THE CATEGORY OF GRADED MODULES

ROBERT FOSSUM* and HANS-BJØRN FOXBY

Recently several studies have been made concerning Z-graded commutative rings and their graded modules. For example Iversen [6] has used the theory of graded modules and its relation to the theory of coherent sheaves in order to establish Serre duality on projective n-space P^n . Matijevic and Roberts [9, 10] and Nagata [11] have studied properties, like regularity and the Cohen-Macaulay property, for graded rings. And Fossum [2] has studied graded injective modules and graded completions. In this paper we expand on the theme: Let P be a property of commutative rings. If P holds for just graded objects, then P holds in general. A prime example of this phenomenon is the theorem of Matijevic: If a Z-graded ring has the ascending chain condition for homogeneous ideals, then it is noetherian. An outline of this paper follows. We suppose that the commutative ring A is Z-graded and noetherian.

It is first shown that the maximal length of a chain of homogeneous prime ideals is at least one less than the Krull dimension of the ring. Then it is shown that the global dimension of A and the global dimension of the category of graded A-modules differs by at most one. Finally it is shown that $\mathrm{id}_A M - 1 \leq *\mathrm{id}_A M \leq \mathrm{id}_A M$ for all graded A-modules M, where id_A (respectively: $*\mathrm{id}_A$) denotes the injective dimension of M in the category of A-modules (respectively: category of graded A-modules).

1. The category *mod₄.

Throughout this paper $A = \coprod_{n \in \mathbb{Z}} A_n$ will be a Z-graded (or just graded) commutative ring with identity.

Let *mod_A denote the category of Z-graded A-modules. An object in this category will be called an A-*module. If M is an A-*module, then M has a decomposition (as an abelian group) $M = \coprod_n M_n$ where each M_n is an A_0 -module and $A_n M_m \subseteq M_{n+m}$ for all pairs n, m of integers. The set $\bigcup_n M_n$ will be denoted by h(M), the set of homogeneous elements in M. For a nonzero x in h(M) we write $\deg x = n$ when $x \in M_n$. If i is an inte-

Received June 6, 1974.

^{*} Research partially support by the United States National Science Foundation.

ger, the *module M(i) is the A-module M with grading given by $M(i)_n = M_{i+n}$.

The group of morphisms from the *module M to the *module M' is denoted by * $\operatorname{Hom}_0(M,M')$ and consists of all A-homomorphisms $f\colon M\to M'$ such that $f(M_n)\subseteq M'_n$ for all n. In general * $\operatorname{Hom}_i(M,M')$ is the group of all homogeneous A-homomorphisms $f\colon M\to M'$ such that $f(M_n)\subseteq M'_{i+n}$, or in other words

$$*Hom_i(M, M') = *Hom_0(M(-i), M') = *Hom_0(M, M'(i)).$$

The groups $*Hom_i(M, M')$ form a direct sum in $Hom_A(M, M')$ and we let $*Hom_A(M, M')$ denote the A-submodule $\coprod_n *Hom_n(M, M')$ of $Hom_A(M, M')$.

The tensor product $M \otimes_A M'$ of two *modules is also a graded module with $(M \otimes_A M')_n$ being generated by elements $x \otimes x'$ with $x \in M_i$, $x' \in M_i'$ where i+j=n.

Let $(M_{\alpha})_{\alpha\in I}$ be a family of A-*modules. Then $\coprod_{\alpha} M_{\alpha}$ becomes a *module with $(\coprod_{\alpha} M_{\alpha})_n = \coprod_{\alpha} (M_{\alpha})_n$. The (direct) product also exists in *mod_A with $(*\prod_{\alpha} M_{\alpha})_n = \prod_{\alpha} (M_{\alpha})_n$. Thus $*\prod_{\alpha} M_{\alpha} = \coprod_{n\in \mathbb{Z}} (\prod_{\alpha\in I} (M_{\alpha})_n)$. Note that we have the bijections

*Hom
$$(\coprod_{\alpha} M_{\alpha}, -) \xrightarrow{\sim} *\Pi_{\alpha} *Hom(M_{\alpha}, -)$$

and

*Hom
$$(-, *\Pi_{\alpha}M_{\alpha}) \xrightarrow{\sim} *\Pi_{\alpha}*Hom(-, M_{\alpha})$$
.

Likewise limits and colimits exist in *mod_A with

$$(*\lim M_{\alpha})_n = \underline{\lim} (M_{\alpha})_n$$

and

$$(* \underset{\leftarrow}{\lim} M_{\alpha})_n = \underset{\leftarrow}{\lim} (M_{\alpha})_n$$

for direct and inverse systems respectively.

The category *mod_A has enough projectives; in fact each *module is a homomorphic image (in *mod_A) of a *module of the form $\coprod_{\alpha} A(n_{\alpha})$ with $(n_{\alpha})_{\alpha \in I}$ a family of integers. From this it follows that a *module is projective in *mod_A if and only if it is projective in mod_A.

There are enough injective objects in $* mod_A$ (See Grothendieck [5, 1.10] or Fossum [2]) and the injective envelope in $* mod_A$ of a * module M will be denoted by $*E_A(M)$ (or *E(M)). Also the map $M \to *E(M)$ is an essential injection in $* mod_A$ (short: the map $M \to *E(M)$ is * essential). Thus it will follow from the lemma below that *E(M) is a submodule of the ordinary injective envelope, denoted by E(M), of M. From the usual properties of essential extensions and injective objects, it

follows that *E(M) is maximal among the graded submodules of E(M) which have M as graded submodule.

LEMMA 1.1. Let M be a subobject of the A-*module N. If M is *essential in N, then it is essential in N.

PROOF. Suppose M is *essential in N. Thus for each x in $h(N) - \{0\}$ there is an $a \in h(A)$ such that $ax \in M - \{0\}$. Let x be an element in N, say $x = x_r + \ldots + x_s \neq 0$ with each $x_i \in N_i$ and $r \leq s$. We will prove, by induction on s - r, that there is an element $a \in h(A)$ such that $ax \in M - \{0\}$, the case s - r = 0 being already handled by the assumption. Suppose that s - r > 0. Choose a in h(A) such that $ax_r \in M - \{0\}$. Let $x' = x - x_r = x_{r+1} + \ldots + x_s$. If ax' = 0, then $ax = ax_r \in M - \{0\}$ and we are done. Suppose that $ax' \neq 0$ and choose $b \in h(A)$, by the induction hypothesis, such that $bax' \in M - \{0\}$. Then $bax = bax' + bax_r \in M$. It cannot be the zero element because either $bax_r = 0$ and then $bax = bax' \neq 0$ or else $bax_r \neq 0$ and then bax_r is the homogeneous component of least degree in $bax = bax_r + bax'$.

This chapter concludes with some remarks about our notation and graded localization.

The derived functors in $* mod_A$ of * Hom are denoted by $* Ext^i$. Note that Tor_i is the ith derived functor of \otimes in both mod_A and $* mod_A$. As we have already indicated, we will denote concepts in $* mod_A$ in the same manner as corresponding concepts in mod_A except that we will place an asterisk (*) in front of the word. Examples: * module, * submodule, * ideal (= homogeneous ideal), * prime *ideal, *maximal *ideal (= maximal among *ideals), *ideal (= ideals), *ideal (= ideals), *ideals), *

If M is a submodule (in mod_A) of a *module N, then *M denotes the *submodule in N generated by the elements $h(M) = M \cap h(N)$, the set of homogeneous elements in M. If $\mathfrak p$ is an *ideal in A, then $\mathfrak p$ is a prime ideal if and only if $h(A) - h(\mathfrak p)$ is a multiplicatively closed subset. Hence if $\mathfrak p$ is a prime ideal in A, then * $\mathfrak p$, the associated *ideal, is a *prime *ideal.

Suppose $\mathfrak p$ is a prime ideal. Let $S=h(A)-\mathfrak p$. Then S is a multiplicatively closed subset in A. We let $A_{(\mathfrak p)}$ denote the ring $S^{-1}A$ (while $A_{\mathfrak p}$ denotes the ordinary localization at $\mathfrak p$). The ring $A_{(\mathfrak p)}$ is graded, in a natural way, by

 $(A_{(p)})_m = \{a/s : a \in h(A), s \in S \text{ with } \deg a = \deg s + m\}.$

The ring $A_{(p)}$ is a *local *ring with *maximal *ideal * $pA_{(p)}$. If q is a prime ideal in $A_{(p)}$, then q is of the form $rA_{(p)}$ where r is a prime ideal in A with * $r \le p$. If p is itself homogeneous we denote by *k(p) the residue class *ring $A_{(p)}/pA_{(p)}$ which is again a *local *ring (having a unique homogeneous ideal, namely 0).

2. Krull *dimension.

In this section we assume that A is a *noetherian *ring — which is the same as to say that all *ideals are finitely generated. That such a ring is noetherian has already been remarked and the proof of the result is due to Matijevic.

LEMMA 2.1. If A is *noetherian, then it is noetherian.

(For a proof see Matijevic [9] or Fossum [2].)

Thus we can assume, and indeed we do so, that A is a noetherian ring in the remainder of this chapter.

THEOREM 2.2. If A has only the trivial *ideals, then either A is a field (and so $A = A_0$) or A is a PID, in which case $A \cong A_0[T, T^{-1}]$.

PROOF. If A is not a field, then there exist homogeneous elements of positive degree. Let t be one of least positive degree, say $\deg t = d$. As the ideal At is homogeneous, the element t is invertible. Hence $A_d = A_0 t$ and, in general $A_{nd} = A_0 t^n$ for all $n \in \mathbb{Z}$. Hence the ring homomorphism $A_0[T, T^{-1}] \to A$ defined by $T \mapsto t$ (with $\deg T = d$ and T an indeterminate) is an *isomorphism.

COROLLARY 2.3. If \mathfrak{p} is a prime ideal in A, then $ht\mathfrak{p} \leq ht *\mathfrak{p} + 1$.

PROOF. We can compute htp in the ring $A_{(p)}$. Therefore we assume A is *local with *maximal *ideal *p. Now pick a prime ideal q with q < p and htq = htp - 1. (The case htp = 0 has been excluded, since in that case p = *p.) Since $q \subseteq p$, we have $*q \subseteq *p$.

If q = p, we conclude that q = q since

$$\dim(A/*\mathfrak{q}) = \dim(A/*\mathfrak{p}) \le 1$$

by the theorem, and hence htp = htq + l = ht*p + 1 as desired.

We proceed by induction on ht*p.

Suppose ht* $\mathfrak{p}=0$. Then * $\mathfrak{q}=\mathfrak{p}$ (since * \mathfrak{p} is the only prime *ideal in A) and we have shown our inequality in this case.

Suppose ht*p>0 and that *q<*p. By the induction hypothesis, $ht*q+1 \ge htq$. But also $ht*p \ge ht*q+1$ and htq=htp-1. Therefore $ht*p \ge htp-1$ which is our desired result.

PROPOSITION 2.4 (Matijevic). If \mathfrak{p} is a prime *ideal, then *ht \mathfrak{p} = ht \mathfrak{p} . In other words: If h = ht \mathfrak{p} , then there is a chain of homogeneous prime ideals

$$q_1 < q_2 < \ldots < q_h < p$$
.

PROOF. We go by induction on htp. If htp=0 there is nothing to prove. Suppose the result is true for all prime *ideals q with $0 \le htq < h$. Let htp=h and let $\mathfrak{p}_1 < \ldots < \mathfrak{p}_h < \mathfrak{p}$ be a chain of prime ideals. Then $\mathfrak{p}_1 = \mathfrak{p}_1$ since htp_0. Pick an $a \in h(\mathfrak{p}) - \mathfrak{p}_1$ and set

$$\overline{A} = A/(\mathfrak{p}_1 + Aa)$$
 and $\overline{\mathfrak{p}} = \mathfrak{p}/(\mathfrak{p}_1 + aA)$.

Since $\operatorname{ht}_{\bar{A}}\mathfrak{p} = h - 1$, there exist, by the induction hypothesis, h - 1 prime *ideals $\mathfrak{q}_2, \ldots, \mathfrak{q}_h$ in \bar{A} and thereby $\mathfrak{q}_2, \ldots, \mathfrak{q}_h$ prime *ideals in A such that

$$\mathfrak{p}_1 + Aa \leq \mathfrak{q}_2 < \ldots < \mathfrak{q}_h < \mathfrak{p}$$
.

Hence we have the desired chain.

THEOREM 2.5. If A is a graded ring, then $\dim A - 1 \leq *\dim A \leq \dim A$.

PROOF. This follows directly from (2.3) and (2.4).

3. Global dimension.

We have seen already that a *module is *projective if and only if it is projective. Thus the next result is obvious.

Proposition 3.1. Let M be an A-*module. Then

$$*pd_A M = pd_A M$$
.

In fact there is a corresponding result for flat (or weak) dimension.

Proposition 3.2. Let M be an A-*module. Then

$$* \mathrm{fd}_A M = \mathrm{fd}_A M.$$

PROOF. It is enough to prove that any *flat *module is flat. Suppose M is a *flat *module. A careful revision of the proof of Théorème 2 in Lazard [8] shows that the *flat *module M is the direct limit of a direct

system of finitely generated free *modules (in the category *mod_A) and hence M is flat.

Let \mathfrak{a} be an *ideal in A. Then a basis for the \mathfrak{a} -*adic topology at zero is given by the family $\{\coprod_{i=r}^{\mathfrak{s}}(\mathfrak{a}^n)_i\}_{n,r,s}$ and the \mathfrak{a} -*adic completion of A is

$$*\hat{A} = *\lim_n A/\mathfrak{a}^n$$

which is a noetherian graded ring. (See Fossum [2].) As in the ungraded case it follows that $*\hat{A}$ is a *flat A-*module.

COROLLARY 3.3. The a-*adic completion * \hat{A} is a flat A-module.

Suppose we assign $\deg T = 1$ to the indeterminate T over A. The (T)-*adic completion of A[T] is denoted by A[[*T]] and is a subring of the ring of formal power series A[[T]] defined by

$$(A[[*T]])_n \, = \, \{ \textstyle \sum_{i=n}^{-\infty} \, a_i T^{n-i} : \, \, a_i \in A_i \} \; .$$

(Note that in case $A_i = 0$ for i < 0, then A[[*T]] = A[T].)

COROLLARY 3.4. The base change $A \rightarrow A[[*T]]$ is flat.

Just as in the ungraded case, the base changes $A \to *\hat{A}$ and $A \to A[[*T]]$ preserve, for example, finite global dimension.

Let gl*dim A denote the global dimension of *mod_A.

THEOREM 3.5. For the graded ring A, the following inequalities hold:

$$\operatorname{gldim} A - 1 \leq \operatorname{gl} \operatorname{*dim} A \leq \operatorname{gldim} A$$
.

PROOF. The inequality on the right follows from (3.1). As for the inequality on the left, recall that

$$\operatorname{gldim} A = \sup_{m} \operatorname{pd}_{A} A/m$$
,

the supremum taken over all maximal ideals \mathfrak{m} in A. Let \mathfrak{m} be one of these maximal ideals. If $\mathfrak{m}=*\mathfrak{m}$, then

$$\operatorname{pd}_A A/\mathfrak{m} = \operatorname{*pd}_A A/\mathfrak{m} \leq \operatorname{gl} \operatorname{*dim} A$$
.

Suppose, on the other hand, that there is a proper inclusion $\mathfrak{m} \supseteq *\mathfrak{m}$. Let B denote the *local ring $A_{(\mathfrak{m})} = A_{(*\mathfrak{m})}$ with a maximal ideal $\mathfrak{m}B$ and a *maximal *ideal * $\mathfrak{m}B$, which we denote by \mathfrak{n} . Then $A/\mathfrak{m} = B/\mathfrak{m}B$ and $pd_A A/\mathfrak{m} = pd_B B/\mathfrak{m}B$. Also $pd_B B/\mathfrak{n} = *pd_B B/\mathfrak{n} \leq gl*dim A$. Since (B,\mathfrak{n})

is a *local ring, the residue class ring B/n is a PID (see (2.2)) and hence there is an $a \in B$ such that mB = n + Ba. Then the sequence

$$0 \to B/\mathfrak{n} \stackrel{a}{\to} B/\mathfrak{n} \to B/\mathfrak{m}B \to 0$$

is exact, showing that

$$\operatorname{pd}_B B/\mathfrak{m}B \leq \operatorname{pd}_B B/\mathfrak{n} + 1$$
.

Hence $\operatorname{pd}_A A/\mathfrak{m} \leq \operatorname{gl} * \dim A + 1$.

4. *Injective *modules.

Using almost the same proof as in the ungraded case, we get this next result.

Lemma 4.1. An A-*module E is *injective if and only if the canonical homomorphism $E \to *Hom(\mathfrak{a}, E)$ is surjective for all *ideals \mathfrak{a} .

In the rest of this section we assume that A is noetherian.

LEMMA 4.2. Let M and N be *modules with M finitely generated. Then

*Hom
$$(M,N) = \text{Hom}_A(M,N)$$
.

(In other words: Each homomorphism $M \to N$ is a sum of homogeneous homomorphisms.) Furthermore for each $i \ge 0$, we have

*
$$\operatorname{Ext}_{A}^{i}(M,N) = \operatorname{Ext}_{A}^{i}(M,N)$$
.

PROOF. Since A is noetherian, the module M is finitely presented by free *modules

$$F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$
.

Both *Hom(-,N) and $\operatorname{Hom}_{\mathcal{A}}(-,N)$ are left exact. So it is sufficient to show that *Hom $(\mathcal{A}(n),N)$ = Hom (\mathcal{A},N) . But this is obvious.

EXAMPLE. Assume that the grading is not finite, so there is an element $(a_n)_{n\in\mathbb{Z}}$ in $\prod_{n\in\mathbb{Z}}A_n$ not in $\coprod A_n$. Let $M=\coprod_{n\in\mathbb{Z}}A$ be the direct sum of countably many copies of A and let $f\colon M\to A$ be defined by

$$f((x_i)_{i\in\mathbb{Z}}) = \sum_{i\in\mathbb{Z}} a_i x_i$$
.

This f is not the sum of finitely many homogeneous homomorphisms $M \to A$ and thus

*Hom
$$(M,A)$$
 \neq Hom (M,A) .

COROLLARY 4.3. An A-*module E is *injective if and only if

$$\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, E) = 0$$

for all *ideals a in A and for all i > 0.

COROLLARY 4.4. Let $S \subseteq h(A)$ be a multiplicatively closed set and let M be an A-*module. Then

$$*id_{S^{-1}A} S^{-1}M \leq *id_A M$$
.

The next two results follow as in the ungraded case.

LEMMA 4.5. When p is a prime *ideal, then

$${}^*E_{A(\mathfrak{p})}({}^*k(\mathfrak{p})) \, \cong \, {}^*E_A(A/\mathfrak{p})_{(\mathfrak{p})} \, \cong \, {}^*E_A(A/\mathfrak{p}) \; .$$

LEMMA 4.6. Let $f: A \to B$ be a *ring homomorphism and assume that B is finitely generated as an A-*module. Let M be an A-*module. Then

$$*E_B(\operatorname{Hom}_A(B,M)) \cong \operatorname{Hom}_A(B,*E_A(M))$$
.

LEMMA 4.7. Let p be a prime *ideal. Then

$$\operatorname{Hom}_{A}(A/\mathfrak{p}, *E_{A}(A/\mathfrak{p}))_{(\mathfrak{p})} \cong *k(\mathfrak{p}).$$

PROOF. By (4.5) and (4.6), the left hand side is just $*E_{*k(p)}(*k(p))$, but *k(p) has only the trivial *ideals. Hence, by (4.3), all *k(p)-*modules are *k(p)-*injective. In particular

$$*E_{*k(\mathfrak{p})}(*k(\mathfrak{p})) \cong *k(\mathfrak{p}).$$

THEOREM 4.8. Each *injective *module is a unique sum of indecomposable *injective *modules and each of these has the form * $E(*k(\mathfrak{p}))$ where \mathfrak{p} is a prime *ideal.

PROOF. This follows from Gabriel [4, Chapitre IV, Théorème 2]. The structure of $*E(*k(\mathfrak{p}))$ is discussed in Fossum [2].

Let M be a *module and let

$$0 \rightarrow M \rightarrow *I^0 \rightarrow *I^1 \rightarrow \dots$$

and

$$0 \rightarrow M \rightarrow I^0 \rightarrow I^1 \rightarrow \dots$$

be minimal injective resolutions of M in *mod_A and mod_A respectively. For the prime *ideal $\mathfrak p$ let * $\mu^n(\mathfrak p, M)$ and $\mu^n(\mathfrak p, M)$ be the number of copies of * $E(A/\mathfrak p)$ in * I^n and of $E(A/\mathfrak p)$ in I^n respectively.

COROLLARY 4.9. Let M be a *module and p a prime *ideal.

- (a) The group $\operatorname{Ext}_{A}^{n}(A/\mathfrak{p},M)_{(\mathfrak{p})}$ is a free $*k(\mathfrak{p})$ -*module of rank $*\mu^{n}(\mathfrak{p},M)$.
- (b) * $\mu^{n}(\mathfrak{p}, M) = \mu^{n}(\mathfrak{p}, M)$.
- (c) $\operatorname{id}_{\mathcal{A}_{\mathfrak{n}}} M_{\mathfrak{p}} = * \operatorname{id}_{\mathcal{A}_{(\mathfrak{n})}} M_{(\mathfrak{p})}$

PROOF. As in the ungraded case (see Bass [1]) it follows that

$$\operatorname{Ext}_{A}^{n}(A/\mathfrak{p}, M)_{(\mathfrak{p})} \cong \operatorname{Hom}(A/\mathfrak{p}, *I^{n})_{(\mathfrak{p})}.$$

So (a) follows from (4.7) since, for $q \neq p$, the group

$$\operatorname{Hom}(A/\mathfrak{p}, *E(A/\mathfrak{q}))_{(\mathfrak{w})} = 0.$$

If we localize $\operatorname{Ext}_{A}^{n}(A/\mathfrak{p}, M)_{(\mathfrak{p})}$ at \mathfrak{p} we get a vector space over $k(\mathfrak{p})$ (which is just $*k(\mathfrak{p})_{\mathfrak{p}}$) of rank $*\mu^{n}(\mathfrak{p}, M)$. Thus (b) follows. And (c) is a direct consequence of (b).

Now we will compare the injective dimension of an object in * mod_A with its injective dimension in mod_A .

THEOREM 4.10. Let E be an *injective *module. Then

$$id_A E \leq 1$$
.

In fact the minimal injective resolution for $*E(A/\mathfrak{p})$ is

$$0 \to *E(A/\mathfrak{p}) \to E(A/\mathfrak{p}) \to \coprod_{\mathfrak{p}} E(A/\mathfrak{q}) \to 0$$

where the sum is taken over all prime ideals $q \neq p$ with *q = p.

PROOF. According to (4.8) we may assume that $E = E^*(A/\mathfrak{p})$ where \mathfrak{p} is a prime *ideal. We may assume that (A,\mathfrak{p}) is *local because $E = E_{(\mathfrak{p})}$ by (4.5). Furthermore if

$$0 \rightarrow E \rightarrow I^0 \rightarrow I^1 \rightarrow 0$$

is a (minimal) $A_{(p)}$ -injective resolution for E, then it is a (minimal) A-injective resolution for E.

Let now m be a prime ideal containing \mathfrak{p} . If $\mathfrak{m}=\mathfrak{p}$, then

$$\operatorname{Ext}^{i}(A/\mathfrak{m}, E) = 0$$
 for $i > 0$

by (4.3). So assume $m \neq p$. Then there is an a in m - p such that m = p + Aa and consequently an exact sequence

$$(4.11) \stackrel{a}{\to} \operatorname{Ext}_{A}^{i}(A/\mathfrak{p}, E) \to \operatorname{Ext}_{A}^{i+1}(A/\mathfrak{m}, E) \to \operatorname{Ext}_{A}^{i+1}(A/\mathfrak{p}, E) \stackrel{a}{\to}$$

from which it follows that $\operatorname{Ext}^i(A/\mathfrak{m}, E) = 0$ for i > 1. Suppose that $\operatorname{id}_A E \geq 2$ and choose (e.g. by Foxby [3]) a prime ideal \mathfrak{q} such that

$$\operatorname{Ext}_{A^2}(A/\mathfrak{q}, E)_{\mathfrak{q}} \neq 0$$
.

Then \mathfrak{q} must be in the support of E which is $V(\mathfrak{p})$. Therefore \mathfrak{q} is one of the above maximal ideals. We have a contradiction, so id $L \subseteq 1$.

To establish the second statement, observe that the exact sequence (4.11) above begins like

$$0 \to A/\mathfrak{p} \stackrel{a}{\to} A/\mathfrak{p} \to \operatorname{Ext}^1(A/\mathfrak{m}, E) \to 0$$

since $\operatorname{Hom}_{A}(A/\mathfrak{p}, E) \cong A/\mathfrak{p}$ by (4.7). Hence $\operatorname{Ext}^{1}(A/\mathfrak{m}, E)$ is cyclic. So if $0 \to *E(A/\mathfrak{p}) \to E(A/\mathfrak{p}) \to I^{1} \to 0$

is the minimal injective resolution for $*E(A/\mathfrak{p})$, then I^1 contains exactly one copy of $E(A/\mathfrak{m})$ and we are done.

COROLLARY 4.12. If M is an A-*module, then

$$\operatorname{id}_{\mathcal{A}} M - 1 \leq * \operatorname{id}_{\mathcal{A}} M \leq \operatorname{id}_{\mathcal{A}} M .$$

Matijevic has demonstrated the equivalence of the first two statements in the next corollary.

COROLLARY 4.13. The following statements are equivalent.

- (a) The *ring A is Gorenstein.
- (b) The local rings $A_{\mathfrak{p}}$ are Gorenstein for all graded prime ideals \mathfrak{p} .
- (c) The *id_{A(y)} $A_{(y)} < \infty$ for all prime ideals y (respectively graded prime ideals).

PROOF. Suppose (a). Note first that $id_{A_{(p)}}A_{(p)}=\sup_{\mathfrak{q}}ht\mathfrak{q}$ where the supremum is taken over all prime ideals \mathfrak{q} with $\mathfrak{q}=\mathfrak{p}$. From (2.3) it follows that

$$*\mathrm{id}_{\mathcal{A}(\mathfrak{p})}A_{(\mathfrak{p})} \leqq \mathrm{id}_{\mathcal{A}(\mathfrak{p})}A_{(\mathfrak{p})} \leqq \mathrm{ht}\mathfrak{p} + 1 \ < \ \infty \ .$$

Therefore (a) implies (c).

Since $\operatorname{id}_{A_{\mathfrak{q}}} A_{\mathfrak{q}} \leq \operatorname{id}_{A_{(\mathfrak{q})}} A_{(\mathfrak{q})} \leq *\operatorname{id}_{A_{(\mathfrak{q})}} A_{(\mathfrak{q})} + 1$ for all prime ideals q, according to the theorem, we get that (c) implies (b).

Now (b) implies (a) by (4.9).

Note that for a prime *ideal $\mathfrak p$ for which $A_{(\mathfrak p)}$ is Gorenstein we have $*\mathrm{id}_{A_{(\mathfrak p)}}A_{(\mathfrak p)}=\mathrm{ht}\mathfrak p$.

Similarly we have the following result.

COROLLARY 4.14. The following statements are equivalent.

- (a) A is a (locally) regular ring.
- (b) $A_{\mathfrak{p}}$ is a regular local ring for all graded prime ideals \mathfrak{p} .
- (c) gl*dim $A_{(p)} < \infty$ for all prime ideals \mathfrak{p} .

PROOF. The proof is the same as for (4.13) except we use (3.5) instead of (4.9).

In [11] Nagata raised the following conjecture: If (the non-negatively graded ring) A is Cohen-Macaulay at all the homogeneous maximal ideals, then A is Cohen-Macaulay. Matijevic and Roberts have (independently) solved the conjecture in the affirmative, see [10]. For completion we have included a proof (in the Z-graded case).

Proposition 4.15. (Matijevic and Roberts). If $A_{\mathfrak{p}}$ is a Cohen-Macaulay ring for all graded prime ideals \mathfrak{p} in A, then A is a Cohen-Macaulay ring.

PROOF. Let m be any maximal ideal in A and put $\mathfrak{p}=*\mathfrak{m}$ and $\mathfrak{n}=\mathfrak{m}A_{(\mathfrak{p})}$. We want to show that $A_{\mathfrak{m}}$ is Cohen-Macaulay. But $A_{\mathfrak{m}}=(A_{(\mathfrak{p})})_{\mathfrak{n}}$. Therefore it suffices to assume that (A,\mathfrak{p}) is *local with $A_{\mathfrak{p}}$ Cohen-Macaulay, and we are then required to show that $A_{\mathfrak{m}}$ is Cohen-Macaulay for all maximal ideals m containing \mathfrak{p} strictly.

Put $d = \operatorname{depth} A_{\mathfrak{p}} = \operatorname{ht} \mathfrak{p}$. By (4.9) we have that $\operatorname{Ext}^d(A/\mathfrak{p}, A)$ is a free A/\mathfrak{p} -*module and that $\operatorname{Ext}^i(A/\mathfrak{p}, A) = 0$ for i < d. Choose an a in A such that $\mathfrak{m} = \mathfrak{p} + (a)$, cf. (2.2), and consider the long-exact sequence:

$$\cdots \to \operatorname{Ext}^{i-1}(A/\mathfrak{p},A) \to \operatorname{Ext}^i(A/\mathfrak{m},A) \to \operatorname{Ext}^i(A/\mathfrak{p},A) \to \cdots.$$

It follows that $\operatorname{Ext}^i(A/\mathfrak{m},A)=0$ for i < d and that $\operatorname{Ext}^d(A/\mathfrak{m},A)$ is a submodule of $\operatorname{Ext}^d(A/\mathfrak{p},A)$. Since $\operatorname{Ext}^d(A/\mathfrak{p},A)$ is a free A/\mathfrak{p} -module we obtain $\operatorname{Ext}^d(A/\mathfrak{m},A)=0$, and hence

$$\operatorname{depth} A_{\mathfrak{m}} \, \geqq \, d+1 \, = \, \operatorname{ht} \mathfrak{p} + 1 \, \geqq \, \operatorname{ht} \mathfrak{m}$$

(cf. 2.3) as desired.

REMARK. If A is a homomorphic image (in the graded sense) of a graded Gorenstein ring, say R, then the above result follows directly from the fact that the modules of dualizing differentials $\operatorname{Ext}_R{}^i(A,R)$ are graded A-modules (and therefore — if non-zero — have graded prime ideals in their supports).

5. Complete graded ring of quotients.

Finally we define the complete *ring of quotients. But first we give an example.

EXAMPLE. Let k be a field and X and Y indeterminates over k with $\deg X = 1$ and $\deg Y = -1$. Set A = k[X, Y]/(XY). Then *id_A A = 1 and all homogeneous regular elements are units. Thus $S^{-1}A$ is not self-injective, where S is the set of regular homogeneous elements in A.

Let A be arbitrary and denote by Z the set of regular elements in A. Set $Q = Z^{-1}A$, so Q is the classical ring of quotients of A. When A is noetherian it has only finitely many associated prime ideals and then Q is also the complete ring of quotients of A defined in the sense of Utumi with "dense ideals". (See Lambek [7].) We will copy this idea, using graded regular ideals, i.e. ideals containing a regular element, for our set of dense ideals.

Let $*Q_n$ denote the set of fractions a/z in Q such that there is a regular *ideal a such that $(a/z)a_i \subseteq A_{i+n}$ for all i. It is not hard to show that

$$*Q_n*Q_m \subseteq *Q_{n+m}$$

and that the sum $\sum_{n\in\mathbb{Z}} {}^*Q_n$ is direct in Q. Thus ${}^*Q = \coprod {}^*Q_n$ becomes a graded ring — the complete graded ring of quotients of A.

Let a be an *ideal which meets Z in z. There is an injection

$$\operatorname{Hom}(\mathfrak{a},A)\to Q$$

defined by $f \to f(z)/z$. Note that then

$$*Q = \bigcup_{\mathfrak{a}} \operatorname{Hom}(\mathfrak{a}, A)$$
 and $*Q_n = \bigcup_{\mathfrak{a}} *\operatorname{Hom}_n(\mathfrak{a}, A)$,

the union taken over all ideals \mathfrak{a} with $\mathfrak{a} \cap Z \neq \emptyset$. We obtain the following inclusions:

$$\begin{array}{ccc} A \rightarrow S^{-1}A \rightarrow {}^*Q \rightarrow {}^*E(A) \\ \downarrow & \downarrow \\ Z^{-1}A = Q \rightarrow E(A) \end{array}$$

where $S = Z \cap h(A)$ and the maps on the top are in *mod_A.

Proposition 5.1. The complete graded ring of quotients *Q of A is *injective if and only if Q is injective.

PROOF. Suppose that *Q is injective. Since $Q = Q \otimes_A *Q$ we have

$$\operatorname{id}_Q Q \leq \operatorname{id}_A {}^*Q \leq {}^*\operatorname{id}_A {}^*Q + 1 \;.$$

Hence Q is injective (cf. [1]).

If, on the other hand, Q is injective, then Q = E(A). Choose $e \in h(*E(A))$. Let \bar{e} be its image in *E(A)/A, a submodule of E(A)/A. Set $a = \operatorname{Ann}_A \bar{e}$. Then a is a graded ideal (namely the annihilator of a homogeneous element in a *module) and $a \cap Z \neq \emptyset$ since $\bar{e} \in Q/A$. Now $ea_n \subseteq A_{d+n}$ where $d = \deg e$, so, in fact, we have that $e \in *Q$. Hence the homogeneous elements of *E(A) are in *Q, and so *Q = *E(A).

REFERENCES

- 1. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- 2. R. M. Fossum, On the structure of injective modules. To appear in Math. Scand.
- H.-B. Foxby, Injective modules under flat base change. To appear in Proc. Amer. Math. Soc.
- 4. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1963), 323-448.
- A. Grothendieck, Sur quelque points d'algébre homologique, Tohoku Math. J. 9 (1957), 119-183.
- B. Iversen, Noetherian Graded Modules I, Aarhus Universitet Matematisk Institut Preprint Series 1971/72, no. 29, Aarhus, 1972.
- 7. J. Lambek, Lectures on Rings and Modules, Blaisdell Publ. Co. Waltham, Mass. 1966.
- 8. D. Lazard, Sur les modules plat, C.R. Acad. Sci. Paris Sér. A. 258 (1964), 6313-6316.
- 9. J. R. Matijevic, Some topics in graded rings, Thesis, University of Chicago, 1973.
- 10. J. R. Matijevic and P. Roberts, To appear in J. Math. Kyoto Univ.
- M. Nagata, Some questions on Cohen-Macaulays rings, J. Math. Kyoto Univ. 13 (1973), 123-128.

UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, U.S.A.

AND

UNIVERSITY OF COPENHAGEN, DENMARK