cohomology will be called a quasi-

tsomorphism. The subcategory of ¥ x whose maps are quasi-isomorphisms
will be called € isx.

DerFiNtTION 1. A determinant functor from €'¢s to Pis consists of
the following data:

I) For each scheme X a functor f; from €'isx to Pisx.

II) For each scheme X and for each short-exact sequence:
0>F' 225> F L . F">0
in € x an isomorphism:
ix(ax,f): £(F") QLHF"') —=— £(F") .

This data is to satisfy the following requirements:
i) Given a commutative diagram:

0> F'—2 s F £ . F" 50

.

06" 2o G —2s G >0

where the rows are short-exact sequences of objects in €'y and A’,4 and
A"’ are quasi-isomorphisms, the diagram:
H(F") @ H(F") —IZ7 1(F)
21«»’)@&1”) i@
H6) @ H@") —222— (@)

commutes.
ii) Given a commutative diagram:
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o 4 H., - 0

I
|

0
v
¢
0>F —2,.¢ £,
¢
'
0

H -0
1.3' &
0O->F"_2,q" L . H"50
2 {
0 0

where each row and each column is a short-exact sequence, the diagram:

1(F) QIF ") QH") @ f(H"") =LY, §(F) Q1(H')

U ix(«, 8)Y®ix (>, ) RLQvi(F), 12 @1 llix(a, 8)
1) @ £(6™) = - 1(@)

commutes.

iii) f and i both commute with base change.
iv) f and i are normalized as follows:

a) f(0')=1

b) For the exact sequence:

0O-F X, L0050

the map
(FQ®1 iza,0 11(1 0) £(F)
is the canonical one,
b’) For the exact sequence:

00— F T, F 0
the map

f(F) @ 1 —= £(F")

T, 0
is the canonical one.

v) We consider ¥is as a full subcategory of €'is by viewing objects
of €is as complexes with only one nonvanishing term, this term being
placed in degree zero. Then for such objects:

f(F) = det*F
ix(o, ) = i*(x,f) .
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The main theorem of this chapter is

THEOREM 1. There is one and, up to canonical isomorphism, only one
determinant functor (£,1), which we will write (det,i).

Let X be a scheme, H' an acyeclic object in " 5. If (f,1) is a determinant
functor, we have an isomorphism :

£(0): £(H') - 1.

If
O-H'—*sH -2 ,H" >0

is an exact sequence of acyclic objects it follows from Definition 1, i)
and iva) that the diagram

f(H") @ {(H") —2=P, §(H")

) |

191 s 1

commutes.
Let «: F* — G be an injective quasi-isomorphism such that the coker-
nel is again an object of € 4, i.e., we have a short-exact sequence:

0O>F 2@ L SH 0

such that H' is acyclic.
From the diagram:

O-F —>F—— 0 -0
111’- la 10
0>F 2@ L0 50
we get a commutative diagram:
(F)@1 — =8 §(F)
| |
1) @ (') —EZ2 1(&)

hence we see that f(x) is determined by the mapsix(«x,8) and£(0): f(H') - 1.
Let A: F' > @' be an arbitrary quasi-isomorphism. We denote by Z,’
the following complex:
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Zji=Fi@ @@ P

o —1
diy, = (0 di jin )
0 0 —di+t

Consider the diagram:
F 4

F'J%Zl.:’_G.

B8

1 0
& = (0): B = (1)’ /3’ = (4,1,0).
0 0

We leave to the reader to check that these are all quasi-isomorphisms
and furthermore,

where

Bow=1 fof=1g.
Hence we have:

£(2) = £(8")of(x) = £(B")of(B)of(f) " of(wx)
= (B’ o0B)of(f)Lof(x) = f(f)Lof(x).

Hence, since both « and g are injective quasi-isomorphisms, the map
f(A) is determined by the maps i and £(0) from f(H') - 1 for acyclic H'.
We summarize this in the following:

Lemma 1. Let (f,i) and (g,j) be two determinant functors from €'is to
Pis. Suppose we are given 0 as follows:

i) For each scheme X and each object F' in € x we have an isomorphism:
Ox,p: £(F) —— g(F") .
ii) For all acyclic H' the diagram:
HH') =25 g(H)
Ilfw) HEC)

1 e ——————— l
commultes.

iii) For all short-exact sequences:
0O-F 2@ L H 0

with H' acyclic, the diagram :
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. . ix(x, .
f(F") @ £(H') —Z22 £(&)
Uox, 7 R0x, B Uox, e

gF) ® g(H') —Z22, g(6)

commules.

iv) 0 commutes with base change.

Then for all quasi-isomorphisms A: F' — G the diagram:

) 2o )
lex, r liox, ¢

g(F) -2 g(@)
commutes.

As a side remark, notice that these methods prove:

ProrosITION 2. Let (£,1) be a determinant functor from €'is to Pis, and
let

YA e e
be two quasi-isomorphism such that locally on X, A is homotopic to u, then

£) = () .

Proor. Two maps being equal is a local property, and since f commutes
with base change we may assume that X is affine. However in the affine
case locally homotopic maps are homotopic so let H be such a homo-
topy, i.e.,

A—~u =dH+Hd.

We leave to the reader to check that we have an isomorphism of comple-

Xes:

Zy 7,

00
01

given by the matrix:

O O M

such that the diagram
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Zy

commutes. But we have already seen that
£(2) = £(B)tof(x) and f(u) = £(8)ok(y)

hence the proposition.

Lemma 2. Suppose we are given a pair (f,i) satisfying all the axioms of
definition 1 except:

I) is replaced by:
I') For each scheme X we have a map

fX: Ob(gx') i Ob(ﬂx)
such that £5(0°) =1 and for each acyclic complex H' on X an isomorphism:

1x(0): fx(H)—>1.
i) s replaced by
i') For each scheme X and for each short-exact sequence of acyclic objects:

O->H'—*>H -, ,H" 50

the diagram
HH") ® H(H") —2Z7 {(H)
ll!(o@fw) llf«»
191 mult. 1
commutes.

(The rest 18 left unaltered.)
Then there exists up to caninical tsomorphism a unique determinant functor

(-f',i) such that for all F* we have d

f(F) = £(F)
and for each quasi-isomorphism

H-250.
we have:

£(0) = £(0) .

Proor. Uniqueness follows immediately from Lemma 1. Suppose we
have defined f for all affine schemes, then since f commutes with base
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change, the maps patch together to give f on all schemes, hence we may
agsume that X is affine.

Let F'—>— G be an injective quasi-isomorphism. We will say that «
is good if the cokernel of « is again in €' x. Let H = cokernel of «. Then
we get a short-exact sequence of complexes

0>F —=56G —L-SH 50
such that H is acyclic. We define f'(«) via:

mu]t 1®f(0)

f(F)®1

H(F) @ {(H') «2=P ¢@)
(x) I

Let «: E" — F " and 8: F" - (. be two good injective quasi-isomorphisms.
We have a commutative diagram:

£(F) 2ot

0 0 0
} |
0—>E——-—>F————>H—~>O

| b

0>E- P2, 23 K0

T

00 ——>L—=L >0
! { $
0 0 0

8o by axiom ii), iv) and i’) we have:
(**) f'(B)ot'(x) = f'(Bow) .
If A: F* - @ is an arbitrary quasi-isomorphism, we have a diagram:

F—=.7 B, @

1 0
o6 = (0) and g = (l) .
0 0

Clearly &« and g are both good injective quasi-isomorphisms, and we define

) = £(B)1-f (o) .

where
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To see that f is functorial, let
AME -F and u:F @
be quasi-isomorphisms: we define a complex W" as follows:

Wi = ¢ ® F @ G ® K+l @ Fi+l

d00 -1 0
0do A4 -1
dp=100d 0 u
000 —-d O
000 O —-d

We then have a commutative diagram:

7 I
N\ N
B e @ 2,
N /
7z, el
where
100 000 100
010 100 000
p=|000|, g=]o10], r=|010].
001 000 001
000 001 002

The fact that i(yol)=f(y)of(l) now follows from this diagram and the
functoriality of f’. We leave to the reader to check axiom i): this is not

hard. It is also easy to check that f=1" where f' is defined, but this is
not needed.

For each scheme X and each object L in #x we fix a right inverse
L1 of L, i.e., an isomorphism

8, L@L1 1.

If «: L —=» M is an isomorphism in &5 we denote by «-! the unique
isomorphism making the diagram :

LQL1—»1

o]

MQIM1=,1
commutative.
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For every pair of objects L, M we denote by 6, 5, the unique isomor-
phism making the diagram

(MRL) ® (MRL)-! 2 1
lll@) oM, L zl(d-drl
(MQL) @ (M-1QL-1)— =4O yo M-1QLL-
(

Then -1 is a functor from Pis to Pis which commutes with base change,
and for each pair L, M the diagram:

(ML)t — L, Y1 @ L
Zl(vw,z,)'l Ziwu‘“l,rl

(LOM)? —t— [ @ M
commutes.
If F% is an indexed object of % x we define:

det*(F?) for ¢ even}

det(F?) = {det*(F”‘)-1 for ¢ odd

If
ﬂi

0>pr = pi P, g
is an indexed short-exact sequence of objects in €y, we define

) ) i*(at, B7) for 7 even
i(o, ) = :i*(ai,ﬂi)—l for ¢ odd }

If F" is an object of € x we define
det(F') = ...QRdet(Fit)Rdet(F)Rdet(F-)®. ..
Finally if
0>F'—=»F L5 F" >0
is a short exact sequence of objects in ¥ " we define

i(or, B) : det(F")@det(F"") —=-» det(F")

to be the composite:

det(F)Qdet(F"') = ...Qdet(F¥)Rdet(F*-1)®. ..
Qdet(F"")Qdet(Fi-1")®. .. —~ ...@det(F¥)@det(F")
(16,
Qdet(Fi)@det(Fi-1")®. .. —2P | @det(FY)

Q det(Fi-1) @ ... = det(F").
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the most amazing thing is that we can construct for each acyclic object
H' in €’ ¢ an isomorphism:

det£(0) : detg(H') —~ 1

such that all the axioms of lemma 2 holds.

These axioms are all trivially verified execpt for I') and i’). We will
verify these simultaneously and we use induction with respect to the
length of the complexes.

StEP 1. Complexes of length 2.
Consider first an acyclic complex

H=..->0>H - S%S,H1,0->,,,

with ¢ an odd integer. Since d is an isomorphism we get an isomorphism:

det(H.) = det*Hi+l)®det*(H¢)_1 l®d(f(d)"l

det*(Hi+)@det*(Hi+1)-1 —~ 1,

We define this isomorphism to be det(0).
Given a short exact sequence of acyclic length 2-complexes:

¢ o

0>Fi-— s @-Z H 50

Lok

0 Fitl—, qivt 2, i, g

N

00— 0—s 0—s 0

oo

we get a diagram:
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det(F')@det(H') i) det(@)
z |

1
det*(Fi+1)Qdet*( Hi+1)@det*(F7?) —“l@det*(H -1~ 5 det* (G Rdet* (GH1
Ul det(0)®det(0) U 1® 1 ®@det*(d)~1 Qdet*(d)~1 I U] 1@det*(d)—2 det(0)
det*(Fi+l)Rdet*(Hi+)Qdet*(Fi+l)-lQdet*(H+)-1 —~ det*(G*+1)Q@det* (Gi+1)1

5@0o(1®v®1) 11 llé v

~

v

1®1 ~ 51

The square I is commutative by the definition of ¢, and the squares IV
and V are commutative by the definition of det(0). The square III is
commutative by the definition of i-! and finally IT is commutative by
axioms iii) of definition 1. Hence the whole diagram commutes. If

H=..-0>H 9% H+1 ,0-,,,

is an acyclic complex with i even we define det(0) to be the composite

det(H') = det*(Hi+1)-1@det*(Hi) — 2@ gets(Hi+)-1gdet*(Hi+)

—¥ > det*(Hi+l)@det*(H+1)1 —2>1....

Given a short-exact sequence of acyclic length 2-complexes

with ¢ even we get just as before a commutative diagram.

Math. Scand. 39 — 8
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det(F")@det(H') —=2, det(G")

ldet(O) ®det(0) ldet{ﬂ)

1®1 — 1
Hence I') and i’) holds for all acyclic complexes of length 2.
StEP 2. Suppose I') and i’) hold for all acyclic complexes of length <n,
and let
H=. . 6-0>H >H+sH+2, S HiAn 50 ..

be an acyclic complex of length n+ 1. We then get a short-exact sequence
of complexes:

4 + {

00 ->0—>0 ——0
} { {

0> H=H'—> 0 —— 0
i } }

0 - H — Hi+l > Hi+l[Hi > 0
} \ +

0> 0 - HH+2 5 Hi+2 0
Vo
¢ { i

0— 0 — H+n— Hitn — 0
{ i 4

0—-0 -0 > 0 — 0
{ { {

i
O —*H.rf’ H. —LH.II_"—T) O
Since H'; and H'y; are of length <n we define det(0) so as to make the
diagram
det(H'[)@det(H ) — %2 det(H')
‘det(o)@det(o) det(0)

1®1 malt. 1

commutative. It is then easy to check that i’) follows from axiom ii)
of definition 2. Now by Lemma 2, the pair (det,i) is a determinant
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functor €is to Zis. Now say (f,j) is any determinant functor. If E
is any complex we define an isomorphism

0,: (&) —>{(TE )"

in such a way that the diagram:

() RHE) —L~ f(B)QHE) ! — 1

1an

f(E')‘léz)f(TE')-l —~ £(07,) O 1

commutes. Here 7' stands for the shift operator defined by
(TE')" = E** and 7Td = —d.
C" is the mapping cylinder complex. Inductively we define
0,(B) =0, (TE)1-0,(E) and 6_,(B)=0,(T"E)?1

(note this -1 is the functor mentioned on p. 31.)
It is straightforward to check that given a short-exact sequence

0B —>F @50

the diagram
HE') @ £(&) s f(F)
161®6 lfl
{(TE)1f(T6) —T=T0 | fpF)-
commutes.
And for any quasi-isomorphism

A B - F
the diagram
f(B) —2— £(F)
lo Uo
§(TE) 7 ()
commutes.
We proceed to define an isomorphism of functors:

n: () — (det,i) .

First consider a complex E’ concentrated in degree i.
We define # as follows:
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{(B') —2s {(TE" YD —— det(E’)
1

n
~

It is then obvious that restricted to all complexes which are concentrated
in a single degree, n is an isomorphism of functors. If

FE =... o0 >E+ 5 . > HE+v 50

is a complex of length n+ 1, we get a short-exact sequence of complexes

i \ \

00 0 0 0
{ { \)

00 —> F—s F —5 0
i\ { {

0> EFi+l 5> gitl 5, 0 —— 0
\) i {

0> Ei+2 > Fi+2 50— 0
b
{ + i

0 Eitr > Fitr » 0 —— 0
| i \

00 0 0 0
) ) {

li i I
0>E*>E-L-F,;-50

Inductively we can define » such that the diagram
f(By) @ f(B'y) —I22— {(H')
ll Q@n llvr
det(E'y)@det(E'y;) —22— det(E")

commutes.

Using axiom ii) it is easy to check that for all short-exact sequences of

complexes
: 0>E 2> F L@ 50

the diagram
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f(E)@f(GF) —X22— §(F)
1"7®'l ln
& .
det(E")@det(G) —2P-, det(F")

commutes.
Finally we want to show that for each acyeclic complex H the diagram

f(H")
l

(H")
l

f(0) det(0)
| I— l —_—

commutes.

By induction we only have to prove this in case of a length 2 acyclic
complex. Note that any such complex is the mapping cylinder of an
isomorphism of pointed complexes, say:

H =0C; where i: 4" —» B".
We have then a short-exact sequence
0B —-H  L-T4 >0
and £(0) is given as the composite:
$(H') P (B)RATA) 220 ((B)@i(4) —EE
f(B)®f(B)* —— 1

The same formula holds for det, and so by Lemma 1 % is an isomorphism
of functors.

We can in fact extend det even further. We need some preliminaries
concerning derived categories for this.

Let &/ be an abelian category ; we denote by 275 the following category.

i) The objects of &7, are sequences of the form

E'-—“*>Ft.p
such that f-«=0.

ii) The morphisms in &/, are triples of maps in &/ making the resul-
ting diagram commute.

DerintTioN 2. The subcategory of D(&/;) whose objects are short-
exact sequences of complexes will be denoted by VT(&/) and, we will
call it the category of true triangles of D(%).
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ReMArk. Let
X=0-E"—2>E L ,F" >0
be a true triangle. Taking the mapping cylinder of the first map we get
an ordinary triangle
e.>E">E >0, >TE" >TE -TC, —~....
If 14 is the identity map on £’ we have a short-exact sequence

0—>0'1E."—>C'a' *>E'>0.

But O, . is acyclic so % is a quasi-isomorphism, and hence the compo-
sition
—~1

B ” —>0a'—>T o

gives us a triangle which we call
8X)=->E" > E L E' STE" ~....

In fact § is a functor from true triangles to the category TD(%/) of tri-
angles in D(.7). Note that the homomorphism

0 1 Homyp (X Y) - Homqpp,(6(X),5(Y))

is in general neither injective nor surjective.

ProrosITION 3. Let f: X — Y be a morphism of schemes and let Mod(X),
Mod(Y) be the category of Ox- and Oy-modules. Then left and right derived
functors

Lf*: VI(Mod(Y))- - VT(Mod(X))-
Rf, : VI (Mod(X))* - VI(Mod(Y))*
exists.

Proor. According to Hartshorne: Residues and Duality, Chapter I,
Theorem 5.1, the proposition follows if each true triangle bounded below
allows a quasi-isomorphism into a true triangle consisting of injective
Op-modules, respectively each true triangle bounded above is quasi-
isomorphic to a true triangle consisting of flat @ x-modules. The fact that
such quasi-isomorphisms exist follows from the following:

i) A short-exact sequence of injective ¢ x-modules is an injective
object in the category Mod(X)s, and every object of Mod(X), with
the first map injective admits an embedding into a short-exact se-
quence of injectives.

ii) Every object of Mod(X), with the last map surjective is the quo-
tient of a short-exact sequence of flat 0 x-modules.
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This proves the proposition.

Recall the definition of a perfect complex &  on a scheme X [2].
This means that &  is a complex of @y-modules (not necessary quasi
coherent) such that locally on X there exists a bounded complex ¥ of
finite free @ x-modules and a quasi isomorphism:

G >Fly
We denote by Parfy the full subcategory of D(Mod X) whose objects

are perfect complexes. We leave the proof of the following result to the
reader.

PROPOSITION 4. a) Let X be any affine scheme and F~ a perfect complex
on X. Then there exists a bounded complex of locally free, finitely generated
0 x-modules " and a quasi-isomorphism :

G >F
(i.e., globally on X:)
Let a: F" —F "' be a map in the category Parf x, and suppose we are given
quasi-tsomorphisms:
P:9 >F and p:9'>F"
where G° and F' are bounded complexes of locally free O x-modules, then
there exists wp to homotopy a unigue map
B:9 -9
such that p'f=«p in Parfy.
b) If
0>F ' >F >F'" >0

18 a true triangle of perfect complexes there exists a true triangle of bounded
complexes of finite locally free O x-modules.

0-9">9 >%" >0
and an isomorphism in the category VT (Parf x)
0% -9 >9" >0
lp' lp lp"
0>F ' >F >F'" >0

Moreover if
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0>F' >F >F " >0
0" >H" >H"" -0
18 any morphism in VI (Parfy) and
O->A">H" >H" >0
ok
0>H" > >H" >0

18 an isomorphism with X', A" and A" bounded complexes of locally
Jree Ox-modules. Then there exists up to homotopy a unique map:

09" -9 9" 50
s lp o
v Y
O->H">H" >H">0

such that &'p'=q'f’,ap=qp and «''p"' =q''f"" in Parfx.
c) Same for diagrams of the form

0 0 0

i { i
0>F' >F ->F'" >0

¥ \ }
0% -9 %" >0

{ + +
0" >H " >0

{ } {

0 0 0

DEerFINtTION 4. An extended determinant functor (f,i) from Parf-is
to Zis consists of the following data: g
I) For every scheme X a functor

fX H Pal'f-isx - ﬂisX
such that f5(0)=1.
II) For every true triangle in Parf-isy

0>F—=*>G@—L H->0

we have an isomorphism :

ix(,B) : Lx(F)@fx(H) —= f£(@)
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such that for the particular true triangles

0>H—H->0->0

and
0-0>H=—=H->0
we have:
ix(1,0) = ix(0,1) = L -
We require that:
i) Given an isomorphism of true triangles*:

0>F %G -2 H >0

Lok

0->F —“>@ - H 50

the diagram
fx(F)@fx(H) —520~ f2(@)
llfx(u)®fx(u)) llfx(v)
fx(F)@fx(H') W £x(G")
commutes.
ii) Given a true triangle of true triangles, i.e. a commutative diagram
0 0 0
¥ { {
0-F —*>@ —Ff-H >0
Pl
0>F —*“>@ —E>H >0
0 —>F” o G” __ﬂ'f__) Hu 0
+ v '
0 0 0
the diagram:
Ex(F)®fx(H)@fx(F")@fx(H") —X&POXCD £ /(@) @1x(6")
Zlix(u,v)@lx(u",v")®(1®v®1) U ixw, v)
fx(F)@fx(H') S (&)

* This means this diagram commutes as 0x-modules and not just v-ax=o«'-4 in
D(Mod X): in fact, even assuming -« and w-f# homotopic to «’-u and §’-v respecti-
vely and all sheaves locally free this property will not hold for det!
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commutes.
iii) f and i commute with base change. Written out this means:
For every morphism of schemes

g: XY
we have an isomorphism
n(g) : fx-Lg* —=— g*ix
such that for every true triangle
0->-F @G —-H -0
the diagram:
tx(Lg*F ) @fx(Lg*H) —2H50 f(Lg*G')
l l'l‘ﬂ Zln
gy (F)@gHp(H) —TZ— ¢*y (@)

commutes. Moreover if
X,y * .7

are two consecutive morphisms, the diagram:

£ (Lg*La*) — "2, gt Lh* TP, gxpas

X Y Z
llfx«» ‘ 14

fx(L(g-h)*) = (g-h)*z

commutes where 0 is the canonical isomorphism
6: Lg*-Lh* —— L(g-h)*,
iv) On finite complexes of locally free 0 x-modules,

f=det and i=1i.
Then using Proposition 4, one proves easily:

TaEOREM 2. There is one, and, up to canonical isomorphism, only one
extended determinant functor (f,i), which we will write (det,i) again.

REMARE. If & is a perfect complex and you filter it with subcomplexes
such that the successive quotients gr*(# ") are all perfect, then there is
a canonical isomorphism :

det(F') —=2 ® det(gr"F") .
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This is constructed easily by induction on the number of steps in the
filtration, using the isomorphisms ¢(x,3) at each stage and it has the
compatibility property described after Proposition 1 above for ordinary
det*. In particular:
a) if each %™ is itself perfect, i.e., has locally a finite free resolution,
then
det(F) ~ ®,det*(Fn)-1"

b) if the cohomology sheaves H™"(& ") of the complex are perfect —
we call these complexes the objects of the subcategory Parf®<Parf —
then

det(F') ~ @, det*(H(F ))-".

This has various easy consequences:

COROLLARY 1. Let.F " and &' be two objects of Parf®x and suppose « and
p: F 3Y
are two quasi-isomorphisms such that H¥(«) = H*(B) for each i. Then det(x) =
det(B).

COROLLARY 2. Let
—)yl. Lt fz. v fs. © Tfl. -

be an ordinary triangle in Parfy such that the #; are in Parf°y. We then
have an isomorphism

det(F,') @ det(Fy) —T422, Jet(F,)

which is functorial with respect to such triangles.

Proor.
det(F;)@det(Fy) = [@det*(HH(F,))-V|Q[@det*(HYF;))"]
and
det(F,) =~ @det*(HMF,)) ",
But the long exact cohomology sequence H'(u,v,w) is an acyclic com-
plex with perfect sheaves at each stage, so
1y —= det(H (u,v,w))
~ ® det*(ntd sheaf of H'(u,v,w))-"
& [® det*(Hn(F,))-D"1Q[® det*(HmFy))0""]
®[® det*(HYFy))"].
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We tried for some time to extend ¢ to ordinary triangles, but in general
this is not possible. It is true that for each ordinary triangle we can find
an isomorphism but it is by no means functorial or unique (cf. footnote
to Definition 4 above). We have seen that i extends when the complexes
are good, we will now see that it also extends when the schemes are good
(i.e., reduced).

ProrostTioN 6. Let X be a reduced scheme F' and G perfect complexes,

o and B two quasi-isomorphism
a,f: F Y

such that

a) For each integer ¢ there are finite filtrations

F(H(#')) and F(HY9)).
b) For each generic point x € X, the maps
Hix) @ Ly ond  HYB) ® Ly

are compatible with the induced filtrations on H{(F )Qk(x) and H(Y ) Qk(z).
(Note that k(x)=0x ,) and we have

gr(H (o) ®1y) = gr(HY(B)D L)
for each 1.
Then
det(x) = det(f) .

Proor. Since X isreduced and det commutes with base change, we may
as well assume X =Spec(k) where k is a field. However in this case we

have
Parfy = Parf,

and so the proposition follows from the last one.

PRrOPOSITION 7. Let X be a reduced scheme, then for each triangle of per-

Ject complexes:
F G s s TF

we have a unique isomorphism.
ix(u,v,w): det(F )Qdet(# ') —~— det(¥’)

which is functorial with respect to isomorphisms of triangles.
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Proor. First we represent the mapping w by a diagram of real maps

T-Y(#") F

S (PR

»

where I” is injective.
The mapping cylinder of x gives us a true triangle:

DT> T -C) > T — ...
I v I {
DT> F -G > >TF — ...

By the second axiom for triangles there exists a map (necessarily an
isomorphism) 1: C" - %" making the diagram above into an isomorphism
of triangles. By Proposition 6 the map det(4) does not depend on the
choice of A. If we represent w by a different diagram say:

T-15¢") F

|

N of PR

w

we get a homotopy commutative diagram

[ I'

T-Y ") .
P

M — I"

If H is a homotopy we get a commutative diagram

01 ——————»0”————>.9f->0

e

0—>I"————>C';‘.———+.9f'—>0

1

ie., a map of true triangles. It follows that if A’ is a map from C,, to &’
making

into an isomorphism of triangles, then the diagram:
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det(2)

det(F")@det(#") —— det(I')Rdet(H#") —— det(C,) —=L, det(¥')

§ § |

det(F")@det(H# ") —— det(I"")@det(# ") —— det(C,,) ——>» det(%')

commutes.

The composite map above we define to be i(u,v,w). It is clearly func-
torial.

Let p: X — Y be a proper morphism of finite Tor-dimension with ¥
noetherian. Recall that if #° is a perfect complex on X then R'p %" is
again perfect (cf. Proposition 4.8, SGA 6, expose 3 (Lecture Notes in
Mathematics 225, p. 257, Springer-Verlag, Berlin-Heidelberg-New York).
Hence to every perfect complex on X we can associate a graded inver-
tible sheaf on Y

det(R py(F)) -

True triangles on X have injective resolutions so R'p* maps true tri-
angles to true triangles. Hence for every true triangle

0-F 2> L . 50
on X we have an isomorphism:
ip(x,B) : det(R'peF )Rdet(Rp,st’) — det(Rp,¥’)

which is functorial with respect to isomorphisms in VT(Parfy).
This operation commutes with base change too, i.e., given a morphism
of noetherian schemes, g: Y’ — Y, let

X' =XxgpY',
g =p: XxpY' > X,
P =p: Xxgl' > Y.

Then there are canonical isomorphisms:
g*(detp (Rpu(F))) = detp,(Lg*(Bpu(F"))) = doty.(Rp's(Lg™*F) .
The last result of this chapter we state in the
ProrosrrioNn 8. Let p: X - Y be a proper morphism of noetherian

schemes and suppose that Y is a regular scheme. We then have a functorial
tsomorphism :

det(R'pyF ') —~— ®,,det(Rip H?(F ")),
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Proor. The proof is easy by observing that on a noetherian regular
scheme we have:
Parfy = Parf0y ,

and using the spectral sequence

Rap*(H?(F")) = RPHp(F7) .

Chapter II: Div and Chow.
Let X be a notherian scheme, and

A F -9
a map of perfect complexes in the derived categorical sense. We define

the open set U(A) as follows:

U(A) = {x € X | there exists a neighbourhood V of =
in X such that A restricted to V
is an isomorphism in D(Mod(¥))} .

We define the support of 4 to be the closed set:
Supp(d) = X-U(4).

Finally we say that A is a good map if Supp(1) contains no points of depth
0 or equivalently U(1) contains all points of depth 0.

Let again 1: %" — ¥ be a good map of perfect complexes, and let «
be a point in X. By the very definition of a perfect complex, we can find
a neighbourhood ¥ containing # and two bounded complexes of coherent
free @ x-modules, say &," and &, plus, restricted to V, quasi-isomorphisms

Sly—"—>Fly and &ly—"—Gp.
By choosing basis for the various &;’s we get an isomorphism:

det(x) det(d)
0XanU(;l) —= det(&, )anU(A) —=— det(F" )]VnU(z) —

det(B)—
det(¥" Nvave '—e‘——' det(&y)lyavw —=— 0X!VnU(A)

and this isomorphism determines a section s € I'(V n U(4),0¢*).

Since VnU(A) contains all points of depth 0 in V, 8=0 defines a Cartier
divisor d(s) in V. Clearly d(s) does not depend on the choice of &," and
&4, 8o we have defined a global divisor via the formula:

Div(A)ly = 8(s) .
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It follows immediately from the definition that the canonical map on
U(4)
det(2) : det(F")|ym —=— det(Z )|y

extends to an isomorphism on the whole of X:

det(4) : det(F')(Div(1)) —=— det(¥') .
In particular:

(i) Supp(Div(4)) = Supp(4)
(ii) O(Div(2)) ~ det(¥) ® (det(F"))-1.

If #° is a perfect complex on X such that the zero map:
0 ->Z
is a good map of complexes, we simply write
Div(#’) = Div(0' - F")
and we have a canonical map:
det(0) : O(Div(F")) —=— det(F") .
This association of a divisor to every good map of perfect complexes
satisfies some properties which we will summarize in the following:
THEOREM 3. (i) Let A: F - G and u: ' — 5#" be two good maps of perfect
complexes, then the composition is good too and we have:
Div(u-2) = Div(u)+ Div(1) .
(il) Consider a strictly commutative diagram of short-exact sequences of
perfect complexes:
0>F ——F —>H" >0
o)
0>F'— G ' — > H" >0,
Then of any two if the vertical maps are good, so 8 the third and we have:

Div(x)—Div(8)+ Div(y) = 0.
(iii) Let
0-F 2@ Lo 50
be a short exact sequence of perfect complexes such that A is good, then 0° —~ H#

18 good and we have:
Div(d) = Div(s¢’).
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(v) Let f:X - Y be a morphism of noetherian schemes, A:F " — %" a good
map of perfect complexes on Y. Suppose that for each z € X of depth 0,
f(x) € U(A), then the map:

Lf*@) : LfXF") > Lf(¥9)
18 good too, and we have:
Div(Lf*(4)) = f*(Div(4)) .

(vi) Let X be a normal noetherian scheme and F* a good perfect complex
on X. For every point x in X of depth 1 recall that O is a discrete rank 1
valuation ring, and since F' is good HY(F )y is a torsion Ox-module of
Sfinite length, say:

length (H{(F"),) = r{(F).

We define the number:
I(F7) = Zim ol — 1 AF) .
Since X is a normal noetherian scheme the group of Cartier-divisors injects
into the group of Weil-divisors and we have
(*) Div(F') = 3pex  T(F)-{a}.

depth(z)=1

Proor. Everything is obvious except for v. Since a divisor is deter-
mined by its values at points of depth 1 we may assume that X =Spec(0)
where @ is a regular local ring of dimension 1.

For every good perfect complex.#" on X we define:

Div(F") = 1(F ')

where z is the unique closed point of X. Clearly Div satisfies (i), (ii), and
(iii). Since every coherent sheaf # on X with Supp(#)< {z} can be con-
sidered as a perfect complex, it follows by induction that we can reduce
the proof of the equality (*) to the case where % is a complex of length
1, that is F =M in degree 0 and 0 otherwise where M is a torsion 0-
module. By the structure theorem for such modules we can find integers
7y, 1=i<s such that
M~ 3;.,0[2M0 .

We then have a free resolution of M
00, -4, 0,—— M >0

where d is given by the matrix
Math, Scand. 89 — 4
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am0 0 O
0 a0 0

0 0 @™ 0

0 0 0..n™

It follows that the local equation of Div(M) is det(d) =n=™. Since length
M =3n,, the equality (*) follows.

Let f: X — Y be a morphism of noetherian schemes, and # " a perfect
complex on X. We put:

Supp(#°) = U, Supp(H(#")) .
For any point y € Y consider the fibre product

Supp(# )y —— Supp(F")

Spec( k(y)) —— Y

DerintrioN. Let f,X,Y and & be as above. We will say that &
satisfies condition @, if the following holds:

1) For each point y € Y of depth0
dim(Supp(#"),) =r.
2) For each point y € Y of depth1
dim(Supp(#7),)sr+1.

ProposrTioN 9. Let f: X - Y be a proper morphism of finite Tor-di-
mension. If F° is a perfect complex on X satisfying condition Q_,) for the
morphism f, then '

a) Div(Rf (F")) ts defined,

b) for all line bundles 5 on X,

Div(Rfy(#")) = Div(Rf(F'®5F)) .
Proor. a) is clear and to prove (b), we may make a base change and

replace Y by Spec®, i, where y € Y has depth 0 or 1. Then Supp(#")
is finite over Y, hence there is an open neighborhood U

Supp(F)<c U <= X
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and an isomorphism of 5|y with 0. Therefore there is a sheaf of ideals
J <0 such that Supp0x/# < X — U and a homomorphism ¢ as follows:

O>F >H# >H -0
Supp(HX) =« X-U.
Then F Q@LOx/SF and F QLA are acyclic, hence F R is quasi-
isomorphic first to # QLS, and second to & . This proves (b).

Let f: X - Y be a morphism of noetherian schemes, &  a perfect
complex on X and consider the function Y — Z given by

y - dim(Supp(#),) .

It will be convenient to compute this function in a slightly different
manner. Consider the fibre product:

X : X

vy

I

Spec( k(y)) —— Y

LeMMA 1. With the notations as above we have:

dim(Supp(#’),) = dim Supp(Li*%F") .

Proor. We may assume X and Y affine, so let X =Spec(S), Y = Spec(R),
and let Y =[p]. Let k& be the field k(y)

k(y) = Rp/p'Rp
we then have:
X, = Spec(S @g k) .

Also we may assume that % =M where M is a bounded complex of
finite free S-modules, hence Li*# " is represented by M Q4(8Qpk)=
M’ R gk. But there is a spectral sequence:

E; 74 = TorS,(HY(M'), SQgk)=> HY (M @gk) .

If # € U Supp(HYM')Qgk), let i, be the maximum of the indexes i such
that:
z € Supp(H (M )Qrk) .
Then
x € Supp(TorS,(H{(M), S®zk))

for ¢ > 14,. Consequently we have
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TE Up+q-'to SuPP(Erp'q)
for all r, and hence
x € Supp(H™(M Qgk)) -

Conversely, if # e U Supp(HYM Qgk)) we have z € U, ,Supp(E,»9) for
all », Since
Supp(TorS (HY(M'), S®gk)) < SuppHYM )@ gk

we are done.
Now we come to the main application of our techniques, namely to

”Chow points”’. Let Y be a noetherian scheme, and E a locally free rank
n+ 1 sheaf of Op-modules. These define:

P = P(E), a P*-bundle over Y,

n: P - Y the projection,

0,(1), the “’tautological”” line bundle (s.t. 7,0,(1)=E),
P= P(E) the dual, Op(1) its tautological line bundle,
H < Px l71‘3 the universal hyperplane, i.e.,

EQE ~ 0y @ [trace zero subsp. of EQE] canonically,

and if 1 € I'(0y) corresponds to
8e I'(Y,EQE) = I'(P x y P, p;*0(1)@p,*0(1))
then H =V (9).
X4y the complex on P x 171"5:
0~ p,*Op(—1)®pa*Op(— 1) ———> Opyp > 0
Xy N Al
which resolves 0.
P x 17(15’)’° =the fibre product over Y,

gy the complex ®F*1 pi (" () on P x yﬁk.
This complex is a resolution of Og,, where

H, = Nk} pLyH) .

So much for the ’universal” elements of our construction. Now say &~
is a perfect complex on P and define:

Fpyn) = Lpy(F (1)) @ Ky, on Pxy P
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g (k)(n) = det(RpZ*f '(k)(n)), on ﬁ % ’
Z(n) = det(RwyF'(n)), on Y.

Lemma 2. If & satisfies condition @,y for the morphism n: P — Y, and
rzk—1, then &y, satisfies condition Q,_y,for the morphism py: P x Ylv”‘
—~ Pr,

Proor. By induction it is sufficient to prove the Lemma in case k=1
(with Pk-1 g5 the new ¥ and & ‘-1 a8 the new F7). If z is a point of
j’, let y=n(z) € Y and let k= Kk(y).

Identifying the fibre of P over y with I;k”, we get the diagram:

Spec(k(x)) —— I;k” I

Spec(k) — Y

Since p, is flat, it follows from E.G.A., Chapitre IV, Proposition 6.3.1
that:
depth(0y,,)+ depth(0s,s ,) = depth(0p ,) .

From this and the previous lemma it follows that we may assume Y =
Spec(k),P =P,k a field, in which case the Lemma is straight-forward.

CoroLLARY-DEFINITION. If F satisfies condition @, then F (.
satisfies Q_y), hence we can define the Chow divisor

Chow(#") = Div(RpgsF (r+1)

on Pr+1, Then Chow(F"(n)) =Chow(F") and there is a canonical isomor-
phism:
Opr+1(Chow(F ")) = Zpip(n), for every n .

Next, we would like to compute Z(n) in another way: since o,
i8 locally free, each term & ®X ) is perfect, hence there is a canonical
isomorphism

Lp(n) = det(RpgF gy(n)) = ®f-o det(Rpyy Lpy*F ' (n) QLK (70)1)(_1)1 .

On 1‘5", let 5#, be the invertible sheaf @3(1) pulled up from the st factor.
Then by definition:

H @ = 2*(0p(—1)®Pe* Jicir<.. <kl '@ - . .@H ;1



54 FINN KNUDSEN AND DAVID MUMFORD

hence if %: Pk » ¥ denotes the projection:
Li(n) = ®{‘§0®1<,-1<m<,~,§kdet(Rp2*(Lp1*.97 (n—1)
®p*(H5'®. .. ;Y)Y
= ®{‘=0®1<il<"_<,-I§kdet(L}'z*(Rn*.9¢' (n—1))
QH;'®... .0 )V

On the other hand, it is easy to check that for any perfect complex and
invertible sheaf:
det(9' QL) =~ det(9)RLrk(¥) .
Note that
tk(L(n)) = 2(F'(n)

i.e.=the continuous function ¥ — Z given by
y = 2(— 1)*dimy, H{(F @LPyy) -
We abbreviate this to y(n). Therefore we have canonical isomorphisms:
ZLi(n) = ®f=o®1§il<...<izgkﬁ*$ ('”"'l)(_l)l@(f 4 Q.. QF i,)('l)m’“"_n .
Now defined by induction:
a) difference’ sheaves:

AZL(n) = (n)QL(n—1)"1
A L (n) = A-1L(n)QA*1L(n—1)-1
~ A2 L (n)R4A%-2.L (n—1)2Q4A*-2.% (n — 2)

x ®f L -0

b) difference functions:

1) = x(n)—x(mn-1)
2e(n) = 2g—1(n) — Xx—a(n—1)

= Sk o(=1hx(n -1
Then it follows easily that:
Lopn) & WAL M)QH . . . @F in-D
Combining this with above Corollary, if " satisfies Q,), then we find

%+(n) is independent of n
Up to canonical isomorphisms, a*(47+1.%(n)) is independent of .
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Since 7, (0p,) = O, this implies that:

Up to canonical isomorphisms, A™+1.%(n) independent of n. Going
backwards, this implies that y is a polynomial of degree at most » and
that £ (n) can be expanded as in the following final Theorem:

THEOREM 4. Let Y be a noetherian scheme, E a locally free sheaf of rank
n+1 on Y,P=P(E) and ¥ a perfect complex on P satisfying condition
Qi for n: P — Y. Then there are sheaves M, . . ., M., 0n Y and canonical
and functorial isomorphisms:

det(RayZ ' (n)) = QLMW .
Moreover the leading term M ., is related to the Chow divisor by a canonical
1somorphism :
T¥ My ® (19 QH p13)? = Oprsa(Chow(F"))
where %: Pr+1 > Y is the projection,
H; = i*b sheaf Op(1) on Pra,
d(}') =leading term of the Hilbert polynomial y(F (n)).
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