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THE CATEGORY OF GRADED MODULES

ROBERT FOSSUM* and HANS-BJORN FOXBY

Recently several studies have been made concerning Z-graded commu-
tative rings and their graded modules. For example Iversen [6] has used
the theory of graded modules and its relation to the theory of coherent
sheaves in order to establish Serre duality on projective n-space P».
Matijevic and Roberts [9, 10] and Nagata [11] have studied properties,
like regularity and the Cohen-Macaulay property, for graded rings. And
Fossum [2] has studied graded injective modules and graded comple-
tions. In this paper we expand on the theme: Let P be a property of
commutative rings. If P holds for just graded objects, then P holds in
general. A prime example of this phenomenon is the theorem of Mati-
jevic: If a Z-graded ring has the ascending chain condition for homogene-
ous ideals, then it is noetherian. An outline of this paper follows. We
suppose that the commutative ring 4 is Z-graded and noetherian.

It is first shown that the maximal length of a chain of homogeneous
prime ideals is at least one less than the Krull dimension of the ring.
Then it is shown that the global dimension of 4 and the global dimension
of the category of graded 4-modules differs by at most one. Finally it
is shown that id, M —-1=*id M <id M for all graded 4-modules M,
where id , (respectively: *id ,) denotes the injective dimension of M in
the category of A-modules (respectively: category of graded 4-modules).

1. The category *mod,.

Throughout this paper 4 =11,z 4, will be a Z-graded (or just graded)
commutative ring with identity.

Let *mod, denote the category of Z-graded A-modules. An object in
this category will be called an A-*module. If M is an A-*module, then
M has a decomposition (as an abelian group) M =11, M, where each M,
is an A,-module and 4, M, <M, .. for all pairs n,m of integers. The set
U, M, will be denoted by h (M), the set of homogeneous elements in M.
For a nonzero z in h(M) we write degx=n when x € M,,. If ¢ is an inte-
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ger, the *module M(i) is the A-module M with grading given by
M (@)n =M i+n

The group of morphisms from the *module M to the *module M’ is
denoted by *Hom,(M,M’) and consists of all 4-homomorphisms
J: M - M’ such that f(M,)c M, for all n. In general *Hom,(M,M’) is
the group of all homogeneous A4-homomorphisms f: M — M’ such that
fM,)sM',,,, or in other words

*Hom, (M, M’) = *Homy(M(—4), M’) = *Homy (M, M'(i)) .

The groups *Hom,(M,M’) form a direct sum in Hom ,(M,M’) and we
let *Hom,(M,M') denote the A-submodule I],*Hom,(M,M’) of
Hom (M, M").

The tensor product M ® , M’ of two *modules is also a graded module
with (M ® 4M'), being generated by elements zx®x' with ze M,,
x’' € M; where t+j=n.

Let (M,),.; be a family of A-*modules. Then [, M, becomes a *mod-
ule with (I1,M,),=11,(M,),. The (direct) product also exists in *mod ,
with (*T1,M,),=T1.(}M.),. Thus *IL.M,=1Lncz(TL.es(M.),). Note
that we have the bijections

*Hom (I1,M,, —) —— *I1,*Hom (M, —)
and
*Hom (—,*I1,M,) —— *I1,*Hom(—, M) .

Likewise limits and colimits exist in *mod , with

(*lim M ,), = lim(M,),
and
(*lim M,), = lim (M),

for direct and inverse systems respectively.

The category *mod, has enough projectives; in fact each *module is
a homomorphic image (in *mod,) of a *module of the form IJ,4(n,)
with (n,),.; & family of integers. From this it follows that a *module is
projective in *mod , if and only if it is projective in mod,,.

There are enough injective objects in *mod, (See Grothendieck
(5, 1.10] or Fossum [2]) and the injective envelope in *mod , of & *module
M will be denoted by *E (M) (or *E(M)). Also the map M — *E(M)
is an essential injection in *mod 4 (short: the map M — *E (M) is *essen-
tial). Thus it will follow from the lemma below that *E(M) is a sub-
module of the ordinary injective envelope, denoted by E(M), of M.
From the usual properties of essential extensions and injective objects, it
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290 ROBERT FOSSUM AND HANS-BJORN FOXBY

follows that *E(M) is maximal among the graded submodules of E(M)
which have M as graded submodule.

LemMA 1.1. Let M be a subobject of the A-*module N. If M is *essential
in N, then it is essential in N.

Proor. Suppose M is *essential in N. Thus for each z in h(N)— {0}
there is an a € h(4) such that ax € M —{0}. Let « be an element in N,
say xr=2x,+...+x,+0 with each z;e N; and r<s. We will prove, by
induction on s—r, that there is an element @ € h(4) such that ax e
M — {0}, the case s —r =0 being already handled by the assumption. Sup-
pose that s—r>0. Choose a in h(4) such that ax,e M —{0}. Let ='=
=%, =%pq+ ...+, If ax’'=0, then ax=ax,e€ M —{0} and we are
done. Suppose that ax’+0 and choose b € h(4), by the induction hypo-
thesis, such that bax’ € M — {0}. Then bax=bax'+bax,e M. It cannot
be the zero element because either bax,=0 and then bax=bax'+0 or
else bax, =+ 0 and then baz, is the homogeneous component of least degree
in bax =bax, + bax'.

This chapter concludes with some remarks about our notation and
graded localization.

The derived functors in *mod, of *Hom are denoted by *Ext?. Note
that Tor; is the ¢th derived functor of ® in both mod, and *mod,.
As we have already indicated, we will denote concepts in *mod, in the
same manner as corresponding concepts in mod, except that we will
place an asterisk (*) in front of the word. Examples: *module, *submodule,
*ideal (=homogeneous ideal), *prime *ideal, *maximal *ideal (= maximal
among *ideals), *local *ring (=graded ring with unique *maximal
*ideal), *noetherian *ring (=graded ring with ascending chain condition
on *ideals), *injective *module (=injective in the category *mod ),
*dim 4 (=maximal length of a chain of *prime *ideals in A), etc.

If M is a submodule (in mod ) of a *module &, then */ denotes the
*submodule in N generated by the elements h(M)= M nh(N), the set of
homogeneous elements in M. If p is an *ideal in 4, then p is a prime
ideal if and only if h(4)—h(p) is a multiplicatively closed subset. Hence
if p is a prime ideal in A4, then *p, the associated *ideal, is a *prime *ideal.

Suppose p is a prime ideal. Let S=h(4)—p. Then S is a multiplica-
tively closed subset in 4. We let A, denote the ring S-'4 (while 4,
denotes the ordinary localization at p). The ring A4, is graded, in a
natural way, by

(Ag)m = {afs : ach(d), se 8 with dega=degs+m} .
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The ring A, is a *local *ring with *maximal *ideal *p A, . If g is a prime
ideal in 4, then q is of the form vA, where r is a prime ideal in 4 with
*r<*p. If p is itself homogeneous we denote by *k(p) the residue class
*ring A,)[pAq, which is again a *local *ring (having a unique homo-
geneous ideal, namely 0).

2. Krull *dimension.

In this section we assume that A4 is a *noetherian *ring — which is
the same as to say that all *ideals are finitely generated. That such a
ring is noetherian has already been remarked and the proof of the result
is due to Matijevic.

LemmMma 2.1. If A is *noetherian, then it is noetherian.

(For a proof see Matijevic [9] or Fossum [2].)
Thus we can assume, and indeed we do so, that 4 is a noetherian ring
in the remainder of this chapter.

THEOREM 2.2. If A has only the trivial *ideals, then either A is a field
(and so A=4,) or 4 is a PID, in which case A~A[T,T-1].

Proor. If 4 is not a field, then there exist homogeneous elements of
positive degree. Let ¢ be one of least positive degree, say degt=d. As
the ideal At is homogeneous, the element ¢ is invertible. Hence A ;=4
and, in general 4, ;=A4" for all n e Z. Hence the ring homomorphism
AT, T-1] — A defined by T t (with degT'=d and 7' an indeterminate)
is an *isomorphism.

CoROLLARY 2.3. If p ts a prime ideal in A, then htp <ht*p+1.

Proor. We can compute htp in the ring 4,. Therefore we assume 4
is *local with *maximal *ideal *p. Now pick a prime ideal q with q<p
and htq=htp — 1. (The case htp = 0 has been excluded, since in that case

=*p.) Since g<p, we have *q< *p.
If *q=*p, we conclude that q="*q since

dim (4/*q) = dim (4/*p) < 1
by the theorem, and hence htp =htq+1=ht*p+1 as desired.
We proceed by induction on ht*p.

Suppose ht *p = 0. Then *q = *p (since *p is the only prime *ideal in 4)
and we have shown our inequality in this case.
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Suppose ht*p>0 and that *q<*p. By the induction hypothesis,
ht*q+1=htq. But also ht*p=>ht*q+1 and htq=htp—1. Therefore
ht*p >htp — 1 which is our desired result.

ProrositioN 2.4 (Matijevic). If p ¢s a prime *ideal, then *htp=htp.
In other words: If h=htyp, then there is a chain of homogeneous prime ideals

G <02 < ... << p.

Proor. We go by induction on htp. If htp=0 there is nothing to
prove. Suppose the result is true for all prime *ideals q with 0 <htq <A.
Let htp=»h and let p;< ... <p,<p be a chain of prime ideals. Then
P1="*p, since htp,=0. Pick an a € h(p)—p, and set

4 = Al(p;+Aa) and P = p/(p,+ad).

Since htzp =h—1, there exist, by the induction hypothesis, #—1 prime
*ideals qy,. . .,q; in 4 and thereby q,,. . .,q; prime *ideals in 4 such that

p1+d4a 2 Ga < oo <O <H.

Hence we have the desired chain.
THEOREM 2.5. If A is a graded ring, then dimA4 —1<*dim4 <dim 4.

Proor. This follows directly from (2.3) and (2.4).

3. Global dimension.
We have seen already that a *module is *projective if and only if it

is projective. Thus the next result is obvious.
ProposiTION 3.1. Let M be an A-*module. Then
*pd AM = pd A‘M .

In fact there is a corresponding result for flat (or weak) dimension.

ProrosiTION 3.2. Let M be an A-*module. Then
*d, M =fd M.
Proor. It is enough to prove that any *flat *module is flat. Suppose

M is a *flat *module. A careful revision of the proof of Théoréme 2 in
Lazard [8] shows that the *flat *module M is the direct limit of a direct
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system of finitely generated free *modules (in the category *mod ) and
hence M is flat.

Let a be an *ideal in A. Then a basis for the a-*adic topology at zero

is given by the family {II;_,(a");},,,. , and the a-*adic completion of A
is

*4 = qgn Ao
which is a noetherian graded ring. (See Fossum [2].) As in the ungraded

case it follows that *4 is a *flat 4-*module.

COROLLARY 3.3. The a-*adic completion *A is a flat A-module.

Suppose we assign deg7'=1 to the indeterminate 7' over 4. The
(T')-*adic completion of A[T] is denoted by A[[*T']] and is a subring of
the ring of formal power series A[[T']] defined by

(AT = {3 e T a;e A}
(Note that in case 4;=0 for ¢ <0, then A[[*T]]=4[T].)

CoROLLARY 3.4. The base change A — A[[*T]] is flat.

Just as in the ungraded case, the base changes 4 —~ *4 and 4 - A[[*T']]
preserve, for example, finite global dimension.
Let gl*dim A denote the global dimension of *mod ,.

THEOREM 3.5. For the graded ring A, the following inequalities hold :
gldim4 -1 £ gl*dim4 < gldim4 .
Proor. The inequality on the right follows from (3.1). As for the
inequality on the left, recall that
gldimA4 = sup,pd, 4/m,
the supremum taken over all maximal ideals m in 4. Let m be one of
these maximal ideals. If m=*m, then
pd 4/m = *pd 4[m < gl*dim4 .
Suppose, on the other hand, that there is a proper inclusion m 2 *m.
Let B denote the *local ring A ;)= 4A(s» With & maximal ideal mB and a

*maximal *ideal *mB, which we denote by n. Then 4/m=B/mB and
pd A/m=pdgB/mB. Also pdgB/n=*pdgB/n=<gl*dimA. Since (B,n)
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is a *local ring, the residue class ring B/n is a PID (see (2.2)) and hence
there is an a € B such that mB=n+ Ba. Then the sequence

0 -+ B/n> Bfn - B/mB —~ 0
is exact, showing that
pdgB/mB < pdgB/n+1.

Hence pd  A/m=<gl*dim4 +1.

4. *Injective *modules.

Using almost the same proof as in the ungraded case, we get this next
result.

LeMMA 4.1. An A-*module E is *injective if and only if the canonical
homomorphism E — *Hom (a,E) is surjective for all *ideals a.

In the rest of this section we assume that A is noetherian.

Lremma 4.2. Let M and N be *modules with M finitely generated. Then
*Hom (M,N) = Hom ,(M,N).

(In other words: Each homomorphism M — N is a sum of homogeneous
homomorphisms.) Furthermore for each ¢ =0, we have

*Ext ¢ (M,N) = Ext_i(M,N).

Proor. Since 4 is noetherian, the module M is finitely presented by
free *modules
F,>F,~M~->0.

Both *Hom (—,N) and Hom (—,N) are left exact. So it is sufficient
to show that *Hom (4 (n),N)=Hom (4,N). But this is obvious.

ExampLE. Assume that the grading is not finite, so there is an ele-
ment (@,),.z in I1,.z 4, not in IT4,,. Let M=]1,.z 4 be the direct sum
of countably many copies of 4 and let f: M — A be defined by

S(@)iez) = Diez XT; -

This f is not the sum of finitely many homogeneous homomorphisms
M - A and thus
*Hom (M,A) + Hom(M,A4).
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COROLLARY 4.3. An A-*module E is *injective if and only if
Ext i (4/a,E) = 0
for all *ideals a in A and for all 1> 0.

CorROLLARY 4.4. Let Sch(4) be a multiplicatively closed set and let M
be an A-*module. Then

*idS“lA. S-1M = *ldAM .
The next two results follow as in the ungraded case.

LeMMA 4.5. When p is a prime *ideal, then
*E 4, (*k(p)) = *E 4(A[p)y = *E 4(4]p) -

LemmA 4.6. Let f: A - B be a *ring homomorphism and assume that B
18 finitely generated as an A-*module. Let M be an A-*module. Then

*E y(Hom , (B, M)) ~ Hom (B, *E (M)).

LeMma 4.7. Let p be a prime *ideal. Then
Hom (4/p,*E (A[p))y = *k(p) .

ProoF. By (4.5) and (4.6), the left hand side is just *E.,,,(*k(p)), but
*k(p) has only the trivial *ideals. Hence, by (4.3), all *£(p)-*modules are
*k(p)-*injective. In particular

*Eop(*k(P)) = *k(p) .

THEOREM 4.8. Each *injective *module is a unique sum of indecompo-
sable *injective *modules and each of these has the form *E(*k(p)) where p
18 a prime *ideal.

Proor. This follows from Gabriel [4, Chapitre IV, Théoréme 2].
The structure of *E(*k(p)) is discussed in Fossum [2].
Let M be a *module and let

0> M —>*I°>*t » .,

and
0->-M-> 1" 1" - ...

be minimal injective resolutions of M in *mod, and mod , respectively.
For the prime *ideal p let *u™(p,M) and u™(p,M) be the number of
copies of *E(4[p) in *I" and of E(4/p) in I" respectively.
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COoROLLARY 4.9. Let M be a *module and p a prime *ideal.

(a) The group Ext "(A[p, M), s a free *k(p)-*module of rank *u(p,M).
(b) */"n('p’M) =.“n(‘p’M)~

() idAm.M‘J =*id 4, M .
Proor. As in the ungraded case (see Bass [1]) it follows that
Ext " (4/p, M)y, =~ Hom (4/[p,*I"), .
So (a) follows from (4.7) since, for q+y, the group
Hom(A4/p,*E(4[q)) = 0.

If we localize Ext "(4[p, M), at p we get a vector space over k(p)
(which is just *k(p),) of rank *u"(p,M). Thus (b) follows. And (c) is a
direct consequence of (b).

Now we will compare the injective dimension of an object in *mod ,
with its injective dimension in mod ,.
THEOREM 4.10. Let E be an *injective *module. Then
d,E 1.
In fact the minimal injective resolution for *E(A[p) is
0~ *E(A[p) ~ E(A[p) > I1,E(4/q) > 0

where the sum 18 taken over all prime ideals q+p with *q=p.

Proor. According to (4.8) we may assume that £ =E*(A/p) where p
is a prime *ideal. We may assume that (4,p) is *local because & =E,
by (4.5). Furthermore if

0-E->1I>1'-0

is a (minimal) A-injective resolution for E, then it is a (minimal)
A-injective resolution for E.
Let now m be a prime ideal containing p. If m=yp, then

Ext{(4/m,E) = 0 for i>0

by (4.3). So assume m=yp. Then there is an a in m—p such that m=
p + Aa and consequently an exact sequence

(4.11) 3 Ext(4/p,E) - Ext +1(4/m,E) - Ext +1(4/p,E) >
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from which it follows that Exti(4/m,E)=0 for i>1. Suppose that
id,E = 2 and choose (e.g. by Foxby [3]) a prime ideal q such that

Ext*(4/q,E), + 0.
Then q must be in the support of E which is V(p). Therefore q is one of

the above maximal ideals. We have a contradiction, so id K <1.

To establish the second statement, observe that the exact sequence
(4.11) above begins like

0->Aflp > Alp > Ext!(4/m,E) - 0
since Hom ,(4/p,E)~ A[p by (4.7). Hence Ext!(4/m,E) is cyclic. So if
0 - *E(A[p) > BE(A[p) -~ I* > 0

is the minimal injective resolution for *E(A4/[p), then I' contains exactly
one copy of E(A[m) and we are done.

CoroLLARY 4.12. If M is an A-*module, then
d,M-1<s*d, M=<id M.

Matijevic has demonstrated the equivalence of the first two statements
in the next corollary.

CoROLLARY 4.13. The following statements are equivalent.

(a) The *ring A is Gorenstein.

(b) The local rings A, are Gorenstein for all graded prime ideals p.

(c) The *id A(p)A<v)< oo for all prime ideals p (respectively graded prime
ideals).

Proor. Suppose (a). Note first that id A(p)A(p)=supqhtq where the
supremum is taken over all prime ideals g with *q=p. From (2.3) it
follows that

*id 4, Agy < idyyAg S htp+1 < o

Therefore (a) implies (c).

Since id Aqu <id A(q)A(q) <*id qu)A(‘!, + 1 for all prime ideals ¢, according
to the theorem, we get that (c) implies (b).

Now (b) implies (a) by (4.9).

Note that for a prime *ideal p for which A4, is Gorenstein we have
*id A@)A(p) = htp .

Similarly we have the following result.
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CorOLLARY 4.14. The following statements are equivalent.

(a) 4 is a (locally) regular ring.
(b) A4, is a regular local ring for all graded prime ideals p.
(c) gl*dim A, < oo for all prime ideals p.

Proor. The proof is the same as for (4.13) except we use (3.5) instead
of (4.9).

In [11] Nagata raised the following conjecture: If (the non-negatively
graded ring) 4 is Cohen-Macaulay at all the homogeneous maximal
ideals, then 4 is Cohen-Macaulay. Matijevic and Roberts have (inde-
pendently) solved the conjecture in the affirmative, see [10]. For comple-
tion we have included a proof (in the Z-graded case).

ProrosrTION 4.15. (Matijevic and Roberts). If 4, is a Cohen—Macaulay
ring for all graded prime ideals p in A, then A is a Cohen—Macaulay ring.

Proor. Let m be any maximal ideal in 4 and put p=*m and n=
md,. We want to show that A4, is Cohen—Macaulay. But 4, =(4,)),-
Therefore it suffices to assume that (4,p) is *local with 4, Cohen—
Macaulay, and we are then required to show that 4, is Cohen—Macaulay
for all maximal ideals m containing p strictly.

Put d=depth4,=htp. By (4.9) we have that Ext?(4/p,4) is a free
A[p-*module and that Extt(4/p,4)=0 for ¢ <d. Choose an a in A4 such
that m=p + (a), cf. (2.2), and consider the long-exact sequence:

. > Exti-1(4/p,4) - Extt(4/m,4) - Exti(4[p,4) > ... .

It follows that Extt(4/m,A4)=0 for ¢<d and that Ext?(4/m,4) is a
submodule of Ext?(A/p,A). Since Ext?(A[p,A4) is a free A[p-module
we obtain Ext?(4/m,4)=0, and hence

depthd,, > d+1 = htp+1 = htm
(cf. 2.3) as desired.

REMARK. If 4 is a homomorphic image (in the graded sense) of a
graded Gorenstein ring, say R, then the above result follows directly
from the fact that the modules of dualizing differentials Extz?(4,R) are
graded A-modules (and therefore — if non-zero — have graded prime
ideals in their supports).
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5. Complete graded ring of quotients.

Finally we define the complete *ring of quotients. But first we give
an example.

ExampLE. Let k be a field and X and Y indeterminates over k with
degX =1 and degY = —1. Set A=k[X,Y]/(XY). Then *id ,4=1 and
all homogeneous regular elements are units. Thus S-14 is not self-injective,
where S is the set of regular homogeneous elements in 4.

Let A be arbitrary and denote by Z the set of regular elements in 4.
Set @=2Z-14, so @ is the classical ring of quotients of A. When 4 is
noetherian it has only finitely many associated prime ideals and then @
is also the complete ring of quotients of 4 defined in the sense of Utumi
with ‘“dense ideals”. (See Lambek [7].) We will copy this idea, using
graded regular ideals, i.e. ideals containing a regular element, for our set
of dense ideals.

Let *@,, denote the set of fractions a/z in @ such that there is a regular
*ideal a such that (a/z)a;c 4, ., for all 4. It is not hard to show that

and that the sum 3, *@, is direct in . Thus *@Q=]T *@,, becomes a
graded ring — the complete graded ring of quotients of A.
Let a be an *ideal which meets Z in 2. There is an injection

Hom (a,A) - Q
defined by f — f(z)/z. Note that then
*Q = |J, Hom(a,4) and *@, = U, *Hom,, (a,4),
the union taken over all ideals a with anZ <+ @. We obtain the following
inclusions:
A > 814 > *Q -~ *E(A)

i !
74 = Q - E(4)

where S=2Znh(A4) and the maps on the top are in *mod .

ProOPOSITION 5.1. The complete graded ring of quotients *Q of A 1is
*injective if and only if Q is injective.

Proor. Suppose that *Q is injective. Since @ =Q ® ,*@ we have
ideQ = id, *Q = *d, *Q+1.
Hence @ is injective (cf. [1]).
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If, on the other hand, @ is injective, then @ =E(4). Choose ec h(*E(4)).
Let € be its image in *H(A)/A, a submodule of E(4)/A. Set a=Ann ,e.
Then ais a graded ideal (namely the annihilator of a homogeneous element
in a *module) and anZ+®@ since ¢ € @/A. Now ea,<cA4;,, where d=
dege, so, in fact, we have that e € *Q). Hence the homogeneous elements
of *E(4) are in *@), and so *Q=*E(A).
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